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Abstract. A new approach for tuning the trajectories of
the European remote sensing (ERS) satellites is devel-
oped and assessed. Differential dual-pass interferometry
is applied to calculate interferograms from the phase
difference of synthetic aperture radar (SAR) images
acquired by the ERS satellites over the site of the 1992
earthquake in Landers, California. These interferograms
contain information about orbital trajectories and
geophysical deformation. Beginning with good prior
estimates of the orbital trajectories, a radial and an
across-track orbital adjustment is estimated at each
epoch. The data are the fringe counts along distance and
azimuth. Errors in the across-track and radial compo-
nents of the orbit estimates produce fringes in the
interferograms. The spacing between roughly parallel
fringes gives the gradients in distance and azimuth
coordinates. The approach eliminates these fringes from
interferometric pairs spanning relatively short time
intervals containing few topographic residuals or atmo-
spheric artefacts. An optimum interferometric path with
six SAR acquisitions is selected to study post- and inter-
seismic deformation fields. In order to regularize the
problem, it is assumed that the radial and across-track
adjustments both sum to zero. Applying the adjustment
approach to the prior estimates of trajectory from the
Delft Institute for Earth-Orientated Space Research
(DEOS), root mean squares of 7.3 cm for the across-
track correction components and 2.4 cm for the radial
ones are found. Assuming 0.1 fringes for the a priori
standard deviation of the measurement, the approach
yields mean standard deviations of 2.4 cm for the
across-track and 4.5 cm for the radial components.
The approach allows an ‘interval by interval’ improve-

ment of a set of orbital estimates from which post-fit
interferograms of different time intervals spanning a
total 3.8-year inter-seismic time interval can be created.
The interferograms calculated with the post-fit orbital
estimates compare favorably with those corrected with a
conventional orbital tuning approach. Using the adjust-
ment approach, it is possible to distinguish between
orbital and deformation contributions to interferometric
SAR (InSAR) phase gradients. Surface deformation
changes over an inter-seismic time interval longer than
one year can be measured. This approach is, however,
limited to well-correlated interferograms where it is
possible to measure the fringe gradient.

1 Introduction

We consider the orbital contribution in differential
interferometric synthetic aperture radar (InSAR)
images. Since the phase difference between SAR images
is acquired in similar geometric conditions, but at two
different epochs, the resulting interference pattern shows
fringes that represent contours of the change in range
between the SAR antenna and the ground point. If we
subtract the topographic contribution from the phase in
each pixel, we obtain a so-called differential interfero-
gram which records the deformation field. In practice,
however, this measurement still contains contributions
from topography and orbit uncertainties as well as
atmospheric contributions.

Consequently, the usefulness of an interferogram is
limited by the problem of distinguishing deformation
signals from orbital uncertainties (Massonnet and Feigl
1998). The standard processing scheme assumes that
errors in the satellite trajectories create a planar
interference pattern with parallel fringes. Sometimes
called a ‘phase ramp’, this pattern is indistinguishable
from a crustal deformation field with constant fringe
gradient.
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Currently, the best available estimates for ERS-1 and
ERS-2 trajectories, based on the fully independent Delft
gravity model (DGM)-E04 and the GeoForschungsZen-
trum (GFZ) PGM055, show root-mean-square (RMS)
orbit differences of about 7 cm in the radial, 24 cm in the
along-track, and 18 cm in the across-track directions
(Scharroo and Visser 1998). These values should, in
principle, be amenable to improvement by using the
interferometric SAR phase change to measure range
within a fraction of a 5.6-cm wavelength. In practice,
however, our approach will work best for the radial and
across-track components because of geometry. Previ-
ously, we have evaluated the relative quality of various
orbital estimates by counting the number of fringes
remaining in differenced interferograms. However, this
approach works well only in cases where the orbital
contribution dominates the error budget. In practice, this
means one full 28-mm fringe over a 110-km-wide scene, or
a proportional error of� 3� 10�7. Orbital errors smaller
than this value tend to drown in noise from other sources,
such as tropospheric heterogeneities or unmodeled
topographic relief. In this paper, we model the orbital
errors and adjust the satellite trajectories in a quasi-
absolute sense. Then we use the improved orbital esti-
mates to calculate the interferograms again.

2 InSAR data selection

We select ERS data over the area shown in Fig. 1. Many
acquisitions are available because of the interest in the
28 June 1992 Landers earthquake in California (Mas-
sonnet et al. 1993, 1994, 1996; Zebker et al. 1994; Peltzer
et al. 1998). We have selected the 110 by 110-km-wide
scene of frame 2907 in track 399 covering the area
between the San Andreas Fault and the Landers
rupture. The satellite has acquired an SAR image of
this single scene during p different passes. The number of
possible interferometric pairs, not counting autocorre-
lations or reversals, is

q ¼
pðp � 1Þ

2
; p � 2; p 2 N ð1Þ

However, the number of strictly independent pairs is
only p=2. But such a minimal set of pairs does not
provide any redundancy for identifying artefacts asso-
cited with a particular image (epoch), such as might
occur under anomalous atmospheric conditions. To
identify an epoch as anomolous, we should include it in
at least two pairs. This leads to a basis set of pairs.
Omitting the pair composed of the first and last epochs,
we find the number of pairs in the basis set to be

k ¼ p � 1 ð2Þ

This is the minimum number of pairs required to
capture all the geophysical deformation between the
epochs of the first and last images.

Of course, fringe counts in pairs sharing a common
image are correlated. If, for example, an atmospheric
anomaly contaminates the image acquired at the second
epoch, an artefact will appear in two interferometric
pairs (1, 2 and 2, 3) of the basis set. Our first step then, is
to optimize the choice of the k best pairs among the q
possibilities. We visualize our choice in Fig. 2. Fig-
ure 2A shows a conventional plot of baseline as a
function of time. Figure 2B displays the same informa-
tion in different way. It plots the time-ordered list of
interferometric pairs as a path through a two-dimen-
sional (2-D) space with two coordinates: accumulated
timespan and accumulated baseline. To emphasize the
optimal choice of interferometric pairs with respect to
temporal and geometric decorrelation, this representa-
tion shows a ‘good’ path as including pairs with both (1)
relatively short time intervals and (2) shallow slope.

Temporal decorrelation occurs when the arrange-
ment of scatterers within a resolution cell or their elec-
trical properties changes as a function of time between
the first and the second data acquisition epochs (Hans-
sen 2001). Thus, interferometric pairs spanning shorter
times are ‘good’ for measuring fringe gradients.

Geometric decorrelation occurs as the separation
between the two orbital trajectories increases. The cor-
relation coefficient is inversely proportional to the
component jB?j of the orbital separation (‘baseline’)
vector perpendicular to the range direction (see Fig. 5).

Fig. 1. Left side shows the loca-
tion map of the study area
around Landers in southern
California. Stars indicate earth-
quake epicenters of the 28 June
1992 Landers (ML ¼ 7:3) main
shock and the 4 December 1992
ðML ¼ 5:1Þ aftershock. The box
with bold lines delimits the area
of Fig. 7. The inclined frame
2907 on the ERS track 399 is our
selected SAR scene and the area
delimiting the interferograms of
Fig. 6. Right side shows the
simulated SAR backscatter
(amplitude) image in radar
geometry calculated with the 3
arcsec DEM and the prior esti-
mate of orbit 20928
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For interferometric pairs jB?j beyond a critical value,
correlation vanishes because the spectral shift exceeds
the pulse bandwidth (Gatelli et al. 1994). The value of
jB?j is usually used to describe the sensitivity of an
interferometric pair to topographic elevation. It is in-
versely proportional to the altitude of ambiguity ha, the
shift necessary to produce one topographic fringe, as
defined by Massonnet and Rabaute (1993) and sketched
by Massonnet and Feigl (1998). This implies that large
values of jhaj or small values of jB?j increase the degree
of geometric correlation and thereby the signal-to-noise
ratio in the interferogram. Such values are ‘good’. To
minimize topographic effects in the interferograms, we
have selected a relatively flat area with a precise digital
elevation model (DEM) (Fig. 1). We use a digital terrain
elevation data model of Level 1 (DTED-1) with 3-arcsec
(� 90 m) postings. The stated objective for its absolute
vertical accuracy e is ‘‘�30 m linear error at 90%
probability’’ (US Geological Survey 1993). Conse-
quently, an error of e meters in the DEM used for the
topographic correction will create an artefactual phase
change of e=ha fringe in the interferogram.

To exclude ground-deformation changes, we avoid
co-seismic pairs spanning main shocks and pairs with
long time intervals. We only list the interferometric pairs
in chronological order such that the successive pairs
share a common image. The total length of the series
should also be as long as possible. These constraints
restrict our choice to interferometric paths where all
pairs have an altitude of ambiguity jhaj > 50 m
(Fig. 2A).

In order to find the optimum among the selected
paths, we consider the accumulated differences of the
vertical baseline components in absolute value of each
path as a function of the accumulated time intervals

(Fig. 2B). The optimum path should span a 14-month
data gap in 1993–1994 and include a relatively large
number of pairs. Our optimal interferometric path
contains p ¼ 6 acquisition epochs. It constitutes our
basis set of k ¼ 5 pairs chosen among the q ¼ 15 pos-
sibilities. Table 1 summarizes the main parameters for
each interferometric pair of this path. Since the worst
pair in the optimial path has jhaj=120 m, we expect
phase errors smaller than 1/4 fringe from topography.

3 Orbit errors

An orbital error vector is usually expressed in the
coordinate system rotating with the satellite and consists
of three components: the along-track, the across-track
and the radial component, as sketched in Fig. 3A. Since
an interferogram is a relative measure, the resulting
error of the first and second orbit at a certain time is
represented by the baseline error vector n (Fig. 4B) that
contributes to the phase error in the interferogram
(Hanssen 2001). The error causes an interference pattern
that we call orbital fringes. They tend to have a constant
gradient in a certain direction. In other words, the

Fig. 2. A ERS SAR data set represented as perpendicular baseline
component versus calendar time since 1 January 1992. For all these
pairs, the altitude of ambiguity in absolute value is jhaj > 50 m.
Reference orbit is 5554E1. For the solid line, we find an optimal
compromise between short B?, short time intervals, number of
interferometric pairs and the shortest interval bridging over the gap of
SAR data at the end of 1993 and in 1994. The dashed path contains
the pair with the longest time interval and is supposed to be calculated

after the orbit adjustment with the improved estimates obtained from
the optimum path. B Cumulative differences of B? in absolute value
versus the cumulative time intervals and the path number. Although
path 2 (bold dashed-dotted line) has the shallowest overall slope, it only
includes three images. Instead, we choose path 3 (solid line) as the
optimum because it includes four images and has the shortest time
interval (20427E1, 10063E1) to bridge over the data gap beween 1993
and 1994

Table 1. Interferometric parameters of the five pairs of our optimal
path. The parameters were calculated from the DEOS prior orbit
estimates. The altitude of ambiguity ha refers to the NR pixel at t0

Pair Orbit Numbers Dt (d) ha (m)

2, 1 10063E1 5554E1 315 )119.3
3, 2 20427E1 10063E1 723 175.0
4, 3 20928E1 20427E1 35 795.2
5, 4 3259E2 20928E1 141 )131.5
6, 5 25437E1 3259E2 174 )154.4
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number of fringes per unit distance does not vary much
over a scene.

For SAR interferometry, along-track errors are usu-
ally accounted for during the co-registration of the two
SAR images (Hanssen 2001) see Fig. 3B. They can also
be regarded as timing errors (Massonnet and Vadon
1995). Consequently, only the radial and across-track
errors propagate into the interferogram, making the
problem 2-D. Errors in radial and across-track compo-
nents both produce orbital fringes parallel to the track.
The fringes perpendicular to the track reveal a variation
of the previous ones or, in other terms, an incorrect
estimate of the radial and across-track velocities. For
correction purposes, it is sufficient to measure orbital
fringes in the radar geometry, that is along distance D
and azimuth A coordinates prior to geocoding (Fig. 3B).
To obtain the fringe gradient inD direction, we count the
relative number of fringes along distance between the
near-range (NR) and far-range (FR) corners. Counting
fringes perpendicular to the track between a point at the
beginning of the SAR acquisition t0 and the end of the
acquisition te yields the fringe gradient in A direction.
Note that the fringes are not necessarily parallel, so that
the fringe gradient can vary between NR and FR and
between t0 and te. This phenomenon is caused by the
baseline vector varying as a function of time during
acquisition when the two tracks are diverging or con-
verging, as illustrated in Fig. 4A. The measure is a
dimensionless fringe count number for distance and
azimuth. To obtain a distance, we multiply the fringe
count by 28 mm, the half-wavelength of the ERS radars.

We want to evaluate the precise orbit products from
DEOS which are frequently used for InSAR analysis. Of
course, our approach also applies to the other ERS orbit
producers such as the German Data Processing and
Archiving Facility (D-PAF) or the restituted ‘ORRM’
orbits provided by the European Space Agency (ESA).

4 Virtual reference trajectory

An orbit error is the difference between a prior estimate
of the actual or true state vector at a certain time and the
actual state vector derived from precise orbit determi-
nation (POD). This error changes artefactually the
satellite-to-ground distance and creates an artefactual
phase signal in the interferogram. Mathematically, the

actual state vector ~rr at a certain time is the sum of the
prior estimate rprior and an adjustment vector dr to be
estimated later.

~rr ¼ rprior þ dr ð3Þ

The relation between the adjustment vector dr and the
interferometric error phase D/ in a pixel is given by

D/ ¼
4p

k
dr � s ð4Þ

or

Dq ¼ �dr � s ð5Þ

where s is the unit vector pointing from the ground point
toward the prior estimate of satellite position, k the
wavelength and Dq the equivalent range change that
would have been observed by the SAR antenna. The
pointing vector s is dimensionless and defined as

s ¼
q

jqj
ð6Þ

where q is the range vector from the ground to the
satellite (Fig. 5). We write the adjustment vector as

drðtÞ ¼ eðnÞdyðtÞ þ eðrÞdzðtÞ ð7Þ

where dyðtÞ (across-track) and dzðtÞ (radial) are the time-
dependent orbital correction parameters in the plane
orthogonal to the trajectory. The unit vectors eðnÞ and
eðrÞ are defined by

Fig. 3. A Three-dimensional sketch of the
along-track, across-track and radial error
bars. B Top view of two converging tracks.
Resolution element p is observed at (t ¼ t1)
from the first track 1, and at (t ¼ t2) from the
repeat track 2. The along-track error is
indicated by the error bars along the track,
(from Hanssen 2001)

Fig. 4. A Quasi-3-D view of the two converging orbits causing a
length change of the baseline vector B and its orientation angle a. The
error ellipses are based on the radial and across-track errors. B The
error vector n, defined by its length and orientation angle b, is situated
somewhere within a confidence ellipse, from (Hanssen 2001)
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eðnÞ ¼
r� v

jr� vj
and eðrÞ ¼

r

jrj
ð8Þ

The ðnÞ superscript indicates the direction normal to the
plane spanned by the r- and v-vector and thus the
across-track direction in the inertial Earth reference
system. The ðrÞ superscript denotes the radial direction.
The velocity vector v of the satellite refers to the same
epoch. Henceforth, we also express the adjustment
vector in the inertial Earth reference system. To estimate
the improved first and second (repeat) passes, we have to
adjust the orbits in such a way that

Dðdr12Þ ¼ dr1 � dr2 ¼ ð~rr1 � r
prior
1 Þ � ð~rr2 � r

prior
2 Þ ð9Þ

Thus, dri is the adjustment of orbit i relative to the state
vector ~rri of the virtual reference trajectory. It yields the
improved state vector of orbit i according to Eq. (3). A
fringe count on an interferogram is always differential
because it represents a change of range change between
two distinct ground points. We write the orbital
contribution to the range change as

dðDqÞ ¼ ðdr1 � s1 � dr1 � w1Þ � ðdr2 � s2 � dr2 � w2Þ ð10Þ

where si and wi are the dimensionless unit vectors of the
two targets pointing toward the satellite in track i. The
data dðDqÞ measure the differential range change along
the line between target s and w. We count fringes along
distance and azimuth to estimate the orbit error
components separately. Building the Jacobian matrix
Jsðy; zÞ with the vector equation, Eq. (7), yields

Jsðy; zÞ ¼
@r

@y
;
@r

@z

� �

¼ ðeðnÞ; eðrÞÞ ð11Þ

This means that the partial derivatives with respect to
the parameters dy and dz are the dimensionless unit

vectors of the across-track and radial error components
expressed in the Earth-fixed reference system. Conse-
quently, the differential range change vector can be
seperated into distance and azimuth components.

We can develop the relation for the differential range
change dDðDqÞ along distance (Fig. 5) to estimate the
across-track error at t0 by applying Eqs. (10) and (11)

dD0
ðDqÞ ¼ e

ðnÞ
1 ðt0Þdy1ðt0Þðm1 � l1Þ

� e
ðnÞ
2 ðt0Þdy2ðt0Þðm2 � l2Þ

¼ e
ðnÞ
1 ðt0Þn1 �e

ðnÞ
2 ðt0Þn2

h i dy1ðt0Þ

dy2ðt0Þ

" #

ð12Þ

with

ni ¼ mi � li

At te we obtain

dDeðDqÞ ¼ e
ðnÞ
2 ðteÞdy2ðteÞðg2 � f2Þ

� e
ðnÞ
1 ðteÞdy1ðteÞðg1 � f1Þ

¼ �e
ðnÞ
1 ðteÞs1 e

ðnÞ
2 ðteÞs2

h i dy1ðteÞ

dy2ðteÞ

� �

ð13Þ

with

si ¼ gi � fi

where m and g are the dimensionless unit pointing
vectors in the two corners at FR and l and f are those at
NR (see Fig. 5).

The same can be rewritten for orbit pairs ð3; 2Þ; ð4; 3Þ,
etc. Applying again Eqs. (10) and (11) to develop the
relation for the change of range change dAðDqÞ along
azimuth to estimate the radial error at NR and FR
yields

dAnr
ðDqÞ ¼ e

ðrÞ
2 ðt0Þdz2ðt0Þl2 � e

ðrÞ
1 ðt0Þdz1ðt0Þl1

� e
ðrÞ
2 ðteÞdz2ðteÞf2 þ e

ðrÞ
1 ðteÞdz1ðteÞf1

¼ �e
ðrÞ
1 ðtoÞl1 e

ðrÞ
2 ðtoÞl2

h

e
ðrÞ
1 ðteÞf1 �e

ðrÞ
2 ðteÞf2

i

dz1ðt0Þ

dz2ðt0Þ

dz1ðteÞ

dz2ðteÞ

2

6

6

6

4

3

7

7

7

5

ð14Þ

and

dAfr
ðDqÞ ¼ e

ðrÞ
1 ðt0Þdz1ðt0Þm1 � e

ðrÞ
2 ðt0Þdz2ðt0Þm2

� e
ðrÞ
1 ðteÞdz1ðteÞg1 þ e

ðrÞ
2 ðteÞdz2ðteÞg2

¼ e
ðrÞ
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Fig. 5. Dual-pass and interferometric configuration for the four
corners l; m; f; g and geometry of the prior state vector adjustment of
orbit 1 at t0. Note that the fringe count sum along the four sides must
be zero
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respectively. The same can be rewritten for the other
pairs.

We seek to find the best linear unbiased orbital cor-
rection parameters dyiðtÞ and dziðtÞ by solving the
functional model equation

Ax� d ¼ �; A 2 R
n�m; x 2 R

m; d; � 2 R
n ð16Þ

according to the Gauss–Markoff model definition (Koch
1999). The data vector d contains our measurement of
fringe count. The residual vector � reflects the measure-
ment errors with the expectation Ef�g ¼ 0. The design
matrix A contains elements according to Eqs. (12), (13),
(14), and (15). The unknown parameter vector x
contains the components dyiðt0Þ, dyiðteÞ or dziðt0Þ,
dziðteÞ. In accordance with the weighted least-squares
(LS) orbit determination problem (Montenbruck and
Gill 2000), the solution is given by the estimation

xlsq ¼ ðATWAÞ�1
ATWd ð17Þ

which indicates that the LS estimate xlsq still differs from
the true value of the parameter vector ~xx in the presence
of measurement errors. Thus we have

dr
lsq
i ¼ r

lsq
i � r

prior
i ; dr

lsq
i � xlsq ð18Þ

The dr
lsq
i estimate is a quasi-absolute adjustment of the

prior state vector of orbit i at time t. The matrix
ATWA 2 R

n�n must be symmetric and positive definite.
The diagonal weighting matrix W contains the squared
inversed measurement standard deviations r1; . . . ; rn.
We apply Eq. (17) twice to estimate the across-track and
radial component separately. For p ¼ 6 acquisition
epochs and the two times t0 and te, we obtain
m ¼ 2p ¼ 12 free parameters for each orbit component.
Equations (12), (13), (14), and (15) yield in each case
n ¼ 2ðp � 1Þ ¼ 10 linearly independent rows because of
Eq. (1). Hence, we have a rank deficiency of
m� n ¼ 12� 10 ¼ 2 for each equation system.

To overcome this, we regularize the solution by
constraining the sum of the adjustment components of
the ith orbit to be zero such that

X

p

i¼1

dyiðt0Þ; dyiðteÞ ¼ 0 ð19Þ

and

X

p

i¼1

dziðt0Þ; dziðteÞ ¼ 0 ð20Þ

respectively. This adds two more equations to each
system, bringing the problem to full rank and making
the two equation systems uniquely solvable
(n ¼ m ¼ 12). We solve them using a singular-value
decomposition algorithm (Schwarz 1997).

Since we obtain two adjustment vectors drðt0Þ and
drðteÞ or four parameters for each acquisition, we can
define two linear functions for each correction compo-
nent

dyðtÞ ¼ a0 þ a1 � t and dzðtÞ ¼ b0 þ b1 � t ð21Þ

with

a0 ¼ dyðt0Þ; a1 ¼
dyðteÞ � dyðt0Þ

te � t0
ð22Þ

and

b0 ¼ dzðt0Þ; b1 ¼
dzðteÞ � dzðt0Þ

te � t0
ð23Þ

respectively. The a1 and b1 terms give the constant
across-track and radial components of the velocity
adjustment vector. Applying Eqs. (7) and (3), we can
estimate improved state vectors for short time intervals
like t 2 ½t0; te�. By utilizing Eq. (18), we can estimate the
error baseline vector n with

n12 ¼ ðrlsq2 � r
lsq
1 Þ � ðrprior2 � r

prior
1 Þ

¼ Blsq � Bprior ’ Dðdr12Þ ð24Þ

which shows that the estimated error vector n12 approx-
imates the true error vector Dðdr12Þ according to Eq. (9).
The term Blsq denotes the improved and Bprior the prior
baseline estimate.

5 Results

First, we calculate the five interferograms using the prior
short-arc orbit estimates containing 10 interpolated state
vectors for an interval of 45 s. Although the SAR data
were acquired on different days, the acquisition starting
time t0 of each day is nearly the same for all passes. To
ensure a complete correlation of both SAR images the
short time interval must be chosen in such a way that it
includes both the acquisition interval (� 17 s) of the first
pass and that of the second pass. To create and
interpolate the 10 state vectors with the 4.5-s time
intervals, we apply a Lagrange approach of 14th order
and use the original orbit files containing state vectors
with 60-s time intervals. We start by counting the fringes
along the two distance directions because the across-
track error is supposed to be greater than the radial one
and causes a higher fringe gradient along distance. Next
we estimate the dyðtÞ components and add them to the
prior state vectors. Then, we recalculate all five inter-
ferograms using the partially corrected short-arc orbit
estimates before counting the remaining orbital fringes
perpendicular to the track. Finally, we estimate the dzðtÞ
components and add the complete adjustment to the
prior state vectors. This two-step process enables a more
reliable and accurate fringe counting and avoids confu-
sion with other fringes, especially in the azimuth
direction. The measured fringe counts for each pair are
listed in Table 2.

To evaluate the uncertainty, we first assume an a
priori standard deviation of 0.1 fringes or 2.8 mm for
each measurement of the fringe count. For simplicity, we
assume a diagonal data covariance matrix, although
measurements in pairs sharing a common image are
correlated. Next, we propagate errors according to
Eq. (17) to calculate the parameter covariance matrix
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Cðxlsq; xlsqÞ ¼ ðATWAÞ�1; C 2 R
n�n ð25Þ

whose diagonal elements yield the standard deviation

rðxlsqj Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cðxlsqj ; xlsqj Þ
q

ð26Þ

of the adjustment component x
lsq
j . The numerical values

of the components and their standard deviations are
given in Table 3 for all six estimates. The mean values of
the across-track and radial standard deviations are
2.4 cm and 4.5 cm, respectively, for the improved
estimates.

Table 4 summarizes the calculated baseline compo-
nents derived from the prior and improved state vectors.
To estimate the error at t0 according to Eq. (24), we use
an independent program of the InSAR processing soft-
ware. We can now estimate the orientation of the error
vector n with

b ¼ arccos
nh

jnj

� �

nv � 0

b ¼ � arccos
nh

jnj

� �

nv < 0

ð27Þ

where b denotes the angle between the error vector and
its horizontal component, as sketched in Fig. 5B.

The standard deviations rBh
and rBv

of the horizontal
and vertical baseline components are

rBh
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2ðylsq1 Þ þ r2ðylsq2 Þ

q

rBv
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2ðzlsq1 Þ þ r2ðzlsq2 Þ

q ð28Þ

The resulting error parameters for each interferometric
pair are listed in Table 5.

We can use our improved estimates to measure the
error in the prior DEOS estimates. Accordingly, we
calculate the RMS value of the n ¼ 12 across-track and
radial correction components with

xrms ¼
1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

j¼1

ðxlsqj � �xxÞ2

v

u

u

t ð29Þ

where the mean value �xx is zero because of Eqs. (19) and
(20), respectively. This reveals 7.3 cm for the across-
track and 2.4 cm for the radial component. These values
are below those of Scharroo and Visser (1998), who
claim RMS orbit differences of 15 cm in the across-track
and 4 cm in the radial direction of the DEOS orbit
solutions.

6 Discussion

Finally, we create the five post-fit interferograms using
the fully corrected, short-arc orbit estimates. To improve
the signal-to-noise ratio, a 2-D weighted power spec-
trum filter (Goldstein and Werner 1998) is applied to
each interferogram. In Fig. 6, we compare the post-fit
interferograms to the pre-fit ones. All post-fit interfer-
ograms show very small long-wavelength gradients,
validating our new orbital tuning approach.

In order to study post- and inter-seismic deformation
fields, we have recalculated pairs (10063E1, 5554E1) and
(20427E1, 10063E1) in the geocoded DEM geometry
using the improved orbit estimates. We are now able to
do the same for the (3259E2, 10063E1) pair which spans
almost 3 years and includes inter-seismic deformation of
geophysical interest. This pair spans a very long time
interval, but was not used in our adjustment. We com-
pare our new orbital tuning approach with the old one
of a ramp removal (Massonnet and Feigl 1998). The
results are shown in Fig. 7.

The later post-seismic interferogram of pair
(10063E1, 5554E1) was first calculated by Massonnet
et al. (1993). It was made by differencing two co-seismic
interferograms, the first composed of images acquired
on 24 April 1992 and 7 August 1992 (Massonnet et al.
1993) and the second composed of images acquired on
24 April 1992 and 18 June 1993 (Massonnet et al. 1994).

Table 2. Measured interferometric fringe counts N in distance (at
times t0 and te) and azimuth (at NR and FR) obtained from the five
interferometric pairs

Pair NDðt0Þ NDðteÞ NAðNRÞ NAðFRÞ

2, 1 )1.667 1.667 1.000 )1.000
3, 2 )0.833 0.833 0.333 )0.333
4, 3 2.167 )1.500 )1.000 0.333
5, 4 )2.500 2.000 1.333 )0.833
6, 5 1.167 )1.333 0.000 0.166

Table 3. Estimated orbit ad-
justment components and their
standard deviations in meters at
t0 and te

i yðt0Þ � ry (m) zðt0Þ � rz (m) yðteÞ � ry (m) zðteÞ � rz (m)

1 )0.375 0.031 )0.030 0.058 )0.413 0.031 )0.062 0.058
2 0.042 0.023 )0.045 0.043 0.007 0.023 )0.044 0.043
3 0.250 0.018 )0.050 0.034 0.216 0.018 )0.042 0.034
4 )0.292 0.018 0.181 0.034 )0.160 0.018 0.169 0.034
5 0.333 0.023 )0.001 0.043 0.342 0.023 0.019 0.043
6 0.042 0.031 )0.055 0.058 0.007 0.031 )0.037 0.058

Table 4. Baseline components at t0 obtained from the DEOS orbit
pairs with prior and improved estimates

Pair B
prior
h (m) Bprior

v (m) B
lsq
h (m) Blsq

v (m)

2, 1 73.25 )14.25 73.67 )14.27
3, 2 )50.70 12.14 )50.50 12.15
4, 3 )04.96 )17.26 )05.50 )17.49
5, 4 86.59 )77.66 87.21 )77.48
6, 5 11.87 132.88 11.58 132.94
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Figure 7a shows the immediate interferogram calculated
with our improved estimates of orbits 10063E1 and
5554E1 and the corresponding SAR acquisitions.

Our improved interferograms show the geophysical
deformation more clearly than previous studies. In
particular, the post-seismic deformation around the
northern third of the Landers rupture zone (Fig. 7j)
stands out prominently. Although we believe that this
signature reflects a poro-elastic effect (Peltzer et al. 1996,
1998), detailed modeling is beyond the scope of this
paper. Similarly, the fringes created by the small thrust
aftershock of 4 December 1992 (Fig. 7k) are now dis-
tinct from the parallel fringes to the northeast of its
epicenter, which presumably recorded (mostly) the co-
seismic deformation from the Landers main shock
combined with (some) orbital effects (Feigl et al. 1995).

7 Conclusions

Our new orbital filtering approach can significantly
improve precise orbit estimates of short arcs of ERS
trajectories in an absolute sense by using interferograms
as measurements of relative position. It can replace the
‘Planar Orbital Tuning’ post-processing algorithm
(Massonnet and Feigl 1998) and might be a useful
technique for assessing the quality of precise orbit
products obtained from conventional POD methods.
Our quasi-absolute approach is, however, restricted to
those orbital passes in which SAR data were acquired.
Our technique is also limited to determining the across-
track and radial components of the orbital trajectory.
Nevertheless, we could use timing errors, for example, to
estimate the along-track error (Massonnet and Vadon
1995) and thus to estimate the complete state vectors.

Another limitation comes from the need to measure
the fringe gradient accurately, a task which becomes
difficult or impossible when the correlation breaks
down. Such ‘temporal decorrelation’ occurs over wet,
vegatated, or other rapidly changing surfaces. Even in
good conditions like those shown here, the fringes

Table 5. Error parameters at t0
obtained from the DEOS orbit
pairs with prior and improved
estimates

Pair jnj (m) nh (m) nv (m) b (	) rBh
(m) rBv

(m)

2, 1 0.42 0.42 )0.02 )2.7 0.039 0.072
3, 2 0.20 0.20 0.01 2.9 0.029 0.054
4, 3 0.59 )0.54 )0.23 )156.2 0.025 0.048
5, 4 0.65 0.62 0.18 17.5 0.029 0.054
6, 5 0.30 )0.29 0.06 165.2 0.039 0.072

Fig. 6. Plate showing the five pre-fit (left column) and post-fit (right
column) interferograms in SAR geometry caculated with the six prior
and improved DEOS orbit estimates. One black-to-white scale
corresponds to one interferometric phase cycle (0, 2p or to (0,
28 mm) of change in the range between the SAR antenna and a
reflector on the ground. The fringe count from black to white is
positive. In the left column (b–e), we clearly see orbital fringes
overlapping with atmospheric artefacts in the bottom of the scene
where the San Bernardino Mountains (SBM) cause rapidly changing
tropospheric conditions. In c (Dt ¼ 35 days), the atmospheric
contribution seems to be very strong. In the right column (f–j), we
find the remaining fringes after applying our new orbital tuning
approach. Figure g–i confirm the strong atmospheric contributions at
and around the SBM. These artefactual fringes remain after having
tuned our orbital adjustments. The topographic contribution of pair
(20928E1, 20427E1) (c) with e=ha ’ 0:04 fringe is negligible, whereas
the ones of the remaining pairs have a small influence

c
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become difficult to count in interferograms spanning
time intervals longer than two years (see Fig. 7c and f).

Furthermore, the technique requires additional care
for co-seismic or co-eruptive cases, where the deforma-
tion field can cover the entire image. In this case, we
must distinguish orbital fringes from deformational
fringes, for example by using a separate model to
parameterize the latter (Feigl et al. 2002). Similarly,
tropospheric fringes spread over long distances can
resemble orbital fringes, as in the pair (20427E1,
20928E1) (see Fig. 6c).

Previous estimates of the ERS orbits are generally
‘global’ measures, since they are based on laser tracking
and altimetric data. In areas without such data (e.g.,
Central Asia or the polar regions), their accuracy is
likely to be degraded. Our estimates, based on local
measurements of fringe gradients under short arcs, are
likely to also depend on location. In this context, an-
other validation test would be to select ERS orbit esti-
mates for which ample tracking data exist. We could
then compare locally over a test site the range calculated

from newly estimated parameters with the range mea-
sured by laser tracking. Unfortunately, we have not
found enough laser tracking data for the six orbits to
perform a reliable error estimate.

Using our new approach to improve ERS trajecto-
ries, we can nearly eliminate orbital fringes in interfer-
ograms of post- and inter-seismic time intervals
spanning more than one year. This permits us to mea-
sure inter-seismic strain fields of about 0.1 mm/km
per yr and range change gradients of about 0.3 mm/km.
Gradients smaller than this value tend to drown into the
noise of topographic contributions or orbital residuals
(� 0:1 fringes). Applying a high-resolution DEM with
an accuracy of better then 10 m would decrease the
noise from topographic artefacts, thereby improving the
SNR of interferograms for the study of inter-seismic
or inter-eruptive deformation fields.
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