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Abstract

Background: The aim of a genome-wide association study (GWAS) is to isolate DNA markers for variants affecting

phenotypes of interest. This is constrained by the fact that the number of markers often far exceeds the number of

samples. Compressed sensing (CS) is a body of theory regarding signal recovery when the number of predictor

variables (i.e., genotyped markers) exceeds the sample size. Its applicability to GWAS has not been investigated.

Results: Using CS theory, we show that all markers with nonzero coefficients can be identified (selected) using an

efficient algorithm, provided that they are sufficiently few in number (sparse) relative to sample size. For heritability

equal to one (h2 = 1), there is a sharp phase transition from poor performance to complete selection as the sample

size is increased. For heritability below one, complete selection still occurs, but the transition is smoothed. We find

for h2 ∼ 0.5 that a sample size of approximately thirty times the number of markers with nonzero coefficients is

sufficient for full selection. This boundary is only weakly dependent on the number of genotyped markers.

Conclusion: Practical measures of signal recovery are robust to linkage disequilibrium between a true causal variant

and markers residing in the same genomic region. Given a limited sample size, it is possible to discover a phase

transition by increasing the penalization; in this case a subset of the support may be recovered. Applying this

approach to the GWAS analysis of height, we show that 70-100% of the selected markers are strongly correlated

with height-associated markers identified by the GIANT Consortium.
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Background
The search for genetic variants associated with a given

phenotype in a genome-wide association study (GWAS)

is a classic example of what has been called a p ≫ n

problem, where n is the sample size (number of subjects)

and p is the number of predictor variables (genotyped

markers) [1]. Estimating the partial regression coeffi-

cients of the predictor variables by ordinary least

squares (OLS) requires that the sample size exceed the

number of coefficients, which in the GWAS context,

may be of order 105 or even 106. The difficulty of as-

sembling such large samples has been one obstacle

hindering the simultaneous estimation of all regression

coefficients advocated by some authors [2-4].

The typical procedure in GWAS is to estimate each

coefficient by OLS independently and retain those meet-

ing a strict threshold; this approach is sometimes called

marginal regression (MR) [5]. Although the implemen-

tation of MR in GWAS has led to an avalanche of dis-

coveries [6], it is uncertain whether it will be optimal

as datasets continue to increase in size. Many genetic

markers associated with a trait are likely to be missed

because they do not pass the chosen significance

threshold [7].

Unlike MR, which directly estimates whether each

coefficient is nonzero, an L1-penalization algorithm,

such as the lasso, effectively translates the estimates

toward the origin where many are truncated out of the

model [8]. If the number of variants associated with a typ-

ical complex trait is indeed far fewer than the total num-

ber of polymorphic sites [9-11], then it is reasonable to
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believe that L1 penalization will at least be competitive

with MR. Methods relying on the assumption of sparsity

(few nonzero coefficients relative to sample size) have in

fact been adopted by workers in the field of genomic

selection (GS), which uses genetic information to guide

the artificial selection of livestock and crops [12-15].

Note that the aim of GS (phenotypic prediction) is

somewhat distinct from that of GWAS (the identifica-

tion of markers tagging causal variants). The lasso is

one of the methods studied by GS investigators [16,17],

although Bayesian methods that regularize the coeffi-

cients with strong priors tend to be favored [18,19].

In this paper we show that theoretical results from the

field of compressed sensing (CS) supply a rigorous quan-

titative framework for the application of regularization

methods to GWAS. In particular, CS theory provides

a mathematical justification for the use of L1-penalized

regression to recover sparse vectors of coefficients and

highlights the difference between selection of the markers

with nonzero coefficients and the fitting of the precise

coefficient values. CS theory also addresses the robust-

ness of L1 algorithms to the distribution of nonzero

coefficient magnitudes.

Besides supplying a rule of thumb for the sample size

sufficing to select the markers with true nonzero coef-

ficients, CS gives an independent quantitative criter-

ion for determining whether a given dataset has, in

fact, attained that sample size. Whereas biological

assumptions regarding the number of nonzeros do

enter into the rule of thumb about sample size, these

assumptions need not hold for the use of L1 penaliza-

tion to be justified; this is because the returned results

themselves inform the investigator whether the as-

sumptions are met.

We emphasize that CS is not a method per se, but

may be considered a general theory of regression that

takes into account model complexity (sparsity). The

theory is still valid in the classical regression domain of

n > p but establishes conditions for when full recovery

of nonzero coefficients is still possible when n < p [20-22].

Our work therefore should not be directly compared to

recent literature proposing and evaluating GS methods

[18,19]. Rather, our goal is to elucidate properties of

well-known methods, already in use by GWAS and GS

researchers, whose mathematical attributes and empir-

ical prospects may be insufficiently appreciated.

Using more than 12,000 subjects from the Athero-

sclerosis Risk in Communities Study (ARIC) European

American and Gene-Environment Association Studies

(GENEVA) cohorts and nearly 700,000 single-nucleotide

polymorphisms (SNPs), we show that the matrix of

genotypes acquired in GWAS obeys properties suitable

for the application of CS theory. In particular, a given sam-

ple size determines the maximum number of nonzeros

that will be fully selected using an L1-penalization regres-

sion algorithm. If the sample size is too small, then the

complete set of nonzeros will not be selected. The transi-

tion between poor and complete selection is sharp in the

noiseless case (narrow-sense heritability equal to one). It is

smoothed in the presence of noise (heritability less than

one), but still fully detectable. Consistent with CS theory,

we find in cases with realistic residual noise that the min-

imal sample size for full recovery is primarily determined

by the number of nonzeros, depends very weakly on the

number of genotyped markers [22-24], and is robust to

the distribution of coefficient magnitudes [25].

Theory of compressed sensing

The linear model of quantitative genetics is

y ¼ Axþ e ð1Þ

Where y ∈ℝn is the vector of phenotypes, A ∈ℝ
nxp is

the matrix of standardized genotypes, x ∈ℝp is the vec-

tor of partial regression coefficients, and e ∈ℝn is the

vector of residuals. In the CS literature, A is often called

the sensing or measurement matrix. Standardizing A

does not affect the results and makes it simpler to utilize

CS theory. We suppose that x contains s nonzero coeffi-

cients (“nonzeros”) whose indices we wish to know.

The phase transition to complete selection is best

quantified with two ratios (ρ, δ), where ρ = s/n is a

measure of the sparsity of nonzeros with respect to the

sample size and δ = n/p is a measure of the undersam-

pling. If we plot δ on the abscissa ( x-axis) and ρ on the

ordinate (y-axis), we have a phase plane on the square

(0, 1) × (0, 1), where each point represents a possible

GWAS situation (sample size, number of genotyped

markers, number of true nonzeros). The performance

of any given method can be assessed by evaluating a

measure of recovery quality at each point of the plane.

For an arbitrary p-vector x, we use the following nota-

tion for the L1 and L2 norms:

xk kL1 ¼
X

p

i¼1

xij j and xk kL2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

X

p

i¼1

x2i

s

Our results rely on two lines of research in the field of

CS, which we summarize as two propositions.

Proposition 1 [20,24,26,27] Suppose that the entries of

the sensing matrix A are drawn from independent normal

distributions and e is the zero vector (noiseless case). Then

the ρ − δ plane is partitioned by a curve ρ ¼ ρL1 δð Þ into

two phases. Below the curve the solution of minx̂ x̂k kL1
subject to A x̂ ¼ y leads to x̂ ¼ x with probability con-

verging to one as n, p, s→∞ in such a way that ρ and δ

remain constant. Above the curve x̂≠x with similarly

high probability.
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The function ρL1 δð Þ can be analytically calculated [26].

Although Figure 1A presents some of our empirical re-

sults, which we will discuss below, it can be taken as an

illustration of the meaning of Proposition 1. The color

scale represents the goodness of recovery, and the black

curve is the graph of ρL1 δð Þ. It can be seen that increas-

ing the sample size relative to s (decreasing ρ) leads to a

sharp transition from poor to good recovery for δ < < 1

(i.e. n < < p). In other words, despite the fact that solving

for x in Ax = y is strictly speaking underdetermined

given n < p, minimizing ∣∣x̂∣∣L1 subject to the system of

equations still yields recovery of x with high probability

if n is sufficiently large relative to s.

Most phenotypes do not have a heritability of one and

are therefore, not noiseless, but CS theory shows that se-

lection is still possible in this situation. Before stating

the relevant CS result, we need to define two quantities

characterizing the genotype matrix A.

Definition 1 [22] The matrix A satisfies isotropy if the

expectation value of A’A is equal to the identity matrix.

In the context of GWAS, a matrix of gene counts is

isotropic if all markers are in linkage equilibrium (LE).

Definition 2 [22] The coherence of the matrix A is the

smallest number γ such that, for each row a of the

matrix,

max
1≤t≤p

∣at∣
2≤γ

Thus, a matrix of genotypes is reasonably incoherent if

the magnitudes of the matrix elements do not differ

greatly from each other. In the GWAS context, A will be

reasonably incoherent if all markers with very low minor
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Figure 1 Error in the ρ − δ plane for a measurement matrix of random genomic SNPs (ρ ¼ s
n
and δ ¼ n

p
). (A) Color corresponds to the

normalized error (NE) of the coefficients
x−x̂k kL2
xk kL2

. The black curve is the expected phase boundary between poor and good recovery from [26]. The

number of SNPs, p, was fixed at 8,027. The heritability was set to one (noiseless case). The circles correspond to the points (ρ = 0.08, δ = 0.19)

(white) and (ρ = 0.125, δ = 0.125) (red) discussed in Measures of selection. (B) Same as panel (A), except that the heritability was set to 0.5 (noisy

case). The white circle corresponds to the point (ρ = 0.025, δ = 0.625) discussed in Measures of selection. (C) NE versus ρ for fixed n = 4,000 and

p = 8,027 (blue corresponds to h2 = 1, red to h2 = 0.5). The square markers indicate recovery quality evaluated at a few data points using the lasso

algorithm with 10-fold cross-validation written by MATLAB.
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allele frequency (MAF) are pruned, since A is standard-

ized and the standard deviation scales with MAF.

We can now state

Proposition 2 [22] Suppose that the sensing matrix A

is isotropic with coherence γ. If n >C γ s log p for a con-

stant C then the solution of the problem

min
x̂

y −Ax̂k k2L2 þ λ x̂k kL1

h i

with a suitable choice of λ obeys

x̂ − xk k2L2≤
σ2E
n
s poly log pð Þ

where σ2
E is the variance of the residuals in e.

Two features of Proposition 2 are worth noting. First,

no strong restrictions on x are required. Second, the crit-

ical threshold value of n depends linearly on s, but only

logarithmically on p. For n larger than the critical value,

the deviations of the estimated coefficients from the true

values will follow the expected OLS scaling of 1=
ffiffiffi

n
p

.

These results are more powerful than they might seem

from the restrictive hypotheses required for brief formu-

lations. For example, it has been shown that a curve

similar to that in Proposition 1 also demarcates a phase

transition in the case of e ≠ 0 — although, as might be

expected from a comparison of Propositions 1 and 2,

with large residual noise the transition is to a regime of

gradual improvement with n rather than to instantan-

eous recovery [24,28]. A remarkable feature of this grad-

ual improvement, however, should be noted. Proposition

2 states that the scaling of the total fitting error in the

favorable regime is within a polylogarithmic factor of

what would have been achieved if the identities of the s

nonzeros had been revealed in advance by an oracle.

This result implies that perfect selection of nonzeros can

occur before the magnitudes of the coefficients are well fit.

Even if the residual noise is substantial enough to prevent

the sharp transition from large to negligible fitting error

evident in Figure 1A, the total magnitude of the error in

the favorable phase is little larger than what would be

expected given perfect selection of the nonzeros.

Recent work has also generalized the sensing matrix,

A, in Proposition 1 to several non-normal distributions

(although not to genotype matrices per se) [27,29]. Fur-

thermore, the form of Proposition 2 also holds under a

weaker form of isotropy that allows the expectation of

A’A to differ from the identity matrix by a small quantity

(see [22] for the specification of the matrix norm). The

latter generalization is promising because the covariance

matrix in GWAS deviates toward block-diagonality as a

result of linkage disequilibrium (LD) among spatially

proximate variants.

Whereas the penalization parameter λ in Proposition 2

is often determined empirically through cross-validation,

CS places a theoretical lower bound on its value that is

based on the magnitude of the noise [22] (referred here

as λmin or λ). A special feature of the GWAS context is

that an estimate of the residual variance can be ob-

tained from the genomic-relatedness method [7,30-32],

thereby enabling the substitution of a theoretical noise-

dependent bound for empirical cross-validation. Such

noise-dependent bounds appear in other selection the-

ories, including MR, and thus are not specific to CS

[5,33]. As noted by [33], such bounds tend to be con-

servative. Here, we show that the CS noise-dependent

bound demonstrates good selection properties. A data-

specific method, such as cross-validation may exhibit

slightly better properties, but is computationally more

expensive.

Given this body of CS theory, a number of questions

regarding the use of L1-penalized regression in GWAS

naturally arise:

1. Does the matrix of genotypes A in the GWAS

setting fall into the class of matrices exhibiting the

CS phase transition across the curve ρL1 δð Þ; as
described by Proposition 1?

2. Since large residual noise is typical, we must also

ask: is A sufficiently isotropic and incoherent to

make the regime of good performance described by

Proposition 2 practically attainable? Since log p

slowly varies over the relevant range of p we can

absorb γ and log p into the constant factor and

phrase the question more provocatively: given that

n > Cs is required for good recovery, what is C?

3. In practice, a measure of recovery relying on the

unknown x, such as a function of x̂ − xk kL2 , cannot
be used. Is there a measure of recovery, then, that

depends solely on observables?

The aim of the present work is to answer these three

questions.

Data description
All participants gave informed consent. All studies

were approved by their appropriate Research Ethics

Committees.

We used the ARIC and GENEVA European American

cohort. The datasets were obtained from dbGaP through

dbGaP accession numbers [ARIC:phs000090] and [GEN-

EVA:phs000091] [34]. The ARIC population consists of

a large sample of unrelated individuals and some fam-

ilies. The population was recruited in 1987 from four

centers across the United States: Forsyth County, North

Carolina; Jackson, Mississippi; Minneapolis, Minnesota;

and Washington County, Maryland.
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The ARIC subjects were genotyped with the Affyme-

trix Human SNP Array 6.0. We selected biallelic auto-

somal markers based on a Hardy-Weinberg equilibrium

tolerance of P < 10− 3. Preprocessing was performed with

PLINK 2 [35,36].

The datasets were merged to create a SNP genotype

matrix (A) consisting of 12,464 subjects and 693,385

SNPs. SNPs were coded by their minor allele, resulting

in values of 0, 1, or 2. Each column of A was standard-

ized to have zero mean and unit variance. Missing geno-

types were replaced with the mean (i.e., zero) after

standardization. We compared results for the phase

transition for a limited number of cases when the miss-

ing genotypes were imputed based on sampling from a

Binomial distribution and the respective minor allele fre-

quency. We found no difference between the imputation

methods for our datasets.

We simulated phenotypes according to Equation 1,

rescaling each term to leave the phenotypic variance

equal to unity and the variance of the breeding values

in Ax to match the target narrow-sense heritability h2,

which is the proportion of phenotypic variance due to

additive genetic factors. For standardized phenotypes,

h2 is equivalent to the additive genetic variance, which

is defined to equal one in the noiseless case. We chose

h2 = 0.5 to represent the noisy case because many

human traits show a SNP-based heritability close to

this value [7,30,37].

The magnitudes of the s nonzeros in x were drawn

from either the set {−1, 1} or hyperexponential distribu-

tions. We defined two hyperexponential distributions

(Hyperexponential 1 and 2) and each was generated by

summing two exponentials with the same amplitude, but

different decay constants. The pair of decay constants

for Hyperexponential 1 were 0.05s and p, and that of

Hyperexponential 2 were 0.2s and p. The coefficients

were then truncated to keep only the top s nonzero coef-

ficients, the rest were made zero, and 50% of the non-

zeros had negative signs. The hyperexponential form

was motivated by [38], but the decay constants were

arbitrarily chosen. For all coefficient ensembles, the non-

zeros were randomly distributed among the SNPs. When

examining the dependence of an outcome on n, p, and s

the set p was either chosen randomly across the genome

without replacement or restricted to all chromosome 22

SNPs, and n and s were randomly sampled without re-

placement. A single set of SNPs was used for all analyses

of the genomic random p set.

We also considered a real phenotype (height) rather

than a simulated one, using 12,454 subjects with mea-

surements of height adjusted for sex. We examined dif-

ferent values of n and fixed p by always using all

markers in our dataset. A called nonzero was counted as

a true positive in the numerator of our “adjusted positive

predictive value” (to be defined later) if the marker was a

member of a proxy set based on height-associated SNPs

discovered by the GIANT Consortium [39]. The set was

generated using the BROAD SNAP database [40]. We

based our proxy criterion on basepair distance rather

than LD, as we found the correlations between SNPs in

our dataset to be larger in magnitude than those re-

corded in the SNAP database. We generated a proxy list

based on a maximum basepair distance of 500 kb, which

was the maximum distance that could be queried.

Analysis
Phase transition to complete selection

We first studied the case of independent markers to gain

insight into the more realistic case of LD among spatially

proximate markers [17,41]. In the noiseless case (e = 0),

it has been proven that there is a universal phase transi-

tion boundary between poor and complete selection in

the ρ − δ plane (Proposition 1) [20,24,26,27]. The exist-

ence of this boundary is largely independent of the

explicit values of s, n, and p for a large class of sensing

matrices, including sensing matrices generated by the

multivariate normal distribution. However, the transi-

tion boundary does depend, on certain properties of

the distribution describing the coefficients. For ex-

ample, the boundary can depend critically on whether

the coefficients are all positive or can have either sign,

although the particular form of the distribution within

either of these two broad classes is less important.

Genetic applications typically have real-valued coeffi-

cients, which are in the same class (i.e., in terms of

phase transition properties) as coefficients drawn from

the set {−1, 1} [25,42], which we used in the majority

of our simulations. We also studied selection perform-

ance when the coefficients are hyperexponentially dis-

tributed (see Data Description).

The phase transition can be explored using multiple

measures of selection quality. Figure 1A shows the

normalized error (NE) (Equation 5) of the coefficient

estimates returned by the L1-penalized regression algo-

rithm in our study of a simulated phenotype and a

random selection of SNPs ascertained in a real GWAS

for the noiseless case. The boundary between poor and

good performance, as evidenced by this measure, was

well approximated by the theoretically derived curve

[26], confirming that a matrix of independent SNPs

ascertained in GWAS qualifies as a CS sensing matrix.

The noiseless case corresponds to a trait with a per-

fect narrow-sense heritability (h2 = 1). Although there

are some phenotypes that approach this ideal situation,

it is important to consider the more typical situation of

h2 < 1. Figure 1B shows how the NE varied in the pres-

ence of a noise level corresponding to h2 = 0.5 (which is

roughly the SNP-based heritability of height [7,30]).
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We can see that the transition boundary was smoothed

and effectively shifted downward.

In the noisy case, the transition boundary was less

dependent on δ than in the noiseless case. Note that in

Figure 1A-B the noise variance is fixed by h2, but ρ and

δ are both functions of the sample size. Fixing ρ and tra-

versing the phase plane horizontally can be interpreted

as using a sample of size n to study a particular pheno-

type with s nonzeros, changing the number of genotyped

markers in successive assays; Figure 1B shows that in the

noisy case an order-of-magnitude change in p had a neg-

ligible impact on the quality of selection.

Given this insensitivity to δ, it is instructive to increase

the resolution with which the phase transition can be

studied by fixing δ and then comparing the h2 = 1 and

h2 = 0.5 cases. Figure 1C shows that the NE approached

its asymptote beyond the theoretical phase transition in

both cases. Moreover, the asymptote appeared to be

greater than zero in the noiseless case. This behavior

may suggest that the noise-dependent λmin prescribed by

CS theory is suboptimal when noise is in fact absent;

although the closeness of the theoretical and empirical

phase boundaries implies that the deviation from opti-

mality is mild. The transition was not altered in the

noiseless case when λmin was estimated using cross-

validation, although there was some improvement in the

noisy case. A 10-fold cross-validation increased the com-

putational time by 10 to 100-fold. The similar quality of

selection achieved by the theoretical λmin and the use of

cross-validation supports the theoretical estimate.

In the noiseless case, when using a criterion of NE < 0.5,

the phase transition to vanishing NE began at ρ ≈ 0.4.

In the noisy case of h2 = 0.5, the phase transition began

at ρ ≈ 0.03 (n ≈ 30s). As expected, the sample size for a

given number of nonzero coefficients must be larger in

the presence of noise.

Measures of selection

We next examined whether nonzeros were being cor-

rectly selected despite a nonzero NE by considering

additional measures of selection:

1. The false positive rate (FPR), the fraction of true

zero-valued coefficients that are falsely identified as

nonzero.

2. The positive predictive value (PPV), the number of

correctly selected true nonzeros divided by the total

number of nonzeros returned by the selection

algorithm. 1 − PPV equals the false discovery rate

(FDR).

3. The median of the P-values obtained when

regressing the phenotype on each of the L1-selected

markers in turn (μP − value). Each such P-value is the

standard two-tailed probability from the t test of

the null hypothesis that a univariate regression

coefficient is equal to zero. The previous measures

of recovery—NE, FPR, PPV—cannot be computed

in realistic applications because they depend on the

unknown x, and thus it is of interest to examine

whether an observable quantity such as μP − value

also undergoes a phase transition at the same

critical sample size.

We hypothesized that a measure of the P-value distri-

bution of the putative nonzero set may reflect the phase

transition since the distribution of P-values of normally

distributed random variables is uniform and is the basis

of false discovery approaches for the multiple compari-

sons problem [43].

We now turn to the behavior of these performance

metrics as a function of sample size. In the noiseless case

(Figure 2A-B), the NE showed a phase transition at n ≈

1,000, but the PPV, FPR and μP − value converged around

n = 1,500. Since we fixed s to be 125, the location of the

transition boundary with respect to the NE at the point

(ρ = 0.125, δ = 0.125) was consistent with Figure 1A. Also

shown is the point (ρ = 0.08, δ = 0.19), where the PPV,

FPR, and μP − value converged. As the noise was increased

(Figure 2C), the NE declined less sharply with increasing

n, as expected from Figure 1. In contrast and shown in

Figure 2D, the other measures (particularly the PPV and

μP − value) neared their asymptotic values even in the pres-

ence of noise. The transitions of FPR, PPV, and μP − value

from poor to good performance were not smoothed by

noise to the same extent as the transition of the NE.

The greater robustness of the FPR, PPV and μP − value

against residual variance relative to the NE shows that

accurate selection of nonzeros can occur well before the

precise fitting of their coefficient magnitudes. The fact

that the observable quantity μP − value exhibits this

robustness is particularly important; a steep decline in

μP − value across subsamples of increasing size drawn

from a given dataset demonstrates a transition to good

recovery and implies that the full dataset has sufficient

power for accurate identification. This is an empirical

finding that deserves further investigation.

For h2 = 0.5 and across all measures of performance

other than the NE, the transition appeared to be around

n = 5,000. Given s = 125 and p = 8,027, this corresponds

to (ρ = 0.025, δ = 0.625), which is circled in Figure 1B.

This estimate of the critical ρ is consistent with our pre-

vious estimate when δ was fixed at 0.5, supporting the

weak dependence on p.

Quality of selection in the presence of LD

We have shown that randomly sampled SNPs from a

GWAS of Europeans have the properties of a compressed

sensor. This was expected, given that randomly sampled
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markers will be mostly uncorrelated and therefore closely

estimate an isotropic matrix.

We next consider a genotype matrix characterized by

LD. To do this, while still being able to evaluate recovery

at all points of the ρ − δ plane, we considered all geno-

typed markers only on chromosome 22. Almost all of

these markers were in LD with a few other markers, and

the markers within each correlated group tended to be

spatially contiguous (Figure 3C). As shown in Figure 3A

and B, the phase transition boundary with respect to NE

was shifted to lower values of ρ and was less sensitive to

δ as in Figure 1B.

Although the phase transition from large to small NE

appeared to be affected adversely by LD (at least in the

noiseless case as shown in Figure 3A), the selection mea-

sures were less affected, as seen by comparing Figure 4

calculated using the intact chromosome 22 with Figure 2

using markers drawn at random from across the gen-

ome. Regardless of LD, the transition from poor to

good values of μP − value occurred at nearly the same

sample size (about 30 times the number of nonzeros for

h2 = 0.5). The PPV and FPR saturated at worse asymptotic

values in the noiseless case. In the noisy case, the PPV

was also lower; perhaps surprisingly, the FPR actually

increased with sample size.

The relatively poor performance of the PPV and FPR

in the case of LD is somewhat misleading. For example,

an “off-by-one” (nearby) nonzero called by L1-penalized

regression will not count toward the numerator of the

PPV, even if it is in extremely strong LD with a true

nonzero. At the same time, such a near miss does count

toward the numerator of the FPR This standard of re-

covery quality seems overly stringent when we recall that

picking out the causal variant from a GWAS “hit” region

containing multiple marker SNPs in LD continues to be

a challenge for the standard MR approach [44,45].

We examined whether the false positives called by the

L1-penalized algorithm were indeed more likely to be

in strong LD with the true nonzeros by computing the

correlations between false positives and true nonzeros

Figure 2 Measures of selection as a function of sample size for the measurement matrix of random genomic SNPs. Fixing s = 125 and

p = 8,027, we measured the selection of true nonzero coefficients according to four metrics for h2 = 1 (A-B) and h2 = 0.5 (C-D). Shown in (A-C) is

the normalized error of the coefficients (NE). Shown in (B-D) are the positive predictive value (PPV, blue dots), false positive rate (FPR, green dots),

and median P -value (μP − value, green asterisks). The point n = 1, 000 corresponds to (ρ = 0.125, δ = 0.125) and n = 5, 000 to (ρ = 0.025, δ = 0.625)

noted in Figure 1A and B respectively.
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Figure 4 Measures of selection as a function of sample size for chromosome 22 (s = 125 and p = 8, 915). The PPV (blue) and FPR (green)

for h2 = 1 (A) and h2 = 0.5 (B). μP − value for h
2 = 1 (C) and h2 = 0.5 (D).
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Figure 3 Analysis of chromosome 22. (A) The ρ − δ plane for h2 = 1. p was set to 8,915. Superimposed is the expected phase boundary when

there is neither noise nor LD [26]. (B) The same as panel (A), except for h2 = 0.5. (C) The matrix of correlations (positive roots of the r2 LD measure)

between genotyped SNPs on chromosome 22. Inset is a 100 × 100 sample along the diagonal.
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for n = 5,000 and h2 = 0.5. Figure 5 shows the histogram

of the maximum correlation between each false positive

and any of the true nonzeros. We compared this histo-

gram to a realization from the null distribution, gener-

ated by drawing markers at random from chromosome

22 and finding each marker’s largest correlation with any

of the true nonzeros. The observed histogram featured

many more large correlations than the realization from the

null distribution, implying that the false positives showed a

significant tendency to be in LD with true nonzeros.

Figure 6 provides a visualization of the correlations

among the false positives and true nonzeros. High corre-

lations between false positives (upper left panel) and be-

tween true nonzeros (lower right panel) lie near the

main diagonal of self-correlations indicating spatial

proximity of correlated SNPs as expected from the LD

structure shown in Figure 3C. There are also high corre-

lations between false positives and true nonzeros (upper

right and lower left panels). These high correlations are

also mostly confined to spatially proximate SNPs dem-

onstrating a marked tendency for called false positives to

occur close to one of the true nonzeros.

Sensitivity to the distributions of coefficient magnitudes

and MAF

The appropriate prior on the distribution of coefficient

magnitudes is often discussed [19]. However, CS theory

shows that the phase boundary for complete selection is

relatively insensitive to this distribution. To test this pre-

diction, we looked for evidence of performance degrad-

ation upon replacing the discrete distribution of nonzero

coefficients used thus far with a hyperexponential dis-

tribution (a mixture of exponential distributions with

different decay constants) (these are defined in Data

Description and shown in Figure 7A). The hyperex-

ponential distribution is a means of implementing an

arguably more realistic ensemble of a few large coefficients

followed by a tail of weaker values [38]. Figure 7B-C shows

that, as predicted by theoretical CS results, for fixed h2

and chromosome 22, the normalized μP − value con-

verged to zero at the same sample size regardless of the

ensemble.

In the previous simulations, we drew the nonzeros at

random from all genotyped markers, thus guaranteeing

that the MAF spectra of the nonzeros and the entire

genotyping chip would tend to coincide. Here, we also

tested whether the MAF spectrum of nonzeros affects

the selection phase boundary. It is known that two SNPs

can be in strong LD only if they have similar MAFs

[46,47]. We confirmed this by taking all pairs of markers

on chromosome 22 and plotting the maximum positive

root of the LD measure as a function of squared MAF

difference (Figure 8A). Therefore, in order to isolate any

effect of the MAF distribution among nonzeros not
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Figure 6 The matrix of correlations (positive roots of the r2 LD

measure) among false positives and true nonzeros after the

presumptive μP − value phase transition for chromosome 22

(s = 125, n = 5, 000, and h2 = 0.5). SNP indices begin at the top left

corner. The upper-left quadrant contains the correlations among

false positives and the lower-right quadrant contains the correlations

among the true nonzeros. Each element in the upper-right (lower-left)

quadrant represents a correlation between a false positive and a true

nonzero. Within both the false positive and the true nonzero sets, the

markers are arranged in order of chromosomal map position.
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Figure 5 Distribution of maximum correlations between false

positives and true nonzeros after the presumptive μP − value

phase transition for chromosome 22. Histogram of the maximum

correlation (maximum of the positive roots of the r2 LD measure)

between a false positive and true nonzero for chromosome 22,

given s = 125, n = 5,000, and h2 = 0.5 (red). Also shown is one

realization from the null distribution, generated by drawing an equal

number of “false positives” at random from chromosome 22 (white).
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mediated by LD, we constructed a synthetic measure-

ment matrix A with independent columns and the same

MAF spectrum as chromosome 22. We then compared

recovery when the nonzero coefficients were sampled

from SNPs with MAF between 0.0045 and 0.015, or when

they were sampled above MAF of 0.49. For this we used

nonzeros from {−1, 1}. Figure 8B shows no difference in

recovery between the conditions for h2 = 0.5. This suggests

that MAF alone is not a determinant of the phase transi-

tion. Homogeneity in MAF among nonzeros may enrich

Figure 7 Insensitivity of the selection phase boundary to the distribution of coefficient magnitudes (ensemble). (A) s = 125 coefficient

magnitudes (“effect sizes”) ordered from large to small for the Uniform (blue), Hyperexponential 1 (red), and Hyperexponential 2 (green)

ensembles. (B) Chromosome 22 analysis using μP − value to measure selection (normalized by the maximum value) as a function of sample size for

h2 = 1 for the Uniform (blue) and Hyperexponential 1 (red) ensembles. (C) As in panel (B) except for h2 = 0.5. Also shown is recovery for the

Hyperexponential 2 ensemble (green).

Figure 8 Insensitivity of the selection phase boundary to minor allele frequency (MAF) for chromosome 22. (A) The maximum positive

root of the r2 LD measure (+r) as a function of squared MAF difference. The maxima are estimated over bin lengths of 0.05 for SNPs in

chromosome 22. (B) The median P -value (μP − value) normalized by the maximum value as a function of sample size for s = 125 from {−1, 1} and

h2 = 0.5 for nonzero coefficients sampled from low (blue) or high (red) MAF SNPs on chromosome 22.
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correlations as noted above. Such correlations would

be expected to reduce the effective s and thus affect the

phase boundary.

Selection of SNPs associated with height

Motivated by the results above, we examined whether

the full sample size of 12,454 subjects was sufficient to

achieve the phase transition from poor to good recovery

of SNPs associated with a real phenotype (height). We

considered the selection measures μP − value and adjusted

the positive predictive value (PPV*); the latter extended

true-positive status to any selected SNP within 500 kb of

a SNP identified as a likely marker of a height-affecting

variant in the GIANT Consortium’s analysis of ~ 180,000

unrelated individuals [39]. This extension is consistent

with the rule of thumb designating a 1-Mb region as a

“locus” for purposes of counting the number of GWAS

“hits” [48]. The relative insensitivity of μP − value to LD

suggests that PPV* rewards the identification of both

true nonzeros and markers tagging nonzeros; we there-

fore substituted PPV* for PPV in an attempt to align the

phase dynamics of our precision measure with those of

μP − value. Whether a selected marker fell within 500 kb

of a GIANT-identified marker was determined by con-

sulting the Broad Institute’s SNAP database [40].

Figure 9A shows that μP − value failed to approach zero,

suggesting that that n = 12, 454 is not large enough to

see a phase transition to the regime of good recovery.

Given our empirical finding that ρ ≈ 0.03 is required

for h2 ≈ 0.5, this suggests that height is affected by at

least 400 causal variants, a result consistent with the

observation that the ~250 known height-associated

SNPs account for only a small proportion of this trait’s

additive genetic variance [48]. However, the null PPV*

derived from randomly chosen SNPs was smaller than

the observed PPV* (Figure 9A); this was consistent

with the detection of some true signal. In other words,

although no phase transition was evident, the recovery

measure did improve with increased sample size.

The penalization parameter λ was set using CS theory

to minimize NE error based on the expected noise-level

from reported narrow sense heritability for height [7,30].

If λ is set too low, then more false positives are expected;

if λ is set too high, then true nonzeros will be missed.

According to CS theory, an L1-penalized method can

still select some of the largest coefficients from a non-

uniform distribution of coefficient magnitudes even if

complete recovery is out of reach [49]. We investigated

whether it was possible to achieve a phase transition to

low μP − value and high PPV*, at the cost of recovering

Figure 9 Selection measures as a function of sample size in an analysis of real height data. (A) The adjusted positive predictive value

(PPV*, blue solid dots) and median P -value (μP − value, red) as a function of sample size using λ based on h2 = 0.5. Also shown is PPV* when the

same number of SNPs are randomly selected rather than returned by the L1 algorithm (blue unfilled dots). (B) As in (A) but setting λ to a value

appropriate for h2 = 0.01.
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only a small fraction of all true nonzeros, by increasing

the penalty parameter λ. More specifically, we set λ to a

higher value consistent with h2 = 0.01 rather than 0.5.

In this case, the L1 algorithm returned 20 putative non-

zeros rather than the original 403, and both μP − value

and PPV* exhibited better performance (Figure 9B).

Compared to the less stringent λ, PPV* as a function of

n was less smooth, but appeared to stabilize to a high

recovery value after ∼ 7000 subjects. Evidently, if the

sample size does not suffice to capture the full herit-

ability, setting the penalty parameter to a value appro-

priate for a lower heritability can lead to a smaller set

of selected markers characterized by good precision.

Figure 10 illustrates the physical distances between the

markers selected in our strict-λ (assuming h2 = 0.01)

analysis and the markers identified by the GIANT Con-

sortium. Of the 20 L1- selected markers, 14 were within

500-kb of a GIANT-identified marker. However, the

L1-selected markers defined to be false positives were

still relatively close to GIANT-identified markers. This

may indicate that the 500-kb criterion for declaring a

true positive was too stringent; if so, then our stated

PPV* of 0.7 can be regarded as a lower bound. As an

informal comparison, Figure 10 also displays the results of

a more standard MR-type GWAS analysis. For a P-value

of 10− 8 and all 12,454 subjects, MR returned six SNPs,

five of which were GIANT-identified markers, and four

were exact matches with SNPs selected by our L1 algo-

rithm (Figure 10). With a P -value cutoff of 5 × 10− 8

and all subjects, MR returned 13 markers, 10 of which

were GIANT-identified, and 7 of which were identical

to the L1 -selected markers.

The presence of a phase transition is not necessarily

restricted to L1 algorithms, but rather may represent a

deeper phenomenon in signal recovery. Other methods

may show a similar phase transition—although CS the-

ory suggests that, among convex optimization methods,

those within the L1 class are closest to the optimal com-

binatorial L0 search. We conducted additional analyses

to test whether a phase transition at a critical sample

GIANT SNP

L1 SNP, proxy

L1 SNP, not proxy

MR SNP

Figure 10 Map of SNPs associated with height, as identified by the GIANT Consortium meta-analysis, L1 -penalized regression, and

standard GWAS. Base-pair distance is given by angle, and chromosome endpoints are demarcated by dotted lines. Starting from 3 o’clock and

going counterclockwise, the map sweeps through the chromosomes in numerical order. As a scale reference, the first sector represents

chromosome 1 and is ∼ 250 million base-pairs. The blue segments correspond to a 1 Mb window surrounding the height-associated SNPs

discovered by GIANT. Note that some of these may overlap. The yellow segments represent L1 -selected SNPs that fell within 500 kb of a

(blue) GIANT-identified nonzero; these met our criterion for being declared true positives. The red segments represent L1 -selected SNPs that

did not fall within 500 kb of a GIANT-identified nonzero. Note that some yellow and red segments overlap given this figure’s resolution. There

are in total 20 yellow/red segments, representing L1 -selected SNPs found using all 12,454 subjects. The white dots represent the locations of

SNPs selected by MR at a P -value threshold of 10− 8.
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size could also be observed when our height data were

analyzed using the MR approach commonly used in

GWAS. In these simulations we varied the P -value

threshold for genome-wide significance. As measures of

selection are potentially subject to a phase transition, we

examined the PPV* and the adjusted median P -value

(μ�P−value ). The latter measure was defined to be the me-

dian P -value among those SNPs surviving the P -value

cutoff, divided by the cutoff itself; the normalization was

necessary to remove the dependence on the choice of

cutoff. As shown in Figure 11, the P -value threshold

10− 8 yielded very few selected SNPs, and in fact, none

were returned at sample sizes smaller than approxi-

mately 8,000. However, μ�P−value was mostly close to zero

in the region of Figure 11B corresponding to n > 8, 000

and P − value < 10− 6, suggesting that true nonzeros were

being selected. This is confirmed by the fact that the PPV*

typically exceeded 0.6 in this same region (Figure 11A). For

P -value thresholds less stringent than 10− 6, signs of a phase

transition at a critical sample size were still discernible.

A search for a phase transition can be a useful ap-

proach to determining the optimal P -value threshold in

standard GWAS protocols employing MR. In addition to

a priori assumptions regarding the likely number of true

nonzeros and their coefficient magnitudes [38,50] and

agreement between studies of different designs [51],

GWAS investigators might rely on whether a measure such

as μ�P−value undergoes a clear phase transition as they take

increasingly large subsamples of their data. A majority of

markers surviving the most liberal significance threshold

bounding the second phase are likely to be true positives.

Discussion
Our results with real European GWAS data and simu-

lated vectors of regression coefficients demonstrate the

accurate selection of those markers with nonzero coeffi-

cients, consistent with CS sample size requirements (n)

for a given sparsity (s) and total number of predictors

(p). We found that the matrix of standardized genotypes

exhibits the theoretical phase transition between poor

and complete selection of nonzeros (Proposition 1). We

also found, as for Gaussian random matrices in earlier

studies, that the phase transition depends on the scaling

ratios ρ = s/n and δ = n/p [42].

We obtained results regarding the effect of noise (i.e.,

h2 < 1) that are consistent with earlier empirical studies of

random matrices and recently proven theorems [22,24,28].

Generally speaking, we show that the critical sample size

Figure 11 Measures of recovery using marginal regression (standard GWAS) as a function of sample size. All SNPs surviving the

chosen − log10 P − value threshold were selected. The recovery measures, computed over the selected SNPs, were (A) the adjusted positive predictive

value (PPV*) and (B) the median P -value divided by the P -value cutoff. Highlighted in red is the cutoff we used for MR in Figure 10.

Vattikuti et al. GigaScience 2014, 3:10 Page 13 of 17

http://www.gigasciencejournal.com/content/3/1/10



is determined mainly by the ratio of s to n and only weakly

sensitive to p, particularly as noise increases. For example,

if h2 = 0.5, which is roughly the narrow-sense heritability

of height and a number of other quantitative traits

[7,30,37], we find that ρ should be less than approximately

0.03 for recovery irrespective of δ. There is no hope of

recovering the complete vector of coefficients x above

this threshold (i.e., smaller sample sizes). For example,

if we have prior knowledge that s = 1, 200, then this

means that the sample size should be no less than

40,000 subjects. We find empirically that for h2 ∼ 0.5,

n ∼ 30s is sufficient for selection of the nonzeros.

In real problems we cannot rely on measures of model

recovery based on the unknown x. Hence, we introduced

a new measure based on the median P -value of the

L1 -selected nonzeros, μP − value. We found that μP − value

provides a robust means of detecting the boundary be-

tween poor and good recovery. Proposition 2 shows that

the recovery error NE in the favorable phase scales with

ρ and noise; however, we observed that the recovery

measures FPR, PPV and μP − value approached zero faster

than the NE, confirming that accurate identification of

nonzeros can occur well before precise estimation of

their magnitudes.

An L1 -penalized regression algorithm is equivalent to

linear regression with a Laplace prior distribution of

coefficients, and in theory a Bayesian method invoking a

prior distribution better matching the unknown true

distribution of nonzero coefficients should outperform

the lasso in effect estimation. However, it is by no means

clear that the performance of L1 penalization with

respect to selection can be bettered. For example, the lasso

and BayesB display rather similar performance properties

[17]. However, both methods clearly outperformed ridge

regression (a non- L1 method), which exhibited no phase

transition away from poor performance. Furthermore, it is

usually accepted by GWAS researchers that knowledge

of the markers with nonzero coefficients may be quite

valuable, even if the actual magnitudes of the coeffi-

cients are not well determined. Combining the advan-

tages of different approaches by applying one of them

to the L1 -selected markers is a possibility.

Perhaps contrary to intuition, but consistent with

theoretical results for CS [25,42], we found that the

phase transition to good recovery (at least as measured

by μP − value) was insensitive to the distribution of coeffi-

cient magnitudes. It is well known in CS that L1 -penalized

regression is nearly minimax optimal (minimizes the

error of the worst case), and that the phase transition is

robust to the distribution of coefficient magnitudes. In

some cases a good prior may reduce the mean-square

error and shift the location of the phase transition [52].

However, simulations supporting this notion, were per-

formed with a much higher signal-to-noise ratio (SNR)

than hypothesized for realistic GWAS problems. The

performance increase was attenuated as the SNR was

decreased to levels still higher than usual in GWAS

(10 dB or h2 > 0.9 where SNR on the dB scale is given

by 10⋅ log10
σ2
A

σ2
E

� �

). These algorithms are currently being

explored in lower-SNR regimes. We observed that

cross-validation did slightly affect the phase transition

boundary in the noisy case; nevertheless the theoretical

penalization parameter proved to be a good rule of

thumb for initial screening. Calculating the theoretical

penalty depends on knowledge of h2, which may be esti-

mated using the genomic-relatedness method [7,30-32].

Genomic selection methods have been criticized by

researchers who doubt that the number of nonzeros (s)

will typically be smaller than a practically attainable sam-

ple size (n) [19]. The application of CS theory circumvents

this problem because it allows the optimization method to

self-determine whether or not the nonzero markers are

sufficiently sparse compared to the sample size. No prior

assumptions are required. Furthermore, there is evidence

that a number of traits satisfy the sparsity assumption in

humans, at least with respect to common variants contrib-

uting to heritability [9-11].

CS theory does not provide performance guarantees in

the presence of arbitrary correlations (LD) among pre-

dictor variables: it must be verified empirically, as we

have done. In agreement with previous results [17], we

find that the phase transition, as measured by NE, is

strongly affected by LD. However, according to our sim-

ulations using all genotyped SNPs on chromosome 22,

L1 -penalized regression does select SNPs in close prox-

imity to true nonzeros. The difficulty of fine-mapping

an association signal to the actual causal variant is

a limitation shared by all statistical gene-mapping ap-

proaches—including marginal regression as implemented

in standard GWAS—and thus should not be interpreted

as a drawback of L1 methods.

We found that a sample size of 12,464 was not sufficient

to achieve full recovery of the nonzeros with respect to

height. However, the penalization parameter λ is set by CS

theory so as to minimize the NE based on the expected

noise-level. In some situations it might be desirable to tol-

erate a relatively large NE in order to achieve precise, but

incomplete recovery (few false positives, many false nega-

tives). By setting λ to a strict value appropriate for a low-

heritability trait (in effect, looking for a subset of markers

that account for only a fraction of the total heritability,

with consequently higher noise), we found that a phase

transition to good recovery can be achieved with smaller

sample sizes, at the cost of selecting a smaller number of

markers and hence suffering many false negatives.

One interesting feature of the recovery measure based

on the median P -value (μP − value) is that it seemed to
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rise as the sample size was increased in the region of

poor recovery and then fall after the sample size

crossed the CS-determined phase transition boundary.

This rise and then fall was very dramatic in our simula-

tions (Figures 2 and 4) and also appeared in our analysis

of height (Figure 9). This behavior may be a consequence

of the fact that as the sample size is increased, λ in the

algorithm is decreased (see Methods). Hence, in the

region of poor recovery, the relaxation of the penalty

with increasing sample size may permit the selection

of more SNPs and hence the inflation of the FPR and

μP − value. However, once the phase transition to good

performance begins, the recovery measures begin their

characteristic sharp decrease. This non-monotone be-

havior accentuates the transition boundary and can be

exploited to aid its detection.

In summary, compressed sensing utilizes properties of

high-dimensional systems that are surprising from the

perspective of classical statistics. The regression problem

faced by GWAS and GS is well-suited to such an

approach, and we have shown that the matrix of SNP

genotypes formed from European GWAS data is in fact

a well-conditioned sensing matrix. Consequently, we

have inferred the sample sizes required to achieve accur-

ate model recovery and demonstrated a method for de-

termining whether the minimal sample size has in fact

been obtained.

Methods
L1-penalized regression algorithm

L1-penalized regression (e.g., lasso) minimizes the ob-

jective function

ŷ−yk k2L2þ x̂k kL1 ð2Þ

where ŷ is the estimated breeding value given by Ax̂ .

The setting of the penalization parameter λ is described

below.

The algorithm was performed using pathwise coord-

inate optimization and the soft-threshold rule [53].

Regression coefficients were sequentially updated with

x̂j λð Þ←S x̂j λð Þ þ 1

n

X

n

i¼1

Aij yi−ŷ ið Þ; λ
 !

for j

¼ 1; 2;…; p ð3Þ

where

S z; λð Þ≡sign zð Þ ∣z∣−λð Þþ

¼
z−λ; if z > 0 and λ < ∣z∣;
z þ λ; if z < 0 and λ < ∣z∣;
0; if λ≥∣z∣

8

<

:

ð4Þ

We assumed convergence if the fractional change in

the objective function given by Equation 2 was less

than 10− 4. In addition, we performed lasso with a

warm start [54], using a logarithmic descent of 100

steps in λ with λmax = (1
n
) ‖ Ay ‖L ∞. For λmin we used

σ�E=n
� �

Aek kL∞ , where σ�E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2E þ 1
n

q

[22]. To esti-

mate ‖A ' e‖L∞ we created 1,000 sample vectors of e,

each constructed with n i.i.d. normal elements with

mean zero and variance one, and took the median

across samples of ‖A ' e‖L∞. Estimates of σ2A; σ
2
E

� �

with

respect to the variants assayed in a given study can be

obtained using the genomic-relatedness method [7,30-32].

The algorithm can also accommodate any other covariates.

Computations

Simulations and analyses were performed using MATLAB

2013 (The MathWorks Inc., Natick, Massachusetts) and

PLINK 2 [35,36]. The L1 -optimization algorithm was writ-

ten in MATLAB and also a feature of PLINK 2. P -values

were estimated using MATLAB’s regstats function and

PLINK 2. Color-coded phase plane figures were generated

by sampling the ρ− δ plane and interpolating between points

using MATLAB’s scatteredInterpolant function. GWAS data

were obtained from dbGaP as described in Data Descrip-

tion. Analysis scripts are available from the GigaScience

GigaDB repository and maintained on GitHub [55,56].

Statistics

The normalized coefficient error (NE) is

x − x̂k kL2
xk kL2

ð5Þ

The false positive rate (FPR) is the fraction of true

zero-valued coefficients that are falsely identified as non-

zero. The positive predictive value (PPV) is the number

of correctly selected true nonzeros divided by the total

number of nonzeros returned by the selection algorithm.

1 − PPV equals the false discovery rate (FDR). The ad-

justed positive predictive value (PPV*) is similar to the

standard PPV, except that any selected nonzero coeffi-

cient falling within 500 kb of a GIANT-identified marker

is counted as a true positive [39].

The median of the P -values for the set of putative

nonzeros (μP − value) is obtained by: 1) regressing the

phenotype on each of the L1 -selected markers in turn,

2) estimating each P -value as the standard two-tailed

probability from the t test of the null hypothesis that a

univariate regression coefficient is equal to zero, and 3)

taking the median over the independent tests. This

procedure is independent of the selection algorithm

and calculated after the L1 -penalized algorithm has

converged. The adjusted median P -value ( μ�P−value ) is

the median of the MR P -values falling below the

significance threshold divided by the threshold itself.
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The LD measure (r2) is the squared estimate of the

Pearson’s product–moment correlation between the stan-

dardized zero-mean, unit-variance SNPs.

Analysis codes are archived in the GigaScience GigaDB

repository and maintained on GitHub [55,56].

Availability of supporting data
As noted above, the data sets supporting the results of this

article are available through dbGaP accession numbers

[ARIC:phs000090] and [GENEVA:phs000091], http://www.

ncbi.nlm.nih.gov/gap [34]. Mock data sets supporting the

results of this article are available in the GigaDB repository,

doi:10.5524/100094 and http://gigadb.org/dataset/view/id/

100094/ [55].
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