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Abstract

Amidst the global pandemic and catastrophe created by ‘COVID-19’, every research institution and scientist are doing their 

best efforts to invent or find the vaccine or medicine for the disease. The objective of this research is to design and develop a 

deep learning-based multi-modal for the screening of COVID-19 using chest radiographs and genomic sequences. The modal 

is also effective in finding the degree of genomic similarity among the Severe Acute Respiratory Syndrome-Coronavirus 2 

and other prevalent viruses such as Severe Acute Respiratory Syndrome-Coronavirus, Middle East Respiratory Syndrome-

Coronavirus, Human Immunodeficiency Virus, and Human T-cell Leukaemia Virus. The experimental results on the datasets 

available at National Centre for Biotechnology Information, GitHub, and Kaggle repositories show that it is successful in 

detecting the genome of ‘SARS-CoV-2’ in the host genome with an accuracy of 99.27% and screening of chest radiographs 

into COVID-19, non-COVID pneumonia and healthy with a sensitivity of 95.47%. Thus, it may prove a useful tool for doc-

tors to quickly classify the infected and non-infected genomes. It can also be useful in finding the most effective drug from 

the available drugs for the treatment of ‘COVID-19’.
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1 Introduction

The world is facing a serious health pandemic since the last 

14 months due to the newly identified Coronavirus. The 

Coronaviruses are responsible for the common cold, mild 

respiratory problems, gastrointestinal problems, and infec-

tions in the throat [1]. The newly identified virus is a type 

of human Coronaviruses [1] named ‘SARS-CoV-2’. This is 

the causing agent for the disease ‘COVID-19’.

The first instance of ‘COVID-19’ was reported in Wuhan 

city of China in January 2020. The number of cases is 

increasing rapidly among people of different age groups 

and genders. As per the data available at the web portal of 

the World Health Organization (WHO) ‘SARS-CoV-2’ has 

infected 114,944,666 people and caused 2,550,287 deaths 

till 2 March 2021, across 219 countries [2]. The majority of 

patients has shown symptoms of varying degrees of severe 

pneumonia. The study reported in [3] states that the human 

to human transmission is possible even though the infected 

person is not showing any symptoms of respiratory prob-

lems. The authors in [3] discussed that the number of people 

affected by ‘COVID-19’ exceeds the epidemics caused by 

Severe Acute Respiratory Syndrome (SARS) in 2002–2003 
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and Median East Respiratory Syndrome (MERS) in 2012. 

Therefore, the WHO declared ‘COVID-19’ as a Global-

Pandemic. This pandemic has increased the burden on the 

health services of the world.

Expedite testing of patients is necessary for controlling 

the outbreak caused by ‘COVID-19’. WHO validated the 

Nucleic Acid Amplification Tests (NAAT) for the diagnosis 

of this disease. The health experts use the sample of fluid 

from the nose, a swab from the throat, a sample of mucus 

from the lungs (sputum), or a blood sample for detection of 

the presence of ribonucleic acid (RNA) of ‘SARS-CoV-2’ 

in the human genome. The real-time reverse transcription 

polymerase chain reaction (RT-PCR) is performed for the 

diagnosis of ‘COVID-19’ [4]. The average accuracy of this 

test is reported as 60–70% [5]. The low accuracy of available 

testing kits [5] and the limited testing capacity of labs are 

challenges in screening the huge populace. Moreover, doc-

tors manually read the reports of the tests which is a time-

consuming task. Thus, it becomes a need of the hour to find 

a computer-based solution for providing swift assistance to 

clinicians to deal with the outbreak of ‘COVID-19’.

The ability of deep learning neural networks in image 

processing, object detection, pattern recognition, learning, 

and matching can be used for mass screening of COVID-

19 and the detection of mutation caused by ‘SARS-CoV-2’ 

in the human genome [6]. This motivated the authors to 

provide a deep learning-based solution for quick and mass 

screening of ‘COVID-19’ using multiple modalities.

The main objective of this research is to develop a quick, 

reliable, and multi-modal tool for mass screening of patients 

infected with Coronavirus ‘SARS-CoV-2’. It also aims at 

predicting the similarity score of the genome of ‘SARS-

CoV-2’ with other viruses namely SARS-CoV, MERS-

CoV, Human Immunodeficiency Virus (HIV), and Human 

T-cell Leukaemia Virus (HTLV). This similarity score will 

pave the way for biotechnology experts and other research-

ers to contribute in dealing with the pandemic caused by 

‘COVID-19’ across the globe. This research focuses on 

utilizing the strengths of convolutional neural networks 

(CNN) and long short-term memory (LSTM) for improving 

the accuracy of classification and similarity score predic-

tion. Thus, the authors propose a multi-model system for 

screening of COVID-19. It is a unique architecture com-

prising deep learning models ‘GenomeSimilarityPredictor’ 

and ‘COVID-Screen-Net’ for the screening of COVID-19 

using genomic data or chest radiographs. The ‘Genom-

eSimilarityPredictor’ is effective in analyzing the textual 

data. It detects the mutation caused by ‘SARS-CoV-2’ in 

the genome of human beings and for detecting the similar-

ity score of ‘SARS-CoV-2’ with the other viruses namely 

‘SARS’, ‘MERS’, ‘HIV’, and ‘HTLV’. Whereas, the tailored 

CNN model ‘COVID-Screen-Net’ is efficient in dealing with 

imagery data. It classifies the chest X-rays into COVID-19, 

non-Covid pneumonia, and healthy classes. The interface of 

the multi-model system is shown in Fig. 1.

The main contributions of this research are as follows.

• To provide a multi-modal technological solution for the 

screening of COVID-19 using chest radiographs and 

genomic sequences.

• Precisely detecting the presence of ‘SARS-CoV-2’ in the 

human genome.

• Quickly classifying the host genomes and chest radio-

graphs into infected and non-infected categories.

• Finding the genomic similarity of ‘SARS-CoV-2’ with 

other viruses.

• Providing insights into finding the effective drug/vaccine 

for the treatment of ‘COVID-19’ from the available drugs 

or vaccines.

The remaining paper is organized as follows. Section 2 

presents a brief description of the background and related 

works. Section 3 provides a detailed discussion of the meth-

odology used to design and develop the model. Section 4 

demonstrates the experimental results and discussion. In 

Sect. 5, the authors conclude the work and give directions 

for future work.

2  Background and related works

Since the onset of 2020, the research community is con-

tributing to find the solutions for an early diagnosis and 

treatment of ‘COVID-19’. The researchers in [7] focused 

on analyzing the data available at web-based platforms to 

demonstrate the trends about the effect of ‘SARS-CoV-2’ 

across the globe. The authors in [8] reviewed the findings of 

the recent literature published on ‘COVID-19’. They high-

lighted the challenges in its diagnosis and treatment. They 

presented the role of convolutional neural networks (CNNs), 

Fig. 1  User interface of multi-model system



1253Applying deep learning-based multi-modal for detection of coronavirus  

1 3

LSTM to resolve the identified challenges in detecting the 

genome of ‘SARS-CoV-2’ in the human genome and screen-

ing of COVID-19.

A CNN works well for identifying the simple patterns 

present in the dataset. Further, it uses these patterns to form 

the complex patterns at higher layers of the network. Thus, 

the networks become very effective in deriving the interest-

ing features from small and fixed-length segments of the 

dataset [9]. To improve the performance of the CNN models, 

the authors employ optimizers such as Root Mean Square 

Propagation (RMSProp), Adaptive Gradient (AdaGrad), 

Stochastic Gradient Descent (SGD), and Adaptive Moment 

Estimation (Adam). The optimizer is selected based on the 

values of gradients and types of parameters. The RMSProp 

[9] works well when there is a large variation in the values of 

gradients. The AdaGrad [10] is applied for the sparse data-

set to improve the learning rate of its parameters. The SGD 

trains the model only on a randomly selected sample rather 

than a full dataset. Therefore, it minimizes the time required 

for training the model. Adam optimizer is an adaptive learn-

ing rate optimization algorithm. It includes the advantages 

of AdaGrad and RMSProp optimizers [11]. It computes the 

individual weights for each parameter and determines the 

individual learning rate for each gradient. It is also effective 

in dealing with sparse parameters.

The LSTM works on the current instance as well as the 

previously passed input instances. It uses its hidden state 

and preserves the selective information from the previously 

received inputs [12]. It is useful in teaching the additional 

context to the network. Moreover, it takes a short time dura-

tion to give the results.

The researchers in [13] discussed different strategies for 

the diagnosis of ‘COVID-19’. They claimed that genomic 

sequence detection is a fast and reliable technique for the 

diagnosis of the disease.

The authors in [14] take clues from the work proposed 

in [13] and employed the hidden Markov’s model. Their 

model identifies the viral genome from the host cell with an 

accuracy of 87%. Also, the model is effective in identifying 

the elusive genomic sequences. The authors claimed that the 

model overcomes the challenges of polymerase chain reac-

tion (PCR) and reports higher accuracy. Another group of 

researchers developed a web-based software named ‘Coro-

navirus Typing Tool’ [15] for rapid detection of the Coro-

navirus ‘SARS-CoV-2’ from the given genomic sequences. 

It uses the phylogenetic and genotypic information to rec-

ognize the virus with an accuracy of 87.5%. However, this 

improved the accuracy reported in [14] by 0.5%. But, the 

inaccuracy of 12.5% is still a point of concern for its use in 

real-time.

The researchers in [16] applied the random forest and 

artificial neural network (ANN) based model for the clas-

sification of viral genomes present in the metagenomics 

sequences. They achieved an area under curve (AUC) score 

of 79%. For providing a more reliable model, the authors in 

[17] applied natural language processing for the detection 

of the viral genome. They reported the AUC of 85%. They 

claimed that the machine learning and deep learning models 

outperform the term frequency (TF) and inverse document 

frequency methods in the detection of a viral genome. In line 

with the ongoing research, the authors in [18] developed the 

deep learning model ‘Basset’ for the multi-class classifica-

tion of viral genomes. They improved the correctness of the 

model reported in [17], and achieved the highest AUC of 

89%. To further improve the performance of the models, 

the researchers in [19] applied the K-tuple word frequencies 

for the detection of a viral genome from the metagenomics 

sequence. Their model outperformed the model proposed in 

[18] and achieved the AUC score of 91.4%. The researchers 

in [20] proposed the applied CNN-based k-mer classifica-

tion and achieved an accuracy of 93%. The authors in [21] 

applied UNet for detecting the 2019 novel Coronavirus. 

Their model achieved the highest accuracy of 95.24% and 

reported the improvement of 2.24% over the work proposed 

in [20].

The researchers in [22] applied the Bi-path CNN and 

improved the accuracy of detection of the novel Coronavirus 

‘SARS-CoV-2’. They claimed that their model is effective 

in identifying the genomes of the 2019-nCoV or ‘SARS-

CoV-2’, and ‘SARS-CoV’ with an accuracy of 97.05%. 

But, the high computation complexity of Bi-path CNN is 

a limitation in its use. Another group of researchers pro-

posed the deep learning model [23] that distinguishes the 

‘SARS-CoV-2’ from other Coronaviruses with an accuracy 

of 98.17%. They reported an improvement of 1.12% over the 

work proposed in [22]

Tulin Ozturk et al [24] further enhanced the applicability 

of CNN in identifying the simple as well as complex pat-

terns present in the dataset. They developed CNN models 

for the detection of COVID-19 from the imagery dataset. 

They employed the Darknet19 model for the diagnosis of 

COVID-19 using X-ray images obtained from two differ-

ent sources [25, 26]. The model achieved the classification 

accuracy of 98.08% for binary classification of the dataset 

into Covid, and Normal classes. But, it could achieve an 

accuracy of 87.02% for multi-class classification of the 

dataset into Covid, Normal, and Pneumonia classes. The 

low accuracy in multi-class classification leaves scope for 

improving and optimizing the model. Similarly, the authors 

in [27] employed the VGG-19, MobileNet-V2, Xception, 

Inception, and Inception ResNet models for automatic detec-

tion of COVID-19 from X‐ray images. They collected the 

datasets from GitHub repository [25], Radiological Society 

of North America (RSNA), Radiopaedia, and the Italian 

Society of Medical and Interventional Radiology (SIRM). 

The dataset comprises 224 X-ray images of confirmed 
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patients of COVID-19, 504 cases of healthy instances, 400 

patients infected with bacterial pneumonia, and 314 people 

infected with viral pneumonia. The authors harnessed the 

potential of transfer learning. They claimed that MobileNet-

V2 reports the highest accuracy of 96.78%, a sensitivity of 

98.66%, and specificity of 96.46% for the binary classifica-

tion. However, their work reported a higher accuracy than 

the model presented in [24]. But, they did not focus on the 

multi-class classification.

The authors in [28] proposed a deep convolutional neural 

network-based architecture ‘CovXNet’ for the classification 

of chest X-ray images into classes namely normal, non-

Covid viral pneumonia, and bacterial pneumonia. They eval-

uated the performance of their model on the dataset compris-

ing 1583 X-ray images of healthy persons, 1493 images of 

the non-Covid viral pneumonia, 2,780 X-ray images of the 

persons infected with bacterial pneumonia, and 305 X-ray 

images of the patients infected with COVID-19. They col-

lected the dataset from Medical Center, China, and Sylhet 

Medical College, Bangladesh. The ‘CovXNet’ achieved an 

accuracy of 90.2% for the multi-class classification of the 

dataset.

The analysis of related research works shows that there 

is a lack of research works in finding the genomic simi-

larity score of the ‘SARS-CoV-2’ with other viruses. The 

genomic similarity of Coronavirus with other viruses may 

give insights to find the drug effective for the treatment of 

‘COVID-19’ from the pre-discovered drugs. Also, limited 

techniques are available for the screening of ‘COVID-19’ 

using multiple modalities, viz., chest radiographs and the 

genomic sequences. Moreover, the techniques based on sin-

gle modality either chest radiographs or genomic sequences 

report low accuracy for multi-class classification. Further, 

these techniques have high computation complexity. Thus, 

there is a requirement to provide the multi-modal solution 

for the screening of COVID-19. Also, there is a scope to 

improve the accuracy and reduce the time complexity of the 

existing models.

3  Methodology

In this section, the authors present the architectures, train-

ing parameters, and working of the CNN and LSTM based 

multi-modal. The multi-modal comprises the ‘GenomeSimi-

larityPredictor’ and COVID-Screen-Net [29]. The ‘Genom-

eSimilarityPredictor’ is applied for the prediction of the 

genomic similarity of ‘SARS-CoV-2’ with other viruses and 

the classification of genomes into infected and non-infected. 

Whereas, the architecture of COVID-Screen-Net is adopted 

from the work presented in [29] to classify the chest radio-

graphs into healthy, bacterial pneumonia, and COVID-19.

3.1  The architecture of ‘GenomeSimilarityPredictor’

The architecture of ‘GenomeSimilarityPredictor’ as shown 

in Fig. 2, consists of three branches of 1-D convolutional 

layers, viz.,  C1,  C2, and  C3. Each convolutional layer includes 

200 filters. These layers differ in their kernel size. The kernel 

size of  C1 is 2,  C2 is 3, and  C3 is 4. The convolution layers 

employ the Rectified Linear Unit (ReLU) activation func-

tion. Each convolution layer is further connected to a bidi-

rectional LSTM layer individually. Each LSTM layer is now 

connected to a Global Max Pooling (GMP) layer individu-

ally. The outputs of all the GMP layers are concatenated and 

passed to the dropout layer that is further connected to the 

dense layer. The dense layer employs the sigmoid activation 

function for the prediction of similarity scores.

3.2  Training parameters

The model proposed in this manuscript makes effective use 

of the Adam optimizer [10]. It includes the following train-

ing parameters.

1. Alpha (α) It denotes the learning rate of the neural net-

work. It is directly dependent on the values of dynami-

Fig. 2  Architecture of ‘GenomeSimilarityPredictor’
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cally updated weights of neurons. Higher values of 

weights favor the faster learning of the model.

2. Beta 1 (β1) and Beta 2 (β2) These are the exponential 

decay rates. The authors pre-set the optimum value of 

β1 as 0.9 and β2 as 0.999 based on the set of experiments 

conducted. The decrease in the values of β1 and β2 below 

0.5 and above 1.2 yields high values of the loss func-

tion and hence degrades the accuracy of the model. A 

low impact on the value of accuracy is observed when 

the values of β1 and β2 decreased from 0.9 to 0.5 and 

increased from 0.9 to 1.2.

3. Epsilon (ε) It is a small number to prevent the division 

by zero error. In this model, the authors used the default 

value as 1e−0.8 as discussed in [10].

4. Binary Cross-Entropy (BCE) loss It is effective in deal-

ing with binary classification. It measures the perfor-

mance of a classification model which yields a prob-

ability score between 0 and 1. The value of BCE loss 

increases with an increase in deviation of the predicted 

probability from its actual label. Equation 1 gives the 

formula to calculate its value. In this equation H
p
(q) is 

the BCE loss, N is the number of points for classifi-

cation, Yi represents the label of the class. The value 

0 of Yi indicates the genome of the virus other than 

‘SARS-CoV-2’. The value 1 indicates the genome of 

‘SARS-CoV-2’. p(yi) is the probability of occurrence of 

a genome in the class label 1.

3.3  Activation function

The activation function is applied to introduce non-linearity 

into the output of a neuron. This improves the learning of 

the model. In the proposed model, the authors use the ReLU 

activation function for the CNN layers and the sigmoid acti-

vation function for the dense layer. For the positive value 

of the input, the ReLU function does no modification. On 

the contrary, it returns ‘0’ for the negative or ‘0’ input val-

ues. For example, x is the input given to the ReLU function 

then it returns x for x > 0 and return ‘0’ for x ≤ 0 [11]. The 

authors adopted ReLU activation function to randomly acti-

vate the neurons rather than activating all the neurons at the 

same time. It also prevents the problem of gradient satura-

tion and leads to faster convergence of the model than Tanh 

activation function. The expected value of the Tanh activa-

tion function is zero. It is useful in the quick learning of 

deep neural networks. The Sigmoid function is effective in 

predicting the probability of occurrence of an input sequence 

in a labeled class. In this research work, the authors aim to 

(1)

Hp(q) = −
1

N

N
∑

i=1

yi × log(p
(

yi

)

+
(

1 − yi

)

× log(1 − p
(

yi

)

.

predict the probability of occurrence of a genomic sequence 

in the ‘SARS-CoV-2’ class. Thus, they chose the sigmoid 

activation function for the dense layer of the model.

3.4  Working of the model

The neural network models, viz., ‘COVID-Screen-Net’ and 

‘GenomeSimilarityPredictor’ work as parallel networks of 

the proposed multi-modal. The ‘COVID-Screen-Net’ is 

invoked if the chest radiographs are given as input. It clas-

sifies the chest radiographs into COVID-19, bacterial pneu-

monia, and healthy, whereas, another neural network the 

‘GenomeSimilarityPredictor’ is invoked for the genomic 

sequences. Initially, three convolutional layers of this model, 

 C1,  C2, and  C3, receive the genomic sequences of ‘SARS-

CoV-2’, ‘SARS-CoV’, ‘MERS-CoV’, HIV, HTLV, and Bat 

SARS-like virus as inputs and gives the degree of similar-

ity of ‘SARS-CoV-2’ with the remaining input genomic 

sequences. Figure 3 shows the sequence of steps followed 

by the model. The ‘GenomeSimilarityPredictor’ also detects 

the genomes of the ‘SARS-CoV-2’ in the human genome.

The publicly available datasets [31–35] containing the 

genomic sequences are embedded by the embedding layer. 

This layer performs the pre-processing and computes the 

score for each sequence based on the position and frequency 

of the nitrogenous bases: Adenine (A), Cytosine (C), Gua-

nine (G), and Thymine (T) (for DNA) or Uracil (U) (for 

RNA). The score is useful in deriving the context of the 

genomic sequence. Now, the output obtained from the 

Fig. 3  Working of ‘GenomeSimilarityPredictor’
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embedding layer is passed to the convolutional layers C1, 

C2, and C3. These layers extract the features based on the 

filters and kernel size. Now, the bidirectional LSTM layers 

perform training of the model on the original input sequence 

as well as its reverse copy. The LSTM layers pass the outputs 

to the GMP layers. Each GMP layer extracts the maximum 

value from each feature map. Now, all three GMP layers are 

concatenated together and connected to the dropout layer. 

The dropout layer acts as an intermediate between the GMP 

layers and the dense layer. It allows only the selected neurons 

to establish connections to the dense layer. This is impor-

tant to reduce the problem of overfitting. It also reduces the 

size of connections and hence, useful in reducing the time 

complexity. Here, the authors set the probability score as 

0.2. It means that the dropout layer randomly removes 20 

neurons from every 100 neurons. The remaining 80 neurons 

are passed to the next layer for connection. Finally, the dense 

layer employs the sigmoid as an activation function to cal-

culate the probability score. The three convolutional layers 

of the model C1, C2, and C3 are trained on ‘SARS-CoV-2’ 

genomic sequences. Thus, the model becomes efficient in 

understanding the pattern and structure of its genome. When 

the model receives the input sequence of other viruses, then 

it generates the similarity score of ‘SARS-CoV-2’ with 

the input sequence. This score demonstrates the similar-

ity index of the genome of ‘SARS-CoV-2’ with other input 

genomes. Score 1 indicates that the genome is the same as 

the ‘SARS-CoV-2’. Score 0 indicates no matching of input 

genome with ‘SARS-CoV-2’. The probability score between 

0 and 1 indicates the degree of similarity of a genome with 

the ‘SARS-CoV-2’.

4  Results and discussion

The authors use Google Colab [36], the freely available 

online training platform for implementing the model. It has 

Tesla K80 GPU and 12 GB RAM. The Google Colab pro-

vides the facility of continuous execution for 12 h.

4.1  Dataset

For experiments, the authors used the datasets publicly 

available at [25, 26]. It contains 300 chest radiographs com-

prising of 100 images of non-infected persons, 100 images 

of patients infected with ‘COVID-19’, and 100 images of 

patients infected with ‘Bacterial Pneumonia’. The authors 

used 75% of the total dataset for training and 25% for test-

ing the performance of the model. The model is trained on 

202 images, validated on 35 images, and tested on a set of 

63 images. The authors used the batch size of 32 images. 

Therefore, they input eight batches of the dataset for training 

the model and two batches for testing the model. All batches 

are given as input in each epoch during training and testing 

the model. The authors selected the above-mentioned batch 

size based on the set of experiments performed. This batch 

size facilitates the model to learn gradually about the dataset 

without making it familiar with the whole dataset. Thus, 

it reduces the problem of generalization. Another dataset 

available at [31] contains 852 genomic sequences. The 100 

sequences are genomes of ‘SARS-CoV-2’ in the host human 

beings and the remaining 752 sequences are genomes of 

non-infected human beings. These genomic sequences have 

been extracted from blood samples, oronasopharynx, and 

lungs of people from different geolocations such as China, 

Spain, the USA, Vietnam, and Thailand. As a part of the 

pre-processing step, the authors assigned unique numbers 0, 

1, 2, and 3 to the nitrogenous bases: A, G, C, and T respec-

tively. They sliced a genomic sequence at the interval of the 

length 300. The authors divided the dataset of 852 genomic 

sequences into a batch size of 128. They obtained seven 

batches each of size 128 for training the model. The batch 

size is selected based on the experiments conducted on dif-

ferent batch sizes such as 32, 64, 128, and 256. The model 

reported the best performance on the batch size of 128. 

This batch size initializes the training of the model before 

familiarizing it with the complete dataset. This is effective in 

dealing with the problem of generalization. The authors also 

used 172 genomic sequences of ‘SARS-CoV’ [32] ‘MERS-

CoV’ [33], ‘HIV’ [34] and ‘Bat SARS-like virus’ [35] for 

testing the efficacy of the model in calculating the degree of 

similarity of these sequences with the genome of ‘SARS-

CoV-2’. The genomic sequences of ‘SARS-CoV-2’ are 

labeled as 1 and the remaining sequences are labeled as 0.

The authors used 70% of the total dataset for training, 

10% for the validation, and 20% for testing the model. 

They set the value of the threshold as 0.75 for the sig-

moid function at the dense layer. This value indicates 

that the model will give the probability score of 1 if the 

genomic sequence resembles 75% or higher to the genome 

of ‘SARS-CoV-2’. Score 0 is obtained if the genomic 

sequence shows the similarity lower than the pre-set value 

of the threshold. The model uses 2,69,937 parameters for 

the training. The number of parameters is dependent on 

the number of filters and the kernel size of the model. The 

model is executed to detect the presence of the genome of 

‘SARS-CoV-2’ in the input genomic sequence of human 

beings. It also predicts the similarity score of the above-

mentioned viruses with the genome of ‘SARS-CoV-2’.

4.2  Performance of the model

To evaluate the efficacy of the proposed model, the authors 

used the following evaluation metrics.
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1. BCE loss The value of the loss function indicates the 

error in the prediction [11]. The value decreases with 

the training of the model. Figure 4 demonstrates the 

trends for the values of BCE loss with an increase in the 

number of epochs. It is clear from Fig. 4 that the values 

of BCE loss decrease with an increase in the number 

of epochs. This demonstrates that the proposed model 

continuously learns from the values of the loss func-

tion and updates the weights to minimize it. This leads 

to a decrease in the value of the loss. The minimum 

value of loss after 30 epochs, indicates that the model 

has become effective in classifying the input genomic 

sequences.

2. Confusion matrix This is used to display the number 

of correctly and incorrectly classified instances from 

the test dataset. Table 1 shows the confusion matrix for 

the 172 genomic sequences used in the testing set of 

the ‘GenomeSimilarityPredictor’, and Table 2 shows 

the confusion matrix obtained by applying ‘COVID-

Screen-Net’ on the test dataset of 63 chest radiographs. 

In Table 1, the True Positive (TP) represents the num-

ber of instances correctly predicted in the positive class. 

True Negative (TN) shows the number of instances cor-

rectly predicted in the negative class. False Positive (FP) 

gives the number of instances incorrectly predicted in 

the positive class. False Negative (FN) displays the 

number of instances incorrectly predicted in the nega-

tive class. In Table 2, the class labels have been used 

to demonstrate the correctly and incorrectly classified 

instances.

3. Accuracy of ‘GenomeSimilarityPredictor’ This is the 

ratio of correctly classified genomic sequences to that 

of total dataset size. Equation (2), gives the formula to 

calculate the value of accuracy (ACC). The ‘GenomeS-

imilarityPredictor’ misclassifies only 1 instance as the 

false negative. Thus, it achieved the highest accuracy 

of 99.27%

Figure 5 demonstrates the variation in the accuracy of 

‘GenomeSimilarityPredictor’ with a change in the number 

of epochs. There is a random increase and decrease in the 

value of accuracy when it is executed from the 0th to 30th 

epoch. This reveals that the model is continuously learning 

and updating the weights. After 30 epochs the accuracy 

achieves its maximum value and becomes 99.27%. On 

further increasing the number of epochs, no significant 

change is observed in the accuracy of the model. This 

shows that the model is trained on all the parameters when 

executed for 30 epochs.

Accuracy of ‘COVID-Screen-Net’ Its accuracy ran-

domly varies when it is executed from the 0th to 120th 

epoch. Fig. 6 demonstrates the trends of the accuracy of 

the model. It is clear from Fig. 6 that the accuracy sharply 

increases in executing the model from 0th to 10th epochs. 

From the 10th to 118th epoch, there is a random increase 

and decrease in the accuracy. At the 118th epoch, the 

model achieves a maximum accuracy of 95.47%. The 

trends of increase and decrease in accuracy, give the infor-

mation that the model gradually learns about the dataset 

and the training parameters. It completes its training in 

118 epochs.

The accuracy of the model is also dependent on the 

batch size. It achieves an accuracy of 94% when a batch 

size of 16 images is given as input. On the contrary, the 

accuracy decreases and becomes 90.5% when the batch 

(2)Accuracy =

Number of correct predictions

Total size of test datasetFig. 4  Variation in BCE loss with the number of epochs

Fig. 5  Variation in accuracy of ‘GenomeSimilarityPredictor’ with 

number of epochs
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size is increased to 128 images. The maximum accuracy 

of 95.47% is achieved for the optimum batch size of 32 

images.

4. Receiver operating curve (ROC) This is the graphical 

representation of the TP rate versus FP rate at different 

values of the threshold. The confusion matrix shown 

in Table 1 displays the number of TP, FP, TN, and FN 

genomic sequences obtained on testing the model with 

172 genomic sequences. The ROC as shown in Fig. 7, 

illustrates the efficacy of the classifier ‘GenomeSimi-

larityPredictor’. The high value 0.9783 of Area Under 

Curve (AUC) below the ROC demonstrates the effec-

tiveness of the model to categorize the test sequences 

of ‘SARS-CoV-2’ from genomic sequences of human 

beings.

5. Precision (P) It is the ratio of the number of correct 

predictions in a particular class to that of the total num-

ber of correct predictions made in all the classes. The 

model ‘GenomeSimilarityPredictor’ gives a precision of 

99%. Whereas, the model ‘COVID-Screen-Net’ achieves 

the average precision of 95.4649% on the test dataset. 

The high values of precision prove that the models are 

effective in extracting the relevant instances of each 

class label from the total number of extracted instances.

6. Recall (R) It is the ratio of the number of correct predic-

tions to a particular class to that of the total number of 

predictions made in that class. The model ‘GenomeS-

imilarityPredictor’ achieves the highest recall of 100%. 

This proves that the model is effective in extracting all 

the relevant instances from the given instances. The 

value of TP = 149 and TN = 0 shows that all the 149 

genomes are correctly classified into its relevant class. 

Whereas, the model ‘COVID-Screen-Net’ gives an aver-

age recall of 95.2381%. The high values of recall prove 

that the model extracts all the relevant instances from 

the given instances. It makes the correct predictions for 

the ‘COVID-19’.

7. F1 score This is the harmonic mean of precision and 

recall. The formula for calculating the value of the F1 

score is given in Eq. (3).

(3)F1 Score = 2 ×
P × R

P + R
.

Fig. 6  Trends of accuracy of ‘COVID-Screen-Net’ with change in the 

number of epochs

Fig. 7  ROC and AUC 

Table 1  Confusion matrix ‘GenomeSimilarityPredictor’

 Positive Negative 

Positive (TP) 

149 

(FP) 

0 

Negative (FN) 

1 

(TN) 

22 

Table 2  Confusion matrix 

‘COVID-Screen-Net’
Predicted 

Non-

Infected 

Bacterial 

Pneumonia 

COVID-19 

A
c
tu

a
l

Non-Infected 20  0  0  

Bacterial 

Pneumonia 

1  19  0 

COVID-19 0  2  21  
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The ‘GenomeSimilarityPredictor’ achieves the high-

est F1 score of 100% which proves the efficacy of the 

model in classifying the genomes of ‘SARS-CoV-2’ and 

Homo sapiens. The model ‘COVID-Screen-Net’ yields an 

average F1 score of 95.2434 % which prove, its efficacy 

in classifying the test images correctly into their actual 

classes.

8. Degree of Genomic Similarity The model ‘Genom-

eSimilarityPredictor’ predicts the degree of genomic 

similarity of four viruses: ‘HTLV’, ‘HIV’, ‘MERS-

CoV’, and ‘SARS-CoV’ with the genome of ‘SARS-

CoV-2’. Table 3 shows the degree of similarity obtained. 

Its first column contains the name of the virus and the 

second column displays the degree of similarity with 

‘SARS-CoV-2’ in %. It is clear from the similarity score 

shown in Table 3 that ‘SARS-CoV-2’ shows the highest 

genomic similarity of 98.11% with the ‘SARS-CoV’.

9. K-Fold Cross Validation To validate the reliability of 

the ‘GenomeSimilarityPredictor’, the authors applied the 

tenfold cross-validation. They divided the dataset into 

ten equal-sized subsets. The nine subsets are used for 

training the model and the remaining one subset is used 

for testing. The process is repeated until each subset 

becomes the testing subset. The tenfold cross-validation 

minimizes the problem of overfitting and under fitting of 

the model.

The trend in the value of the loss function at each fold 

is shown in Fig 8. The values obtained at different itera-

tions of the tenfold cross-validation are shown in Table 4. 

The model gives 0.005904 as the average value of the loss 

function. The low value of the loss function proves its effi-

cacy in predicting the similarity score of ‘SARS-CoV-2’ 

with ‘HTLV’, ‘HIV’, ‘MERS’, and ‘SARS’ viruses.

5  Discussion

The state-of-art models as discussed in Sect. 2 [15–23] 

have been applied for the detection of viral genome in the 

host cell. Among all the machine learning models, the bi-

path convolutional neural network model proposed in [22] 

achieved the highest accuracy of 97.05%. However, the 

model is efficient in detecting the infection due to 2019-

nCoV, SARS, and SARS-CoV. But, its high computation 

complexity is a limitation for its use. Moreover, it does not 

find the similarity among the different genomic sequences 

of viruses. Thus, it does not give insight into drug discov-

ery. Further, the deep learning model proposed in [23] 

reported the higher accuracy than machine learning mod-

els and achieved an accuracy of 98.17% for the classifica-

tion of ‘SARS-CoV-2’ from the given genomic sequences. 

Although, the model proves its efficacy in classification. But, 

it does not focus on finding the similarity among different 

genomic sequences.

Furthermore, the research works proposed in [24–28] 

extended the applications of deep learning models for 

screening of COVID-19 using chest radiographs. But, they 

reported the highest accuracy of 87.02% for multi-class 

classification of chest radiographs into non-infected, infected 

with COVID-19 and bacterial pneumonia [24]. But, these 

Table 3  Degree of genomic similarity

Name of virus Degree of similarity 

with SARS-CoV-2 

in %

HTLV 86.5

HIV 89.7

MERS-CoV 95.3

SARS-CoV 98.11

Fig. 8  Trend in the loss function of ‘GenomeSimilarityPredictor’

Table 4  Loss at each fold Fold number Model loss

1 0.00194

2 0.00714

3 0.00139

4 0.02560

5 0.00312

6 0.00582

7 0.00850

8 0.00318

9 0.00127

10 0.00108
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models employed the deep neural networks even though the 

dataset is small. Therefore, these encountered the problem 

of overfitting. Also, the biased training of models reduces 

their reliability.

Further, the use of multiple modalities viz. chest radio-

graphs and genomic sequences together for screening of 

COVID-19 is an unaddressed research problem.

The multi-modal comprising two parallel networks viz. 

‘COVID-Screen-Net’ and ‘GenomeSimilarityPredictor’ pro-

posed in this manuscript overcomes the above-stated chal-

lenges. The ‘COVID-Screen-Net’ performs the multi-class 

classification with an accuracy of 95.47%. It is effective in 

automatic screening of COVID-19. The authors used an 

equal number of images for each class to avoid the problem 

of biased training. They used 100 X-ray images of each cat-

egory namely COVID-19 confirmed cases, non-infected, and 

bacterial pneumonia. Moreover, the authors restricted the 

number of convolution layers to five to avoid the problem of 

overfitting on the small dataset.

Another model the ‘GenomeSimilarityPredictor’ is a 

hybrid of CNN and LSTM. It improved the accuracy of pre-

diction even for the multi-class classification. The model 

also worked for identifying the virus showing the maximum 

similarity with ‘SARS-CoV-2’. The authors optimized the 

number of convolution layers in their model to minimize 

the problem of overfitting and under fitting on the dataset 

used for training and testing. The optimized combination of 

CNN and LSTM in ‘GenomeSimilarityPredictor’ improved 

the accuracy reported in [23] by 1.10% and achieved the 

highest accuracy of 99.27% in detecting the presence of 

‘SARS-CoV-2’ in the genome of human beings. The model 

achieved the recall of 100% on the test dataset. Besides, 

it finds the similarity score of a given genomic sequence 

with other genomic sequences. Its comparison with the tech-

niques proposed in [15, 21–23] as shown in Fig. 9 proves 

the supremacy of the proposed model over the existing 

models. But, the performance of the model may degrade if 

the genomic sequences have been damaged during extrac-

tion. The authors trained the proposed model with different 

mutants of the same virus to improve its robustness.

6  Conclusion and future work

Screening and treatment of ‘COVID-19’ have become the 

prime objective of the globe. The scientists, health experts, 

and research community are contributing in their best ways 

to meet this objective.

In this manuscript, the authors proposed a technologi-

cal solution to deal with ‘COVID-19’. Their multi-modal 

comprising the ‘GenomeSimilarityPredictor’ and ‘COVID-

Screen-Net’ is effective in the screening of COVID-19 using 

multiple modalities viz chest radiographs and genomic 

sequences. The model ‘GenomeSimilarityPredictor’ is effi-

cient in detecting the genome of ‘SARS-CoV-2’ in human 

beings with an accuracy of 99.27%. It gives the low value 

of loss function 0.005904 on applying k-fold cross-valida-

tion. The model also determines the degree of similarity in 

the genomes of ‘SARS-CoV’, ‘MERS-CoV’, ‘HTLV, and 

‘HIV’ with ‘SARS-CoV-2’. The experimental results shown 

in Table 3 demonstrate that the genome of ‘SARS-CoV-2’ 

is the most similar to the genome of ‘SARS-CoV’. This can 

be a useful clue for the clinicians to find the most effective 

vaccine or drug for the treatment of ‘COVID-19’.

On the other hand, the model ‘COVID-Screen-Net’ 

distinguishes the X-ray images of non-infected, patients 

infected with ‘Bacterial Pneumonia’ and patients infected 

with ‘COVID-19’ with an accuracy of 95.47%.

The comparison with the prior art shows that there is a 

lack of research works that are efficient in the screening of 

COVID-19 using multiple modalities. Also, both the models 

employed in the multi-modal proposed in this manuscript 

report higher accuracy than the models proposed in the lit-

erature [15–24]. Its effectiveness in dealing with noisy data, 

low time complexity makes it applicable for the screening 

of infected genomes as well as chest radiographs. The zero 

instance in the FP and only 1 instance in the FN increase the 

acceptability of this model. Thus, it can be used for mass 

screening of patients infected with ‘SARS-CoV-2’. It may 

prove a quick and reliable tool for doctors.

Future scope: The application of this model can be 

extended for the screening of multiple classes of lung infec-

tions. It can also be used to quickly find the degree of simi-

larity between genomes of any two microbes. The model 

can be trained with the labeled genomic sequences and chest 

radiographs of infected and healthy human beings for mass 

screening of patients. It can quickly detect the mutation in Fig. 9  Performance comparison of ‘GenomeSimilarityPredictor’
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the human genome. Thus, it may prove useful in the situation 

when the virus has a high tendency to generate its mutants.
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https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Middle%20East%20respiratory%20syndrome-related%20coronavirus%20(MERS-CoV),%20taxid:1335626
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Middle%20East%20respiratory%20syndrome-related%20coronavirus%20(MERS-CoV),%20taxid:1335626
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Middle%20East%20respiratory%20syndrome-related%20coronavirus%20(MERS-CoV),%20taxid:1335626
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Middle%20East%20respiratory%20syndrome-related%20coronavirus%20(MERS-CoV),%20taxid:1335626
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Human%20immunodeficiency%20virus%201%20(HIV-1),%20taxid:11676
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Human%20immunodeficiency%20virus%201%20(HIV-1),%20taxid:11676
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Human%20immunodeficiency%20virus%201%20(HIV-1),%20taxid:11676
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Human%20immunodeficiency%20virus%201%20(HIV-1),%20taxid:11676
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Bat%20SARS-like%20coronavirus,%20taxid:1508227
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Bat%20SARS-like%20coronavirus,%20taxid:1508227
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Bat%20SARS-like%20coronavirus,%20taxid:1508227
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Bat%20SARS-like%20coronavirus,%20taxid:1508227
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