
Applying Collaborative Filtering Techniques to Movie
Search for Better Ranking and Browsing

Seung-Taek Park
Yahoo! Research
3333 Empire Ave

Burbank, CA 91504
parkst @ yahoo-inc.com

David M. Pennock
Yahoo! Research

45 West 18th St, 6th floor
New York, NY 10011

pennockd @ yahoo-inc.com

ABSTRACT
We propose a new ranking method, which combines rec-
ommender systems with information search tools for better
search and browsing. Our method uses a collaborative filter-
ing algorithm to generate personal item authorities for each
user and combines them with item proximities for better
ranking. To demonstrate our approach, we build a prototype
movie search and browsing engine called MAD6 (Movies,
Actors and Directors; 6 degrees of separation). We conduct
offline and online tests of our ranking algorithm. For offline
testing, we use Yahoo! Search queries that resulted in a click
on a Yahoo! Movies or Internet Movie Database (IMDB)
movie URL. Our online test involved 44 Yahoo! employees
providing subjective assessments of results quality. In both
tests, our ranking methods show significantly better recall
and quality than IMDB search and Yahoo! Movies current
search.

Categories and Subject Descriptors
H.3.5 [Information Systems]: On-line Information Ser-
vices; H.3.4 [Information Systems]: Systems and Soft-
ware; H.3.3 [Information Systems]: Information Search
and Retrieval

General Terms
Experimentation, Measurement, Performance

Keywords
collaborative filtering, search ranking, recommender systems,
information retrieval, movie search

1. INTRODUCTION
Two types of technologies are widely used to overcome in-

formation overload: information retrieval and recommender
systems. Information retrieval systems (e.g., general web

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’07, August 12–15, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-609-7/07/0008 ...$5.00.

search engines such as Google1 and Yahoo! Search2) accept a
query from a user and return the user relevant items against
the query. Since the number of returned documents can run
into the millions, a good ranking algorithm, which ensures
high precision in the top ranked documents, is important for
the success of an information retrieval system.

In general, the ranking of returned documents in web
search engines is the combination of the document prox-
imity and authority. Document proximity, sometimes called
document relevance, denotes the document’s similarity or
relevance to the given query. Document authority denotes
the importance of a document in the given document set.
PageRank [19] measures global importance of documents
on the Web while HITS [16] measures local authorities and
hubs in the base-set documents extracted by the given query.
However, even though item authority and proximity are
widely used together in general search engines for better
document ranking, item authority is often ignored or par-
tially used in many specialized search systems, for example
product search in an ecommerce site. For example, search
results may be sorted based only on item relevance against
the given query.

There are several challenges for adapting item authority
in these information retrieval systems due to the different
characteristics of documents like item or product informa-
tion documents in commercial sites, as compared to web
documents. The power of PageRank and HITS stems from
the feature of links between web documents. PageRank and
HITS assume that a link from document i to j represents
a recommendation or endorsement of document j by the
owner of document i. However, in item information pages
in commercial sites, links often represent different kinds of
relationships other than recommendation. For example, two
items may be linked because both items are produced by the
same company. Also, since these item information pages
are generally created by providers rather than users or cus-
tomers, the documents may contain the providers’ perspec-
tive on the items rather than those of users or customers.

On the other hand, recommender systems are widely used
in ecommerce sites to overcome information overload. Note
that information retrieval systems work somewhat passively
while recommender systems look for the need of a user more
actively. Information retrieval systems list relevant items at
higher ranks only if a user asks for it (e.g. when a user sub-
mits a query). However, recommender systems predict the
need of a user based on his historical activities and recom-

1http://www.google.com
2http://search.yahoo.com

mend items that he may like to consume even though the
user does not specifically request it.

In this study, we propose a new approach to combine
informational retrieval and recommender system for bet-
ter search and browsing. More specifically, we propose to
use collaborative filtering algorithms to calculate personal-
ized item authorities in search. This approach has several
benefits. First, user ratings or behavior information (e.g.,
user click logs) better represent user’s recommendation than
links in the item information pages. Second, this informa-
tion is biased to the customers’ perspectives on items rather
than those of providers. Third, many ecommerce sites pro-
vide users both information retrieval and recommender sys-
tems. Calculating item authorities using these already ex-
isting recommender systems in ecommerce sites does not
require much additional work and resources. Fourth, using
both item authorities and proximities, search results can be
improved. Last, since collaborative filtering algorithms pro-
vide personalized item authorities, the system can provide
a better personalized user experience.

To demonstrate our approach, we build a prototype per-
sonalized movie search engine called MAD6. The name is an
acronym for Movies, Actors, and Directors with 6 degrees
of separation.3 MAD6 combines both information retrieval
and collaborative filtering techniques for better search and
navigation. MAD6 is different from general web search en-
gines since it exploits users’ ratings on items rather than
the link structures for generating item authorities. More-
over, using the users’ historical preference data and expected
preferences on items, MAD6 provides a personalized search
ranking for each user.

To evaluate our ranking algorithms, we conduct offline
and online tests. We use search click logs from Yahoo! Search
for the offline test. We extract queries that resulted in a
user clicking on a movie page in either the Internet Movie
Database (IMDB) or Yahoo! Movies. We compare the per-
formance of five search ranking systems, including IMDB
search, Yahoo! Movies current search, and three of our own
algorithms, according to hit rate and reciprocal ranking. We
also conduct an online test involving 44 Yahoo! employees
using our test demo. The users subjectively rate the recall
and quality of six ranking systems. Our approach performs
better than IMDB search and Yahoo! Movies current search
in both the offline and online tests, according to both recall
and quality of search results.

2. RELATED WORK
Recommender systems can be built in three ways: content-

based filtering, collaborative filtering, and hybrid systems.
Content-based recommender systems, sometimes called in-
formation filtering systems, use behavioral user data for a
single user in order to try to infer the types of item attributes
that the user is interested in. Collaborative filtering com-
pares one user’s behavior against a database of other users’
behaviors in order to identify items that like-minded users
are interested in. Even though content-based recommender
systems are efficient in filtering out unwanted information
and generating recommendations for a user from massive

36 degrees of separation is a well-known phrase from so-
ciology adapted more recently to the movie domain in the
form of a “party game” called “six degrees of Kevin Bacon”,
where the goal is to identify as short a path as possible from
a given actor to Kevin Bacon, following co-actor links.

information, they find few if any coincidental discoveries.
On the other hand, collaborative filtering systems enables
serendipitous discoveries by using historical user data.

Collaborative filtering algorithms range from simple nearest-
neighbor methods [5, 25, 27] to more complex machine learn-
ing based methods such as graph based methods [1, 15],
linear algebra based methods [4, 26, 10, 24, 7], and proba-
bilistic methods [14, 22, 23, 8]. A few variations of filterbot-
based algorithms [11, 21] and hybrid methods [23, 18, 3]
that combine content and a collaborative filtering have also
been proposed to attack the so-called cold-start problem.

Tapestry [9] is one of the earliest recommender systems.
In this system, each user records their opinions (annota-
tions) of documents they read, and these annotations are
accessed by others’ filters. GroupLens4 [25], Ringo [28] and
Video Recommender [30] are the earliest fully automatic
recommender systems, which provide recommendations of
news, music, and movies. PHOAKS (People Helping One
Another Know Stuff) [29] crawls web messages and extracts
recommendations from them rather than using users’ ex-
plicit ratings. GroupLens has also developed a movie rec-
ommender system called MovieLens5 [11, 26, 27]. Fab [2] is
the first hybrid recommender system, which use a combina-
tion of content-based and collaborative filtering techniques
for web recommendations. Tango [6] provides online news
recommendations and Jester [10] provides recommendations
of jokes.

Page et al. [19] and Kleinberg [16] first proposed a new
concept of document relevance, often called document au-
thority, and developed the PageRank and HITS algorithms,
respectively, for better precision in web search. Both al-
gorithms analyze the link structure of the Web to calcu-
late document authorities. Haveliwala [12] proposed topic-
sensitive PageRank, which generates multiple document au-
thorities biased to each specific topic for better document
ranking.

Note that our approach is different from general web search
engines since we use user ratings rather than link structure
for generating item authorities. Also, our approach is differ-
ent from topic-sensitive PageRank since we provide person-
alized item authorities for each user rather than topic-biased
item authorities. Also, our approach is different from rec-
ommender systems since it uses predictions of items as a
ranking function for information search rather than gener-
ating recommendation.

3. RANKING ALGORITHM
Note that we only focus on movie title search rather than

people (actor or director) search in our study. Thus, the
term “item” is equivalent to “movie” or “movie title”. Like
general web search engines, our ranking algorithm consists of
two main components: item proximity and item authority.

3.1 Item proximity: DB and Web relevance

3.1.1 DB relevance
Most movie search engines index only titles or few key-

words on items. Thus, item relevance for the given query
against a database are often measured by relevances of ti-
tles and keywords for the query. In other words, they are

4GroupLens, http://www.grouplens.org/
5MovieLens, http://movielens.umn.edu/

most useful when users already know what they are looking
for. Search queries are assumed to be part of movie titles, or
names of actors or directors. We define these type of queries
as navigational queries.

However, when a user searches for something, in many
cases he does not know much about the object, and that
is one of main reasons why he searches for it. Sometimes,
searching means trying to find unknown (or unfamiliar) in-
formation, which may be interesting. Thus, search tools
should anticipate that some queries will be ambiguous or
inexact. Even for niche search engines, the situation is not
changed. Imagine a scientific literature search. Even though
a scientist is very familiar with her research field, sometimes
she is searching for articles that she might have missed. In
this case, we cannot expect that she already knows the titles
of the articles she is looking for.

A fan of “Arnold Schwarzenegger” may try to find a list
of the actor’s movies with a query such as “arnold action”,
expecting to find movies such as The Terminator or Conan
the Barbarian. We define these type of queries as infor-
mational queries. However, the Internet Movie Database
(IMDB) and Yahoo! Movies, for example, currently do not
return these movies, since their titles do not contain any of
the query words. Since both systems’ basic search supports
title and name matching only, they suffer from poor recall
when a user does not know the exact titles of the target
movies. Another example of a poorly supported query type
is for character names. Users may want to find The Lord of
the Rings series with queries such as “gandalf” or “frodo”.
IMDB does provide a character name search option in their
advanced search, but only one name is allowed and gender
information is required. Thus, the query “neo trinity” (look-
ing for The Matrix) is not supported. Yahoo! Movies does
not support character name search at this time.

To address these limitations, we build our own database of
more extensive metadata for better recall in search results.
In addition to movie titles, we index a large amount of meta-
data including genres, names of actors, directors, characters,
plots, MPGA ratings, award information, reviews of critics
and users, captions from trailers and clips, and so on. To
measure item relevance for the given query, we use MySQL’s
match-against function in each indexed field. The function
returns matched items with relevance scores in each field and
we calculate item relevances for the query by calculating the
weighted sum of all fields. A few heuristics are used to bal-
ance the weight of each field. For example, we give more
weight on the title field, so that items with title matches
will have higher relevance scores. Relevance scores of the
returned documents are normalized such that the highest
score in each search becomes 13. (In our system, relevance
scores are integers from 1 to 13, corresponding to ratings
grades F through A+.)

To show the possible increase in recall, we conducted a
recall test comparing our extensive indexing system with
IMDB and Yahoo! Movies current search. We downloaded
movie data from IMDB6 and generated queries for the 100
most popular movies, where popularity is measured by the
number of user ratings. We use five movie metadata fields:
names of actors, directors, characters, plots, and genres.
The two highest TF/TFIDF words (except stopwords) of
each of the top 100 popular movies are selected as a query

6http://www.imdb.com/interfaces

Table 1: Hit ratios of three movie search engines
for the top 100 most popular movies; Only the top
10 returned movies are considered. “DB” denotes
our base system with an extensive index. Two
top TF/TFIDF terms from five metadata, includ-
ing names of actors, directors, characters, plots, and
genres, are selected as a query for each movie in the
top 100 popular movies. Then each query is sub-
mitted to three systems, IMDB, Yahoo! Movies and
our base system. The popularities of movies are
measured by the number of user ratings. We down-
loaded the IMDB movie content data and conducted
this test in April 2006.

TF TFIDF
HIT No Returns HIT No Returns

IMDB 4 2 6 2
current Yahoo! 2 94 2 95

DB 33 25 37 43

and only the top 10 returned movies are analyzed. We con-
sider only movies which exist in our database.

Only a few queries succeed in extracting the target movie
within top 10 highest position when IMDB and current Ya-
hoo! Movies are used. All of the successful queries con-
tain at least one title word. Table 1 shows the improve-
ment of our base search engine with an extensive index.
Note that queries are somewhat biased toward IMDB, since
they were generated based on IMDB data. Our system suc-
cessfully returned the target movie about 1/3 of the time,
whereas IMDB and current Yahoo! Movies returned the tar-
get movie less than 6% of the time. Note that IMDB con-
ducts OR matching search and returns many matches in
most cases. Yahoo! Movies conducts AND matching search
and our system conducts AND matching search for items
but OR matching search for the names.7

The performance gain of our system is much smaller when
tested with actual user queries on Yahoo! Movies instead
of synthetic queries. This is because most queries on Ya-
hoo! Movies current search are navigational: all or part of
movie titles or actor names. However, it is impossible to
know whether users inherently prefer navigational queries,
or if users have learned through experience that informa-
tional queries are not supported by today’s search systems
at IMDB and Yahoo! Movies. We expect the frequency of
informational queries to increase significantly when movie
search engines start to support such queries. Though we em-
ploy synthetic queries here, we report results of performance
comparisons with real queries and real users in Sections 4
and 5.

3.1.2 Web relevance
We also use an additional concept of item relevance for

the given query that we call web relevance, which takes into
account the relevance as judged by a general purpose algo-
rithmic search engine like Yahoo! or Google. We find that
users often provide some extra information of items which

7OR matching search returns any items that match at least
one query term while AND matching search returns items
that match all query terms.

Table 2: The effect of web relevance. “jlo” is sub-
mitted to each system as a query. Bold represents
items relevant to Jennifer Lopez. The results are as
of April 2006.

System Top 10 movie results

Yahoo! No returns
1. Fejlvs (1968)
2. Mihajlo Bata Paskaljevic (2001)
3. Mihajlo Petrovic Alas (1968)
4. Mijlocas la deschidere (1979)

IMDB 5. Scopul si mijloacele (1983)
6. A Szr s gykr fejldse (1961)
7. Ziveo zivot Tola Manojlovic (1973)
8. Kumonosu j (1957)
9. The Hi-Lo Country (1998)
10. Vlemma tou Odyssea, To (1995)

DB No returns
1. Maid in Manhattan (2002) A+
2. Angel Eyes (2001) A-
3. Let’s Dance (1950) B+

Web 4. Sweet 15 (1996) B+
5. My Family (1995) B+
6. U-Turn (1997) B+
7. The Cell (2000) B
8. The Wedding Planner (2001) C-

do not exist in our database. For example, “jlo”—the nick-
name of actress Jennifer Lopez—is often found in the users’
reviews of the movies she has starred. Moreover, the perfor-
mance of general search engines are constantly improving,
reflecting a huge number of person-hours of development.
In fact, performing a Yahoo! or Google search restricted to
a particular movie site (e.g., querying a search engine with
“arnold action site:movies.yahoo.com”) often works better
than using the site-specific search on the movie site itself.
One of the advantages for this approach is that we can take
advantage of any improvements made by general search en-
gines without delay, without re-inventing all the tools and
tricks that they use.

We use the Yahoo! Search API8 for getting web informa-
tion. Each time our system gets a query from a user, it
conducts a site-limited search through the API and gets the
top 50 results. Then, our system grabs the item ids from the
document URLs and extracts information of corresponding
items from our database. The web relevance score of each
returned item is given based on its relative first position9

in the web search result. More specifically, if L(i, q) is the
highest rank of an item i in the web search result for the
query q, its web relevance score is given by the following
equation.

Web(i, q) =
(N + 1− L(i, q))

N
∗ γ (1)

where N and γ are the maximum number of returns from
the search engine and a normalized factor. We set γ = 13

8http://developer.yahoo.com/search/web/
9Note that the returned items can be duplicated. One may
be a “Cast and Credit” page and another may be a “Movie
Details”, “Showtimes & Tickets”, or “Trailers & Clips” page
of the same movie.

such that the web relevance score of the top ranked item
becomes 13. We set N = 50. We ignore all items that do
not appear in our database. Table 2 shows the effect of Web
relevance for the query “jlo”. Our web relevance system
returns eight items and five of them are relevant to Jennifer
Lopez. IMDB does not return any relevant titles in its top
10 search results.

3.1.3 Combining of DB and Web relevance
The item proximity score of a returned document is cal-

culated as:

Prox(i, q) = max(Web(i, q), DB(i, q)) (2)

where DB(i, q) and Web(i,q) denote DB and Web relevances
of an item i for the given query q. We tested several heuristic
weighting schemes such as averaging two relevance scores or
selecting worst relevance score as the proximity scores and
found that this heuristic method seems to be the best among
them. Note that the definition of a good ranking is very sub-
jective and we do not have clear metric for this matter. Thus
we always depend on the judgment of the first author when
parameters are chosen. In other words, our implemented
ranking system is very biased to the taste of the first user.
We do not claim that our ranking is the best performing in-
stance among all possible implementations. Our goal of this
study is showing that collaborative filtering can be useful
for ranking when PageRank can not be used for the item
authority.

3.2 Item authority

3.2.1 Global item authorities
We first generate global item authorities. The global item

authorities can be generated based on the items’ average
ratings over all users. However, we add some heuristics for
calculating global item authorities, which emphasize both
the popularity and quality of items. Note that the quality
of items do not always match with the need of users. For ex-
ample, even though some old movies have very good quality,
most users may not look for those 40’s or 50’s movies since
they prefer recently produced movies. In fact, only 57 users
in our database have rated Citizen Kane (1941). Thus, we
calculate global item authorities using the following equa-
tion:

Authi =
ri + logγ |Ui|+ ci + log10(10 ∗ awi + 5 ∗ ani)

δ
(3)

where Ui is the set of users who have rated item i, ri is
the average rating of item i over all users, ci is the average
critic rating of item i, awi is the number of awards that
item i has won, ani is the number of awards that item i has
been nominated for, and δ is a normalization factor such
that the maximum global item authority is 13. Also, we set
γ such that the maximum value of logγ |Ui| is 13. We use
award scores and average critic ratings on items for assigning
better authorities to the classic movies than the movies of
which users have frequently rated but their average ratings
are low.

3.2.2 Personal item authorities: Prediction
We use an item-based collaborative filtering (CF) algo-

rithm [27] to calculate a user’s expected ratings on the re-
turned items. We have tested several collaborative filter-
ing algorithms including user-based CF and a few machine

Table 3: Weak & strong generalization: The aver-
age normalized mean absolute errors and standard
deviations on three sample sets are shown. Smaller
numbers (lower errors) are better.

Data Generalization Item-Based MMMF
MovieLens Weak .4096 ±.0029 .4156 ±.0037

Strong .4113 ±.0104 .4203 ±.0138
EachMovie Weak .4382 ±.0009 .4397 ±.0006

Strong .4365 ±.0024 .4341 ±.0025

learning algorithms and found that item-based was the best
performing collaborative filtering algorithm among them over
three movie data sets including Yahoo! Movies, MovieLens,
and EachMovie. Table 3 shows the normalized mean ab-
solute error of item-based CF and maximum margin ma-
trix factorization (MMMF), the best algorithm among ten
tested machine learning approaches in [17, 24], according to
the weak and strong generalization tests with the MovieLens
and the EachMovie data. The results of MMMF are copied
from [24]. More motivations and details of the weak and
strong validation test can be found in [17, 24].

Item-based CF first calculates item similarities using ad-
justed cosine similarity :

sim(i, j) =

P
u∈U (ru,i − ru) · (ru,j − ru)qP

u∈U (ru,i − ru)2 ·
qP

j∈U (ru,j − ru)2
(4)

where ru,i is the rating of user u for item i and ru is user
u’s average item rating. It helps to penalize similarity scores
that are based on the small number of common users in order
to reflect less confidence, yielding a modified similarity score
sim’(i,j) as follows [13]:

sim′(i, j) =
min(|Ui ∩ Uj |, γ)

γ
∗ sim(i, j) (5)

where Ui denotes a set of users who have rated the item i.
We set γ = 50. We use user rating information from Yahoo!
Movies10 to calculate item similarities. The prediction of the
target item for the user is given by the sum of the average
rating of the target item and the weighted average of its
neighbors:

pu,i = ri +

P
j∈Iu sim

′(i, j) ∗ (ru,j − rj)P
j∈Iu |sim

′(i, j)| (6)

where ri and Iu denote the average rating of the item i over
all users and a set of items the user u has rated.

3.3 MADRank: Our ranking system
We assign item authorities for each search result based on

the following procedure. We assign global item authorities
as item authorities when the target user is unknown. When
a user logs in our system, we partition returned items in
each search result into two groups: items which the user has
rated and others that the user has not rated. We assign
the user’s own ratings as item authorities for the first group
and the user’s expected ratings calculated by item-based

10User ratings of movies consist of a small sample generated
by Yahoo! Movies on November 2003. The data contains
211,327 ratings, 7,642 users and 11,915 items. All users rate
at least 10 movies.

algorithm for the second group. If we cannot calculate the
user’s expected ratings for any items in the second group due
to lack of information, global item authorities are assigned
for those items. Then the ranking score of document i for
the given query q and user u is:

MADRank(i, q, u) = α ∗Auth(i, q, u) + (1− α) ∗ Prox(i, q)
(7)

where α is an weighting factor for item authorities. We set
α = 0.5. In addition, we set the MADRank score to 13 if
the title of an item exactly matches to the given query.

Table 4 shows the top 10 title search results of six movie
search systems, including the current Yahoo! Movies search,
IMDB search, and four of our own search systems, for the
query “arnold action”. DB denotes one variant of our sys-
tems with an extensive index and DB relevance based rank-
ing. Web denotes a system using the Yahoo! Search API
and web relevance ranking. GRank denotes a system us-
ing MADRank as a ranking system and item authorities are
based on global item authorities. PRank denotes a sys-
tem with MADRank and personal item authorities. Table 5
shows the profile of the test user used in the PRank.

Note that the current Yahoo! Movies search does not re-
turn any titles due to AND matching within a limited in-
dex. IMDB does not return any Arnold Schwarzenneger
movies in the top ten results. In the DB system, Arnold
Schwarzenneger DVD 2-Pack - The Sixth Day/The Last Ac-
tion Hero(2003) is shown first since the title contains both
“arnold” and “action”. However, the results still show the
need of better ranking for informational search since many
famous titles such as Terminator (1984) and Terminator
2: Judgment Day (1991) do not appear in the first search
results. The result of Web seems to be better than that
of DB. Note that several famous Schwarzenneger movies in-
cluding Terminator (1984) and Terminator 3 (2003) appear
in the top 10 results. However, Arnold Schwarzenneger DVD
2-Pack (2003) is still shown first. Several items including
Terminator (1984) and Terminator 2 (1991) are boosted in
the GRank due to their higher item authorities while Arnold
Schwarzenneger DVD 2-Pack (2003) disappears from the
top 10 due to its low global item authority. In PRank,
Terminator (1984), Terminator 2 (1991) and Total Recall
(1990) are boosted further since either the user has rated
the items higher or his expected ratings for those items are
high. Similarly, Terminator 3 (2003), Eraser (1996) and
End of Days (1999) disappear due to their low personal-
ized item authorities. By applying item authorities in the
ranking function, we believe that search results can be sig-
nificantly improved.

4. OFFLINE EVALUATION
We measure the effectiveness of our ranking algorithms

by comparing against two existing systems—IMDB search
and the current Yahoo! Movies search—in both online and
offline tests. In this section, we discuss our offline test.
We use search click data from Yahoo! Search containing
search queries and clicked URLs. We select data stored
on the first day of each month from October 2005 to May
2006. We extract all queries that resulted in a click on
a movie page in either IMDB or Yahoo! Movies. Specifi-
cally, we extract queries containing clicked-URLs starting
with imdb.com/title or http://movies.yahoo.com/shop?d=hv.
We use some heuristics to extract additional movie pages

Table 4: Top 10 results of different ranking methods
for the query “arnold action”. The results are as of
April 2006.

Ranking Top 10 movie results
current No items return
Yahoo!

1. Einleitung zu Arnold Schoenbergs .. (1973)

2. Benedict Arnold: A Question of Honor (2003)

3. Love and Action in Chicago (1999) (V)

4. Mary-Kate and Ashley in Action! (2001)

IMDB 5. Armed for Action (1992)

6. Demonstrating the Action of the ... (1900)

7. Peace Is Every Step: Meditation ... (1998)

8. Rock ’n’ Roll Space Patrol Action Is Go! (2005)

9. Leibstandarte SS-Adolf Hitler im .. (1941)

10. Action Figures: Real and Uncut (2005) (V)

1. Arnold Schwarzenneger DVD 2-Pack

- The Sixth Day/The Last Action Hero(2003)

2. THE LAST ACTION HERO (1993) and the 2

- DVD Special Edition of THE 6TH DAY

3. Warner Home Video DVD Action 4-Pack (1997)

DB 4. Last Action Hero (1993)

5. The 6th Day (2000)

6. Eraser (1996)

7. Commando (1985)

8. True Lies (1994)

9. Nancy Drew - A Haunting We Will Go (1977)

10. Out for Justice (1991)

1. Arnold Schwarzenneger DVD 2-Pack

- The Sixth Day/The Last Action Hero(2003)

2. Last Action Hero (1993)

3. Commando (1985)

4. End of Days (1999)

Web 5. Eraser (1996)

6. True Lies (1994)

7. Terminator 2 - Judgment Day (1991)

8. Raw Deal (1986)

9. Terminator 3: Rise of the Machines (2003)

10. Collateral Damage (2002)

1. True Lies (1994)

2. Last Action Hero (1993)

3. Commando (1985)

4. Terminator 2 - Judgment Day (1991)

GRank 5. End of Days (1999)

6. Eraser (1996)

7. The Terminator (1984)

8. The Bridge on the River Kwai (1957)

9. Terminator 3: Rise of the Machines (2003)

10. The Fugitive (1993)

1. Terminator 2 - Judgment Day (1991)

2. Commando (1985)

3. True Lies (1994)

4. Last Action Hero (1993)

PRank 5. The Terminator (1984)

6. T2 The Ultimate Edition DVD (1991)

7. The Bridge on the River Kwai (1957)

8. Bloodsport (1988)

9. Total Recall (1990)

10. The Fugitive (1993)

Table 5: The profile of the test user

Air Force One (1997) (F)
Commando (1985) (C+)
Hulk (2003) (C-)
Lord of the Rings: The Fellowship of the Ring (2001) (A)
Lord of the Rings: The Return of the King (2003) (A)
Matrix (1999) (A+)
Raiders of the Lost Ark (1981) (A)
Return of the Jedi (1983) (B-)
Saving Private Ryan (1998) (A)
Shawshank Redemption (1994) (A+)
Star Wars (1977) (A+)
Terminator (1984) (A)
Terminator 2: Judgment Day (1991) (A+)

and remove cast and crew pages. We extract 110K ∼ 170K
queries for each day.

We choose 500 randomly selected instances from each day
for a total of 4,000 query-URL pairs. Next, we extract movie
ids from the URLs. If a URL is a Yahoo! Movies page,
we extract the yahoo movie id from the URL and find the
movie title in our database. If a URL is an IMDB page,
we submit the URL to Yahoo! Search and find the title,
then find the matching Yahoo! movie id. If this fails, we use
some additional heuristics. For example, if we cannot find
a corresponding movie by title match (i.e. Bom yeoreum
gaeul gyeoul geurigo bom (2003) in IMDB), we submit a
query such as “site:movies.yahoo.com Bom yeoreum gaeul
gyeoul geurigo bom (2003)” to Yahoo! Search and select the
first returned movie as its counterpart in Yahoo! Movies
(e.g. Spring, Summer, Fall, Winter... and Spring (2004) in
Yahoo! Movies). Then, the first author manually inspected
the match list and removed a few incorrect instances. After
removing all instances without either Yahoo! or IMDB IDs,
we are left with 2,179 query-movieID pairs.

For the purpose of the test, we assume that the clicked
movie URL is the user’s desired target movie for that query.
We test five ranking systems, including IMDB search, Ya-
hoo! Movies current search, and three of the methods de-
scribed in the Section 3.3. We cannot test the personal-
ized algorithm PRank, because we do not have access to the
movie ratings of users in our search click log data set.

Our database includes movie meta data and user rating
information from Yahoo! Movies, including 21M user rat-
ings, 3.3M users and 150K movies. This data is also used
for the current version of MAD6 implementation and online
test discussed in Section 5.

We use hit rate (HR) and average reciprocal hit rank
(ARHR) [8] as performance metrics for the offline tests.
Hit rate measures how many times a system returns the
target movie using following equation:

HR =
|H|
|N | (8)

where N is a set of test instances and H is a set of hit
instances within the top 10 results.

Note that our test data contains, for each query, a list of
potentially several movies clicked by the same user. When
a user clicks on several movies from the same query, we
count a hit if the system returns any of the visited movies.

Table 6: Offline experiment results.
Metric IMDB Yahoo! DB Web Grank
HR .7435 .5241 .5879 .8086 .8155

ARHR .6544 .4615 .4479 .7585 .7303

Then average reciprocal hit rank is measured by the follow-
ing equation:

ARHR =
1

|N |
X
i∈H

1

ri
(9)

where ri is the actual rank of the target movie i. When
a user visits several movies with the same query, we only
consider the highest ranked item. We only consider the top
10 results with this metric. Note that hit rate is used to
capture recall of search results while average reciprocal hit
rank is used to measure the quality of search results.

The results are shown in Table 6. In general, we find that
Web and GRank perform better than the others. GRank
performs best on hit rate while Web performs best on ARHR.
Even though DB shows a much better hit rate than Yahoo!,
DB performs worst on ARHR. Yahoo! performs worst in
terms of hit rate due to its AND matching search. IMDB
performs better than Yahoo! and DB, but worse than Web
and GRank in general.

One may be somewhat surprised by the high hit rate of
IMDB and Web. This happens since most queries are nav-
igational queries. In other words, most queries are either
movie titles, part of movie titles, or movie titles with ex-
tra terms such as the word “movie”. We believe this hap-
pens because most users understand from experience that
informational queries are not supported by existing search
facilities, and thus mainly submit only supported (i.e., nav-
igational) queries. Also note that our offline test is biased
to Web ranking, since we use Yahoo! Search click data. If a
target movie is not found by a search engine, a user refines
his/her query and submits it again to the search engine. In
our test, the first failure would not be captured, and queries
that tend to work well in web search (i.e., that result in clicks
on movie pages) are tested. Also our test may be somewhat
biased to IMDB, since most URLs in our test data come
from IMDB. In our test data, 1,297 unique URLs point
to IMDB pages while 231 unique URLs point to pages in
Yahoo! Movies.

5. ONLINE EVALUATION
We also conduct an online evaluation using MAD6 [20],

our prototype personalized movie search and browsing en-
gine. In this section, we first briefly explain MAD6, then
discuss our online test procedure and results.

5.1 MAD6 architecture
The architecture of MAD6 is shown in Figure 1. It has

four internal components (User Interface (UI) Module, Database,
Web Analyzer and Ranker) and two external components
(Search Engine and Collaborative Filtering (CF) Module).
Note that the two external components are modular and can
be exchanged with other systems. The User Interface (UI)
Module gets a query from a user and presents the user the
search results from the Ranker. When the UI Module ob-
tains a query from a user, it passes the query to the Web

CF module

Database

Search engine

Web Analyzer

UI module

User

Ranker

Figure 1: The architecture of MAD6.

Analyzer and Database. The Web analyzer extracts the web
search result from the associated search engine and gener-
ates web relevance scores of the returned items. Then, this
information is submitted to the Database. The Database ex-
tracts items relevant to the given query and generates their
DB relevance scores. It also extract all information of items
extracted by Web Analyzer or Database itself. The informa-
tion contains item contents, global item authorities and DB
and Web relevances. Then, this information is submitted to
the Ranker, which requests the CF Module expected ratings
of items for the given user. Note that CF Module has its
own user rating database. Then, items are sorted based on
the ranking scheme the user has requested.

5.2 Features of MAD6
MAD6 provides users three information features; Search,

Item Presentation, and Personal User Profile pages.
In Search pages, MAD6 presents two search results for a
given query: movie search results and people search results.
Search ranking can be personalized if a user logs in the sys-
tem. The user can choose to rank results according to global
MADRank, personalized MADRank, Web relevance, DB rel-
evance, or item authorities. Each returned item shows rat-
ings based of four methods (MADRank, Web relevance, DB
relevance and item authorities) and matched fields against
the given query. An example search result is shown in Figure
2.

There are two types of Item Presentation pages: movies
pages and people (actor and director) pages. Each page
shows details of the item (title, synopsis, cast, release date,
ratings, posters, etc.) along with two lists of relevant items,
one showing neighboring items in the collaboration graph of
actors and directors, the other based on similarities inferred
from user preferences.

The Personal User Profile page presents the user personal
information such as: (1) What queries has the user submit-
ted most frequently? (2) What movies, actors and directors
has the user visited most frequently, either directly or indi-
rectly?11 (3) What are the user’s favorite genres? (4) What
movies are most recommended for the user? Park et al. [20]
describe and illustrate MAD6 in greater detail.

11By an indirect visit we mean visiting a movie or person
that links to the movie or person in question via the movie
graph.

Figure 2: Search Result

5.3 Test procedure
Our online test consists of 44 Yahoo! employees submit-

ting 180 relevance judgments between October 25 2006 and
November 7 2006. The test is conducted with our test demo
shown in Figure 3.

Each participant is asked to rate at least 10 movies us-
ing MAD6 before they participate in the test. When a user
comes to our test demo, the user is asked to either submit
any free-form query, or to select one of 60 suggested queries
provided by our system. The 60 queries are randomly se-
lected from about 5,000 pre-selected queries, including the
500 most popular movie titles, 1,000 actors and 1,000 char-
acters (the top 2 actors/roles from each of the top 500 most
popular movies) and 2,400 randomly selected Yahoo! Search
queries that resulted in a click on a movie link (300 randomly
selected queries from each day in our data set).

After a participant submits a query, the test demo re-
turns ranked results of six systems: IMDB search, Yahoo!
Movies current search, and our four algorithms. The demo
does not tell users which result is generated by which sys-
tem, and the location of each system is randomly selected
whenever a query is submitted. After reviewing the six dif-
ferent search results, participants are asked to answer fol-
lowing three questions: (1) Which system or systems finds
the movie most relevant to your query? (2) Overall, which
system or systems seems to be the most useful for you? and
(3) What movie is most relevant to your query? A partici-
pant may select multiple systems for the first two questions.
The first question is asked to measure recall of search re-
sults and the second question is asked to measure quality of
search results. The third question requires a free form text
answer.

5.4 Test results
In general, we find that Web, GRank and PRank per-

form better than IMDB, current Yahoo! Movies, and DB,
as shown in Table 7. PRank performs best on recall while
GRank performs best on quality of search results when all
180 relevance judgments are analyzed. We also classify queries
by comparing them with the user’s stated target movie (ques-
tion 3). If a query exactly matches with the title of the tar-
get movie, we consider it a navigational query. Otherwise,
we consider it an informational query. This classification is
manually done by the first author. We classify 49 queries as
navigational queries.

A feature of IMDB search hampers our ability to eval-
uate IMBD results for navigational queries. For exact ti-
tle matches, IMDB often (but not always) returns the in-
ferred target movie page directly, rather than listing one or
more movies on a search results page. Our wrapper did not
properly handle this case and the online test showed empty
results for IMDB when this happened. Thus, we exclude
IMDB when results of navigational queries are evaluated.
Note that we did make the proper correction for the offline
test in the previous section.

When navigational queries are submitted, PRank per-
forms best while DB performs worst both on recall and
quality of search results. It is somewhat surprising that
the recall of most systems remains about 50 ∼ 60% even
when the titles of the target movie is submitted as a query.
We find that many participants often check only one system
in the first question even though all six systems return the
target movie, probably because participants either did not
inspect results carefully enough or misinterpreted the intent
of question 1. Thus, we want to point out that our recall
analysis on the online test may contain some noise. When

Figure 3: Test demo

informational queries are submitted, PRank shows the best
recall while GRank performs best on quality.

It is interesting that even though there is not much dif-
ference between informational and navigational queries on
recall, we find a big difference on quality of search results.
When navigational queries are submitted, participants are
more satisfied with PRank and Web than GRank. How-
ever, when informational queries are submitted, participants
prefer GRank rather than PRank and Web. One possible
explanation is that, when participants submit navigational
queries, they may have very clear target movies in their
minds. These movies may be their favorites and are more
likely rated before the test. In this case, the authority of the
target movies are very accurate since they are real ratings
provided by the participants. However, when informational
queries are submitted, participants may not have clear tar-
get movies and returned items may have less probabilities to
be rated. Also, users may search for somewhat unfamiliar
items. For example, a user may search for some good roman-
tic comedy movies for dating, even though he has mostly
watched and rated action movies. Then item authorities
calculated by the item-based algorithm may be inaccurate
due to the lack of user information.

Note that only 6 participants rated 20 or more movies
and most participants rated fewer than 15 movies. So our
online test environment may be considered a cold-start user
setting where all test users are relatively new users. This
cold-start environment may reduce the quality of PRank’s
personalized search results, since the item-based algorithm
suffers from a cold-start problem. We believe that users’
satisfaction of PRank will increase as users provide more
ratings. To support this argument, we also measure recall
and quality of search results based on different participant

groups. We find that participants who have rated at least
20 movies are more satisfied with PRank while participants
with less than 20 ratings prefer GRank. It is also interesting
that the quality of Web results are almost always similar to
that of PRank.

6. FUTURE WORK
We plan to incorporate some of the search and brows-

ing features of MAD6 in Yahoo! Movies and related Yahoo!
properties. We plan to develop a pseudo natural language
query interface (“shortcuts on steroids”) for supporting sim-
ple question and answering. For example, we would like to
be able to handle queries like: “Who won the best actor
Oscar in 1995?”, or “highly rated comedy starring Arnold
Schwarzenegger”. Moreover we would like to answer some
personalized questions such as “Recommend me an action
movie from 2005” or “Who is my favorite 90s actress?”. We
plan to use MAD6 as a online research platform for testing
various search, browsing, personalization, and recommen-
dation algorithms and interfaces. We also plan to utilize
our hybrid recommendation algorithm [21] to provide bet-
ter cold-start predictions and recommendations.

7. CONCLUSIONS
In this paper, we discuss our new ranking method, which

combines recommender systems and search tools for bet-
ter informational search and browsing. To evaluate our ap-
proach, we have built MAD6, a personalized movie search
engine with some unique features. In both offline and online
tests, MAD6 seems to provide users better search recall and
quality than IMDB search and Yahoo! Movies current search
by combining proximities and authorities of the returned

Table 7: Online experiment results. The “Recall”
column lists the percentages of users who selected
the corresponding system in answering question 1.
The “Quality” column lists the percentages for ques-
tion 2.

Test group Systems Recall Quality

IMDB 22.2 15.6
Yahoo! 22.8 13.9

All (180 feedbacks DB 36.7 20
from 44 users) Web 52.2 38.3

GRank 53.9 40
PRank 57.8 38.3

IMDB 42.9 34.7
Navigational queries Yahoo! 53.1 30.6

(49 feedbacks DB 44.9 22.4
from 23 users) Web 57.1 34.7

GRank 59.2 28.6
PRank 63.3 36.7
IMDB 14.5 8.4

Informational queries Yahoo! 11.5 7.6
(131 feedbacks DB 33.6 19.1
from 40 users) Web 50.4 39.7

GRank 51.9 44.3
PRank 55.7 38.9

IMDB 14.3 10.7
Users with at least 20 Yahoo! 14.3 10.7
ratings (28 feedbacks DB 28.6 14.3

from 6 users) Web 50 35.7
Grank 57.1 28.6
PRank 57.1 35.7
IMDB 23.7 16.4

Users with less than Yahoo! 24.3 14.5
20 ratings (152 feedbacks DB 38.2 21.1

from 38 users) Web 52.6 38.8
Grank 53.3 42.1
PRank 57.9 38.3

items. Even though MAD6 is one application in the movie
domain, we believe that our approach is general enough to
apply other domains including music, travel, shopping and
web search.

8. ACKNOWLEDGMENTS
We thank Yahoo! Movies for providing movie content and

user rating information. We thank Dennis DeCoste, Gunes
Erkan, Rosie Jones, Bernard Mangold, and Omid Madani.
We thank the Yahoo! employees who participated in our
online test.

9. REFERENCES
[1] C. C. Aggarwal, J. L. Wolf, K.-L. Wu, and P. S. Yu. Horting

hatches an egg: a new graph-theoretic approach to
collaborative filtering. In ACM KDD, pages 201–212, 1999.

[2] M. Balabanovic and Y. Shoham. Fab: content-based,
collaborative recommendation. Communications of the ACM,
40(3):66–72, 1997.

[3] J. Basilico and T. Hofmann. Unifying collaborative and
content-based filtering. In ICML, 2004.

[4] D. Billsus and M. J. Pazzani. Learning collaborative
information filters. In ICML, pages 46–54, 1998.

[5] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis
of predictive algorithms for collaborative filtering. In UAI,
pages 43–52, 1998.

[6] M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes,
and M. Sartin. Combining content-based and collaborative
filters in an online newspaper. In ACM SIGIR Workshop on
Recommender Systems, 1999.

[7] D. DeCoste. Collaborative prediction using ensembles of
maximum margin matrix f actorization. In ICML, 2006.

[8] M. Deshpande and G. Karypis. Item-based top-n
recommendation algorithms. ACM TOIS, 22(1):143–177, Jan
2004.

[9] D. Goldberg, D. Nichols, B. Oki, and D. Terry. Using
collaborative filtering to weave an information tapestry.
Communications of the ACM, 35(12):61–70, 1992.

[10] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste:
A constant time collaborative filtering algorithm. Information
Retrieval, 4(2):133–151, 2001.

[11] N. Good, J. B. Schafer, J. A. Konstan, A. Borchers, B. M.
Sarwar, J. L. Herlocker, and J. Riedl. Combining collaborative
filtering with personal agents for better recommendations. In
AAAI/IAAI, pages 439–446, 1999.

[12] T. Haveliwala. Topic-sensitive pagerank. In WWW, pages
517–526, 2002.

[13] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An
algorithmic framework for performing collaborative filtering. In
ACM SIGIR, pages 230–237, 1999.

[14] T. Hofmann and J. Puzicha. Latent class models for
collaborative filtering. In IJCAI, pages 688–693, 1999.

[15] Z. Huang, H. Chen, and D. Zeng. Applying associative
retrieval techniques to alleviate the sparsity problem in
collaborative filtering. ACM TOIS, 22(1):116–142, Jan 2004.

[16] J. Kleinberg. Authoritative sources in a hyperlinked
environment. In ACM-SIAM Symp. Discrete Algorithms,
pages 668–677, 1998.

[17] B. Marlin. Collaborative filtering: A machine learning
perspective. Master’s thesis, University of Toronto, Computer
Science Department, 2004.

[18] P. Melville, R. Mooney, and R. Nagarajan. Content-boosted
collaborative filtering. In AAAI, 2002.

[19] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report,
Stanford Digital Library Technologies Project, 1998.

[20] S.-T. Park, D. M. Pennock, and D. DeCoste. Applying
collaborative filtering techniques to movie search for better
ranking and browsing. In ITWP, 2006.

[21] S.-T. Park, D. M. Pennock, O. Madani, N. Good, and
D. DeCoste. Náıve filterbots for robust cold-start
recommendations. In KDD, 2006.

[22] D. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles.
Collaborative filtering by personality diagnosis: A hybrid
memory- and model-based approach. In UAI, pages 473–480,
2000.

[23] A. Popescul, L. Ungar, D. Pennock, and S. Lawrence.
Probabilistic models for unified collaborative and
content-based recommendation in sparse-data environments. In
UAI, pages 437–444, 2001.

[24] J. Rennie and N. Srebro. Fast maximum margin matrix
factorization for collaborative prediction. In ICML, 2005.

[25] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl.
GroupLens: An Open Architecture for Collaborative Filtering
of Netnews. In ACM CSCW, pages 175–186, 1994.

[26] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application
of dimensionality reduction in recommender systems–a case
study. In ACM WebKDD Workshop, 2000.

[27] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Reidl.
Item-based collaborative filtering recommendation algorithms.
In WWW, pages 285–295, 2001.

[28] U. Shardanand and P. Maes. Social information filtering:
Algorithms for automating ”word of mouth”. In CHI, 1995.

[29] L. Terveen, W. Hill, B. Amento, D. McDonald, and J. Creter.
PHOAKS: A system for sharing recommendations.
Communications of the ACM, 40(3):59–62, 1997.

[30] M. R. W. Hill, L. Stead and G. Furnas. Recommending and
evaluating choices in a virtual community of use. In ACM
CHI, pages 194–201, 1995.

