
Vol.110 (2) June 2019 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 77

Applying distributed ledger technology to digital
evidence integrity

William Thomas Weilbach and Yusuf Moosa Motara

Abstract—This paper examines the way in which blockchain
technology can be used to improve the verification of integrity
of evidence in digital forensics. Some background into digital
forensic practices and blockchain technology are discussed to
provide necessary context. A particular scalable method of
verifying point-in-time existence of a piece of digital evidence,
using the OpenTimestamps (OTS) service, is described, and tests
are carried out to independently validate the claims made by the
service. The results demonstrate that the OTS service is highly
reliable with a zero false positive and false negative error rate
for timestamp attestations, but that it is not suitable for time-
sensitive timestamping due to the variance of the accuracy of
timestamps induced by block confirmation times in the Bitcoin
blockchain.

Index Terms—Digital forensics, blockchain, evidence integrity.

I. INTRODUCTION

IN the face of an impending financial crisis, an anonymous

researcher, going by the pseudonym Satoshi Nakamoto,

proposed a cryptographic solution to the problem of distributed

trust, also known as “The Byzantine Generals Problem” [1].

This solution, in the form of blockchain technology, was

presented in a paper titled: “Bitcoin: A Peer-to-Peer Electronic

Cash System” [2]. Blockchain technology has emerged as a

significant and potentially revolutionary technology inspiring

a new class of solutions to problems all but forgotten.

The potential applications of blockchain technology are

vast and continue to diversify every day with the emer-

gence of smart contract platforms such as Ethereum [3] and

digital currencies such as Zcash [4]. However, despite its

widespread adoption, blockchain technology remains relatively

unexplored in areas that extend beyond payments and cur-

rency. Blockchains solve a few fundamental issues of trust

by operationally incorporating the properties of immutability

and transparency, and when applied to other problem domains,

these exact properties are equally valuable. One of those

problem domains is the domain of digital forensics: “the

discipline that combines elements of law and computer science

to collect and analyse data from computer systems, networks,

wireless communications, and storage devices in a way that is

admissible as evidence in a court of law” [5].

This paper examines the application of blockchain technol-

ogy to the field of digital forensics. More specifically, it iden-

tifies a particular requirement – proof of existence – within the

field, and independently assesses its application and relevance

in the context of the OpenTimestamps (OTS) system which

could meet this requirement. Given the criticality of digital

forensics in the broader space of cyber crime, is essential that

software such as OTS be tested to provide assurances as to its

reliability and accuracy since it must be assumed that these

Y. M. Motara is with Rhodes University, Grahamstown 6140, South Africa

aspects of digital forensics technology will at some point be

called into question as part of an investigation. It is therefore

necessary to provide a conclusive and vetted explanation of

the proof mechanism to pass peer review.

The paper is structured as follows. Section II describes the

field of digital forensics and argues strongly for the importance

of trustworthy and independently verifiable digital evidence.

Section III then describes blockchain technology and the

properties thereof. Section IV considers the proof-of-existence

problem and is followed by a section that specifically focuses

on OpenTimestamps. Independent testing of this software

follows, and the paper concludes with some discussion and

conclusions.

II. DIGITAL FORENSICS

The digital forensic process, can, at a high level, be de-

scribed by three basic practices: acquisition, analysis, and

presentation [6]. The act of acquiring evidence is the first

step in any digital forensic investigation and can be a non-

trivial task at the best of times [7]. The acquisition phase is

also arguably the most critical in any investigation, as any

error here will naturally propagate to the following phases and

potentially affect the integrity and admissibility of the evidence

as a whole: any issue that adversely affects the admissibility

of digital evidence can cast doubt on entire investigations [8].

A common, and sometimes mandated, practice during the

acquisition phase is the act of hashing evidence [7]. A

cryptographic hash, also referred to as a digest, is a unique,

fixed-length value, generated from any evidentiary artefact of

variable length (the pre-image), that can serve to identify that

piece of evidence. A cryptographic hash is the product of a

one-way deterministic mathematical function through which

data of arbitrary length can be passed to produce a collision-

resistant fixed length representation of that data [9]. A key

property of a hash function is that a minor change in the

input will result in a significant change in the fixed length

output [10]. A second key property is that cryptographic

hashes are computationally infeasible to reverse to determine

a pre-image of a given hash [11]. Hashes are most commonly

used to determine if the evidence has been tampered with

between the time the hash was generated and when the

evidence is scrutinised.

The presentation phase of the digital forensic process in-

volves sharing or presenting the results to a selected audi-

ence, and includes showcasing and explaining the information

concluded from the previous phases. The presentation phase

of an investigation can be, and most likely will be, subjected

to intense scrutiny regarding the integrity of evidence [12].

This is especially relevant if the investigation forms part of a

criminal case. It is, therefore, of paramount importance that

any observations presented be irrefutably backed up by facts

Based on: “Distributed Ledger Technology to Support Digital Evidence Integrity Veri�cation Processes”, by W.T. Weilbach and Y.M. Motara which appeared in
Communications in Computer and Information Science (volume 973). © 2019 Springer International Publishing

Vol.110 (2) June 2019SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS78

derived from evidence of which the integrity can be proved

without a doubt.

III. BLOCKCHAIN

Satoshi Nakamoto proposed the Bitcoin blockchain upon

which all subsequent blockchain implementations to date are

based [2]. Fig. 1 is a simplified visual representation of a

blockchain-type system.

In Fig. 1, there is no starting, or genesis, block, but rather

a sequence of blocks at some point after the genesis block.

It can be seen that one input into a block is the hash of

the previous block. To further improve security, this hash is

combined with a nonce and some arbitrary data items before

it is once again hashed and provided as input to the following

block. A nonce is simply a value used once for a particular

message or operation [13], and is usually a random value [14].

By chaining blocks together like this, it is possible to verify

the data in them, as any change in the data will result in

a change of the hash which will necessarily cascade up the

chain, changing all subsequent block hash values.

To explain general blockchain functionality further, the first

implementation of a blockchain-driven system – Bitcoin – will

be used. Although not all blockchains follow this exact model,

they are all based on the same basic principles.

Blocks are collections of structured data that form a funda-

mental part of the ledger. A “miner” within the system can

“mine” a block – thus obtaining a new block to append to the

chain – by solving a computationally difficult puzzle that is

associated with the latest block in the chain.

The chain is a series of connected blocks. Each block in

the chain contains a collection of transactions, each of which

contains a series of inputs and outputs. Fig. 2 is a high level

view of blocks in the Bitcoin blockchain.

Transactions involve the creation or transfer of value within

the network. Nodes that process transactions in the Bitcoin

network are referred to as miners, and their function is to:

1) collect transactions that are broadcast to the network;

2) add those transactions to the block structure (see Table

I);

3) solve a Proof-of-Work (PoW) puzzle associated with that

block.

Bitcoin, like other forms of currency backed by commodi-

ties and resources, can suffer the effects of inflation should

it be overproduced. Since Bitcoin is completely digital, there

needs to be a mechanism to regulate the amount of Bitcoin

released into the system. If Bitcoins were trivial to create,

it would have little to no value as a store of value, since

any person could simply create vast amounts of the currency.

To combat the effects of inflation, Bitcoin is designed to

be difficult to create through controlled supply, which is

enforced in two ways: by having a finite supply of Bitcoin,

and regulating the rate at which new Bitcoins can be mined.

The Bitcoin generation algorithm defines at what rate currency

can be created and any currency generated by violating these

rules will be rejected by the network.

The Proof-of-Work is another important component of con-

trolled supply as it ensures that the difficulty of finding a

block can be adjusted to compensate for fluctuations in the

network’s aggregate mining power. By adjusting the difficulty

every 2016 blocks – through consensus by all participating

miners – the network can respond to fluctuations in mining

power and ensure that blocks are released, on average, every

10 minutes. The PoW puzzle implemented by Nakamoto [2]

was based on the Hashcash system developed by Back [15].

As the mining power of the network increases, the difficulty of

the PoW puzzle is adjusted to slow the rate of block creation.

The PoW puzzle difficulty is defined by the nBits field (see

Table I) of a block.

To solve a PoW puzzle, a miner must calculate a double-

SHA256 (henceforth abbreviated as “dSHA256”) hash H over

the contents of the block b so that it is smaller or equal to

the target value nBits. Since hash functions are deterministic,

dSHA256(b) will always result in the same output. In order for

a miner to generate different hashes to satisfy the condition,

it must incorporate a random nonce n into the input of

the function such that dSHA256(b ‖ n) ≤ nBits . Once

the condition is met, the puzzle has been solved, and the

miner broadcasts this block, accompanied by the proof, to the

network for confirmation.

PoW difficulty is adjusted by decreasing the nBits value.

The more zeroes required, the more hashing operations the

miner has to perform in order to find a value that satisfies the

condition. This is because there is no way, other than brute-

force, to find a solution with the appropriate number of leading

zeroes [11]. Thus, by solving this PoW, the miner proves that

it has invested an approximate amount of effort at its own

cost toward finding the block, and that it is a willing and

conforming participant in the network.

This ongoing work results in the chain as depicted in Fig. 2.

Due to the distributed nature of the system where many nodes

compete to solve the PoW puzzle, it occasionally happens

that more than one miner solves the PoW for different blocks

at the same time. When this happens, it results in a fork in

the chain; and each node will then accept the first proof it

receives as the correct one and build the chain from that block.

When this happens, the rejected block is called an orphaned

block, depicted in Fig. 2 as the block with dotted borders.

However, transactions that were part of these orphaned blocks

are not lost but are instead rebroadcast to the network for later

inclusion. Miners always work on the longest chain, which

implies the chain on which the most computational effort was

exerted. This is to ensure that there is consensus around which

chain is the correct chain, and to prevent malicious nodes from

altering previous blocks to create an alternative chain.

The exact structure of a block can be seen in Table I. A

Bitcoin block can be up 1024 kilobytes (1024000 bytes) in

size, but no larger. Blocks larger than 1024 kilobytes, are

considered invalid and will not be accepted by the network.

As can be seen from the size allocations in Table I, the header

data for a block (all non-transaction data) can be up to 80

bytes in size, leaving the vast majority (1023920 bytes) for

transaction data. The block structure has a direct effect on the

way in which miners are incentivized to include a transaction,

as well as being important for understanding the way in which

OpenTimestamps reduces its costs.

Transactions are listed in the vtx[] part of the block, and

described more fully in Table II. A transaction must be either

a coinbase transaction or a transfer of value. Each transaction

output is associated with a particular scriptPubkey which spec-

ifies, using a primitive and minimal language, the conditions

under which that output can be spent. Usual conditions include

Vol.110 (2) June 2019 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 79

Fig. 1. A visual illustration of a blockchain

TABLE I
BITCOIN BLOCK STRUCTURE

Field Name Type Size Description

Header

nVersion int 4 bytes The block format version

HashPrevBlock uint256 32 bytes Hash of previous block header

HashMerkleRoot uint256 32 bytes
MR of all

transactions

nTime unsigned int 4 bytes
UNIX-format time stamp of

block creation time

nBits unsigned int 4 bytes Proof of work problem target

nNonce unsigned int 4 bytes
Nonce for solving proof of work

problem

Payload
cnt vtx VarInt 1 to 9 bytes Transaction count in vtx[]

vtx[] Transaction Variable Array Array of transactions

Fig. 2. Example of a Bitcoin blockchain with forks

a way to authenticate the owner of the funds using public-key

cryptography; however, any other scriptable conditions can be

used. The scriptSig part of an input must fulfill the necessary

conditions for an output to be spent. If an executed script does

not return a true value when executed by a node in the mining

network, then the transaction is invalid and is ignored. Both

the scriptPubkey and scriptSig are under the control of the

user and can, compared to other fields, store relatively large

amounts of data [16].

There are economic incentives that explain why miners

choose to mine blocks; there is more to be said about the exact

structure of a block; there is more complexity to be understood

around the increasing difficulty of PoW puzzles; and there is

more depth to be examined relating to the mechanics of block

verification which is covered in depth by [16]. However,

these topics are not directly relevant to this work and have

been elided. Instead, from a digital forensics perspective, what

has been said is sufficient to understand four key properties

of a blockchain: immutability, chronology, redundancy, and

transparency.

Immutability, the lack of ability to be changed, is arguably

one of the most important properties of blockchain systems.

Immutability is not a property on the macro level - as the

chain is constantly changing and expanding when new blocks

are added - but rather on a more granular level as data and

transactions that are embedded in the blocks are unchangeable.

This immutability is conditional and strengthens over time as a

consequence of the design of the system [9]. As newer blocks

form on top of older blocks, the block depth increases and the

ability to change data embedded in that block diminishes. Any

entity that wishes to change some data within a block would

have to change the data in that block and recompute that block

and all subsequent blocks faster than all the other nodes in the

network can. It would therefore be theoretically possible for

multiple nodes to collude to change some data, but this type of

collusion is unlikely and inherently detectable. In the Bitcoin

blockchain, the current block depth to guarantee a permanent

and unchangeable transaction is six-blocks deep [9]. This

immutability means that the public ledger record cannot be

altered to reflect a record that represents a false or fabricated

transaction, and can thus be trusted. The immutability of the

information embedded in the blockchain means that, to any

observer or participant, all information can be considered an

unchangeable and a true record of data over time.

Chronology – the sequential arrangement of events or

transactions over time – is another property of blockchain

design that gives it immense value and utility. Timestamping

is the ability to associate the existence of a certain piece

of information with a specific moment in time [17], and all

blocks contain timestamps [2]. A mining node can reject a

timestamp that is deemed to be too old or in the future,

and timestamps are thus validated by distributed consensus.

Vol.110 (2) June 2019SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS80

TABLE II
BITCOIN TRANSACTION STRUCTURE

Field Name Type Size Description

nVersion int 4 bytes Format version of the transaction

cnt vin varInt 1-9 bytes Count of the entries in vin[]

vin[]

hash uInt256 32 bytes Hash of past transaction (dSHA256)

n uInt 4 bytes
Transaction index in the output of

previous transaction

ScriptSigLen varInt 1-9 bytes Length of ScriptSig

scriptSig Script Variable length
Script that specifies conditions for the

spending of the output

nSequence uInt 4 bytes Sequence number of transaction

cnt vout varInt 1-9 bytes Count of the entries in vout[]

vout[]

nValue int64 8 bytes Amount

scriptPubkeyLen varInt 1-9 bytes Length of ScriptPubkey

scriptPubkey Script Variable length
Script that specifies conditions for the

output to be claimed.

nLockTime uInt 4 bytes

Timestamp indicating the time past

which transactions can be included in a

block

By combining immutability in the form of an append-only

chain and chronology in the form of trusted timestamping,

blockchains give the unique ability to store and verify the

existence of data at a point in time with accuracy.

Redundancy is a further significant property of a

blockchain-based system, and was a key design consideration

in the Bitcoin blockchain [2]. Not only would the system

need to be fault-tolerant to be widely used, but it would also

necessitate the participation of many entities to safeguard the

decentralisation that lies at the core principle of the concept:

trust. Decentralised trust, or the lack of trust in a single entity,

implies that trust is the responsibility all participants and not

that of a governing entity or a subset of privileged entities.

Most blockchain-based systems therefore have incentive sys-

tems and each differ slightly in terms of reward. By having

a completely distributed system with decentralised trust, the

resiliency of the system can be guaranteed for as long as there

is an incentive to participate in the system.

Transparency is the final of the four core blockchain prop-

erties and is more of a functional requirement and not a design

consequence. All transactions need to be broadcast openly

to any entity willing to listen. Furthermore, the information

embedded inside the ledger must be open for all to see and

verify. This is necessary for the Bitcoin system to work as a

distributed financial ledger since transactions are stored instead

of balances. Therefore, to calculate the balance of a specific

address, all the transactions to and from that address need to

be visible.

By combining immutability, chronology, redundancy, and

transparency, blockchain-based systems are uniquely equipped

to address many of the problems associated with trust and

decentralised processing.

IV. PROOF OF EXISTENCE OF DIGITAL EVIDENCE

It is useful, at this point, to summarise the requirements of

the digital forensics community and tie those to properties of

the blockchain.

• Existence. It is important to verify the existence of

digital evidence. The blockchain allows arbitrary data,

including digital evidence, to be embedded within it.

The transparency and immutability of the blockchain can

ensure that the evidence is preserved for as long as the

blockchain itself exists, and that the evidence can be

examined by any party at any time.

• Chronology. It is important to verify that digital evidence

existed at a particular point in time. The chronology of a

blockchain, and the digital consensus around timestamps,

can be used to show this.

• Non-repudiation. It is important that the digital forensics

analyst cannot change a claim that is made. If this were

the case, then the trust that is placed in digital evidence

would rest solely on the reputation of the digital forensics

analyst. The blockchain’s immutability, transparency and

redundancy makes it easy to make a claim that cannot

be repudiated at a later date. This, in turn, ensures that

the claim made before the analysis stage begins cannot

be changed at the analyst’s discretion.

The existence requirement is complicated by two issues:

firstly, the evidence may sometimes be of a private nature, and

may therefore not be revealed to the public; and, secondly, the

evidence may be very large. The second issue ties in directly

with the already-mentioned fact that a larger block payload

is correspondingly more expensive to store in a blockchain.

Both of these issues are addressed by a blockchain times-

tamping services such as Chainpoint [18], proof-of-existence

(PoE) [19] and OpenTimestamps [20].

PoE or blockchain timestamping services embed the hash

of arbitrary data – and not the data itself – into a block. By

using this method, it is possible to permanently embed a small

amount of data into the Bitcoin blockchain; the embedded data

may also be prepended with some marker bytes that makes

searching for such proofs in the blockchain easier. Of the

various PoE services, OpenTimestamps (OTS) is the only one

which is completely open source and transparent, and therefore

Vol.110 (2) June 2019 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 81

the only one which is open to public examination and testing

– both of which are very important for a service of this nature

in the context of digital forensics.

V. OPENTIMESTAMPS

The OTS service consists of server-side and client-side

components that interact, using an open protocol, to per-

form the timestamping of data as well as validate existing

timestamps for which proofs have been received. The client-

side component takes some arbitrary data as input, hashes it,

incorporates that hash into a predefined structure and submits

it to the server-side component via remote procedure call

(RPC). The server-side component then takes the data and

incorporates it into a Bitcoin transaction and submits that

transaction to be processed into the Bitcoin blockchain. The

server then sends a OTS proof back to the client and the

client can, from that point onward, use that proof to verify the

timestamp and the integrity of the data by performing another

RPC call.

In the OTS system, the Bitcoin blockchain acts as notary as

it affords users thereof the ability to create and verify both the

integrity of a document and the approximate date at which

it must have existed. OTS allows any participant to submit

the hash of an arbitrary piece of data to be embedded in a

transaction in the Bitcoin blockchain and to timestamp that

document hash on the blockchain. The accuracy of such a

time stamp is estimated by to be within two to three hours of

the submission date and time [20].

OTS uses “commitment operations” [20] which simply

is a function that alters the function input to produce a

deterministic output. A simple concatenation function such as

a||b = ab is an example of a commitment operation. In OTS,

the verification of an OTS timestamp is the execution of the

sequence of commitment operations and the comparison of

the output to the value stored on the Bitcoin blockchain. OTS

timestamps can therefore be said to be trees of operations with

the root being the message, the edges (also known as nodes)

being the commitments, and leaves being the attestations. The

usage of these terms is not coincidence but rather as a result

of the heavy reliance on Merkle Hash Trees (MHTs) [21] to

support OTS functionality.

A MHT is a data structure that relies heavily on crypto-

graphic hashing for its function and value. The broad purpose

of a MHT is to make the validation of data more efficient,

by providing a way for large amounts of data to be validated

against a single hash value without having to rehash all the

data. It is often used in peer-to-peer protocols to facilitate the

validation of data without having to transfer vast amounts of

data between peers on a bandwidth-restricted network. In this

sense, the purpose of a MHT is to provide a mechanism for

validating large sets of data in a distributed environment with

reduced capacity for data storage, transfer and computation.

Its application in blockchain technology is for this exact same

purpose; and, in fact, it is used by the Bitcoin blockchain

itself, as well as by the OTS application that is built upon the

blockchain.

MHT consist of three basic components:

1) The root, also called the Merkle Root (MR), of which

there is only one per tree

2) The nodes, also referred to as Child Nodes (H), of

which there must be at least two; theoretical there is

no maximum number of Child Nodes per tree

3) The leaves (L) of which there must be at least two;

theoretical there is no maximum number of leaves per

tree

Fig. 3 shows a basic example of a MHT with four leaves,

six nodes and a root. For the purpose of explanation, the four

leaves would be the raw data needing to be verified. This

data is not included in the tree but serves as the basis of

its creation. Theoretically, there can be an infinite number

of leaves, but the number of leaves is usually limited to

avoid long running computation. One level up (level MR-2)

are the nodes, H1 to H4, which are hashes of the respective

leaves (L1 to L4). It is essential to note that these nodes are

hashes (one-way functions) of the leaves but that the actual

hash algorithm is not stipulated. Each use case may call for

different hash algorithms, based on the preference for speed

over security, or vice versa. In the Bitcoin implementation

and other implementations where security of the hash values

(their resistance to collision) is important, hash algorithms,

like SHA256, are used. One level up (MR-1) are the secondary

nodes, which each consists of the hash of the concatenation

(Hxy = Hx||Hy) of its children on MR-2. Finally, on the very

top level is the MR which, like the nodes below it, is a hash

of its concatenated children. It is considered the root as it is

a single hash that incorporates elements of all the leaves. In

this way, a seemingly insignificant change in a single leaf will

propagate up the tree and result in a changed MR. It is clear

that MR can be used to verify the integrity of all of the leaves

independently or as a whole; therein lies the power of MHT

as a mechanism for verification.
By using MHTs, a large amount of arbitrary data can be

hashed into a single MR hash. To verify any leaf on the tree,

its original data, the hashes on its path, and the root hash

needs to be known. This means that not all the leaves need to

be present to be able to validate the integrity of a single leaf,

thereby allowing the MHT to preserve space.
OTS primarily makes use of MHTs to address the problem

of scalability. By using MHTs, OTS can compress large

amounts of data into a single hash by adding individual

hashes as leaves of a MHT. These leaves would then be

collapsed into the MHT root which, in turn, is embedded

into a Bitcoin transaction. This aggregation occurs on OTS

aggregation servers when the OTS client sends the hash of the

desired data to at least two OTS aggregation servers. These

aggregation servers collect all of the different hashes from

different OTS clients, uses them as leaves of a MHT and

computes the MR. This MR is in turn embedded into a single

Bitcoin transaction.
Once a MR for a given set of leaves has been embedded

in the Bitcoin blockchain, verifying any single leaf can be

accomplished by simply replaying a subset of commitment

operations with efficiency O(log2(n)). Fig. 4 serves as a visual

example of a series of relevant commitments to be able to

prove the integrity and existence of data in L2.
Note how, to verify the integrity or the timestamp associated

with the data in L2, only a subset of leaves or nodes need to

be known. This means that many hashes representing large

datasets can be stored within the bounds of a small amount of

blockchain data by aggregating these leaves into a MHT. The

Vol.110 (2) June 2019SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS82

Fig. 3. A symmetric binary Merkle Hash Tree

Fig. 4. A series of relevant OTS commitment operations to verify leaf L2

root of that tree is then stored in a block, and returns only the

commitments necessary to follow the commitment path up the

tree and to the MR.

The OTS timestamp, or proof, is at the core of the OTS

protocol. It is the artefact that enables the verification of a

given attestation. To understand what a timestamp does, it is

necessary to first understand what a timestamp is and what

an attestation is. An attestation, in the context of OTS, is a

statement that some information - a logical file in the case

of the current OTS design - existed in a certain state at a

certain point in time. An attestation is, therefore, time-bound

and content-specific. An attestation is not a proof in any form

but rather a claim, the authenticity of which is proven by an

OTS timestamp.

The timestamp is a series of operations that, when re-

played, provides evidence that the attestation is true for a

particular source file. The source of truth for OTS is the

Bitcoin blockchain, which is demonstrably immutable and

chronological, as discussed in section III Since a timestamp is

essentially just a collection of commitment operations that are

applied to an input message in a specified sequence, replaying

those commitment operations in order is all that is necessary

to verify the timestamp.

An OTS proof thus allows any person or entity in possession

Vol.110 (2) June 2019 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 83

of the original file or an exact bit-by-bit replica thereof, and

the timestamp generated from it, to verify two things without

having to trust a third party: that the file existed in a specific

time window in the past, and that the file’s content remains

unmodified from the time the timestamp was created.

When requested to timestamp a file, the OTS client will

create a hash of the file and submit it to one or more calendar

servers. A calendar server adds the file hash as a node in a

MHT and provides the MR to the client; it thus aggregates

hashes into the MHT. A client can also optionally “upgrade”

their local proof by requesting the relevant MHT path from

the calendar server, thus locally obtaining all the information

that is necessary to verify the data; recall that, for a MHT

to be verified, the user requires the original data, the MR,

and the path through the MHT. After submission the calendar

server submits a binary blob representing the MHT to the

Bitcoin blockchain; after this point, a client can use the verify

operation to verify that the data exists in the blockchain, and

obtain the timestamp of that data. The end result is that a large

number of hashes can be embedded within the blockchain

without incurring a high cost.

A. OpenTimestamps components and trust

To achieve its functional goal, OTS relies on multiple

different components, each built on various technologies. OTS

was designed to strike a careful balance between ease-of-use

and dependencies on systems outside the control of the user.

Due to the nature of OTS and its focus on trust, any system

that is not the Bitcoin blockchain or the end-user system in-

troduces a level of uncertainty and potential risk into the OTS

timestamp system. Simultaneously, OTS tries to be simple to

configure and use to encourage usage; this necessitates that

highly technical components can be abstracted and performed

on behalf of the user to preserve the user experience. This

abstraction leads to the introduction of other systems into the

OTS ecosystem. It is, therefore, important that an exploration

of these systems is undertaken to understand how they impact

the trust placed in an OTS timestamp.

Trust domains – a logical boundary which denotes where

a party’s control of a particular system begins and ends –

are used to better explain OTS components. Recall that OTS

attempts to provide easy and trustworthy proofs by eliminating

the need for a verifier of a timestamp to trust a third party

as trust becomes more fragile as more and more parties are

added to the trust chain. It is worth noting then that the

failure of any one party will cause the complete trust chain

to be broken. This is why OTS attempts to limit the number

of systems to trust to the user themselves and the Bitcoin

network; essentially, this means dealing with only two trust

domains. It is therefore useful to begin by designating three

trust domains for explaining various OTS components:

1) SELF: trusted users of OTS and systems in their direct

control

2) BTC: the Bitcoin network and blockchain

3) OTHER: neither SELF nor BTC

Ideally, instances where OTHER is trusted need to be

avoided where possible. In cases where OTHER cannot be

avoided, it is essential to understand how OTHER functions,

what protection it provides, and what degree of trust can safely

be placed in OTHER without completely compromising the

trust of the OTS timestamp.
The OTS client is one of the main components in the SELF

trust domain, as it is controlled by the user and runs on systems

under their control. The libraries and code embedded in the

OTS client to interact with the Bitcoin blockchain are therefore

also included in SELF trust domain.
The Bitcoin network is the only other essential and neces-

sary component of OTS and resides in the BTC trust domain.

This domain is considered trustworthy in as far as the Bitcoin

network is trusted, underpinned by the resiliency and trust

mechanisms which have been discussed previously.
Calendar servers are the only other significant OTS com-

ponent that potentially fall within the OTHER trust domain.

Calendar servers are used to centralise, simplify, and speed up

the creation of timestamps at the cost of delegating some trust

to the OTHER domain. These are used to provide aggregation

services, blockchain interactions services and attestation ser-

vices for users who choose to, or cannot, run these services

locally. Note that the use of calendar servers is not required

and that OTS, if configured to do so with the installation of

the necessary Bitcoin services, can directly interact with the

Bitcoin blockchain to create and verify timestamps.
Calendar servers are not necessarily in the OTHER domain

since they can be run privately by the user if they choose to

centralise the aggregation and blockchain interaction within

the SELF trust domain. One may, for example, think of a

company providing OTS calendar servers as part of a private

OTS notary service.
The default OTS configuration, as used for illustrative

purposes in this work, relies on three public calendar servers:

• https://a.pool.opentimestamps.org Alias: https://alice.btc.

calendar.opentimestamps.org

• https://b.pool.opentimestamps.org Alias: https://bob.btc.

calendar.opentimestamps.org

• https://a.pool.eternitywall.com Alias: https:

//finney.calendar.eternitywall.com

These public calendar servers are maintained by the creators

of OTS and are used by default in OTS to allow the easy

creation of OTS timestamps by foregoing the need for the

user to install, configure and maintain a local instance of the

necessary Bitcoin software to interact with the blockchain.

The installation and maintenance of a full local Bitcoin node

can be a daunting task to potential users of OTS, and thus is

delegated away from the user and presented as a service in

the form of calendar servers. The complexities of configuring,

maintaining, and securing a full Bitcoin node is not within the

scope of this work.
By using a combination of the defined trust domains and

the technology dependencies of OTS to be able to perform

timestamps, three distinct configurations (A, B and C) are

defined, two of which can be considered fully-trusted (Only

SELF and BTC trust domains involved) and the other semi-

trusted (SELF, BTS and OTHER trust domains involved).

These are illustrated in Table III.
Configuration A, being fully trusted, is depicted in Fig. 5.

This configuration requires that user install and run the neces-

sary Bitcoin software on the local environment to enable the

OTS client to interact directly with the Bitcoin network.
The configuration depicted in Fig. 5 would require increased

effort to configure and run, as all the components would have

Vol.110 (2) June 2019SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS84

Fig. 5. Major components of OTS in trust domains for Configuration A

TABLE III
RELEVANT TRUST DOMAINS PER CONFIGURATION OPTION

Trust Domains

SELF BTC OTHER

C
o

n
fi

g
. A TRUE TRUE FALSE

Fully-trusted
B TRUE TRUE FALSE

C TRUE TRUE TRUE Semi-trusted

to be installed by the user. Additionally, this configuration

would also carry a cost to the user, since they would be

responsible for the transaction fees required to perform the

Bitcoin transaction. It is therefore implied that the user would

have to have a Bitcoin wallet and a positive Bitcoin balance

to successfully interact with the Bitcoin network.

Configuration B, also being fully trusted, is depicted in

Fig. 6. This configuration extends the functionality of Con-

figuration A outside the scope of the local system by using a

private calendar server. This configuration requires that users

install and run a calendar server, as well as install and run the

necessary Bitcoin software on the calendar server to enable

the OTS client to interact with the Bitcoin network.

By using Configuration B, multiple OTS clients in the SELF

trust domain can create and upgrade timestamps without each

having to install and run the required Bitcoin services. As

with Configuration A, Configuration B would require more

effort and skill to configure and maintain while also carrying

a cost, in the form of transaction fees, for performing Bitcoin

transactions.

Finally, Configuration C, depicted in Fig. 7 is semi-trusted

as it includes the OTHER trust domain by making use of

public calendar servers. The configuration of C is very similar

to B in terms of the required components, the only design

change is the fact that the calendar server moves from the

SELF to the OTHER trust domain.

By using these public calendar servers, the OTHER trust

domain is included in the complete trust chain, and therefore

can be considered to be the least trustworthy use case for OTS.

It was thought prudent to discuss this configuration, as any

other configuration that does not make use of public calendars

will be inherently be more trustworthy, and will therefore

only increase the confidence level of the OTS timestamp.

Essentially, from a trust and complexity perspective, the worst

case scenario for OTS is evaluated. OTS strikes a careful

balance between usability and trust, by giving the user the

choice of placing their trust only in themselves and the Bitcoin

blockchain, or delegating some trust to external OTS systems

not controlled by them.

The lifecycle of an OTS timestamp depends heavily on

the OTS configuration, since it will determine which systems

come into play to create and verify the timestamp. Going

forward, the lifecycle of a timestamp is discussed, given OTS

is configured as depicted in Fig. 7.

Local dependencies for Configuration C are:

• OTS client: For creating and validating the timestamp and

interacting with the public calendar servers.

• Bitcoin node: For verifying the block header in the

timestamp.

The above mentioned Bitcoin node can be a pruned node. A

pruned node is a node which can function without storing the

complete blockchain history with all blocks. A pruned node

works by keeping a configurable cache of the latest blocks

(specified in MB), thus saving space [22].

Remote dependencies for Configuration C are:

• Public calendar server(s): For timestamp aggregation and

interacting with the Bitcoin network.

• Bitcoin network: For storing the data that enables the

OTS proof mechanism.

B. OTS functions

A detailed description of the processes and systems involved

in each of the core OTS functions will now be presented.

1) Stamping: When stamping a file, the OTS client gen-

erates a SHA256 hash H of the target file. A MHT is then

constructed with H to produce a Merkle Root (MR). In the

case of a single file being timestamped the values of H and

MR will be the same, since a MHT with only one value will

be the value of the only leaf. If multiple files are timestamped

at the same time, the OTS client performs a round of local

aggregation by constructing a MHT from the H values of all

the files being timestamped to produce a value for MR.

Vol.110 (2) June 2019 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 85

Fig. 6. Major components of OTS in trust domains for Configuration B

Fig. 7. Major components of OTS in trust domains for Configuration C

Vol.110 (2) June 2019SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS86

When calculating the MR value, the OTS client appends a

random nonce n to the H value of each file. The purpose of

this nonce is to preserve privacy, since the MR will be sent

to an untrusted public calendar server. The nonce process will

be explained in more detail later.

Once the MR value has been derived, an OTS RPC call

is made to all the nominated calendar servers supplying the

hexadecimal encoded string MR value to the digest endpoint.

This call is a REST-based web service call over HTTPS and

would look similar to the below:

https://[calender server URL]/digest/[hex encoded MT

value]

Once the calendar server receives the MR value it performs

some validation on the length and structure of the MR value.

Upon completion of the validation, the calendar server then

performs its own aggregation function by incorporating the

MR value into another MHT with all the MR values received

from other clients. As mentioned before, this is necessary to

make the solution scalable and keep costs low by aggregating

many hashes into a single MHT, the MR of which will be em-

bedded into a single Bitcoin transaction as an OP RETURN

opcode.

Depending on the extent of local and remote aggregation,

OTS effectively creates nested MHTs where the root of one

MHT becomes a leaf in a higher order MHT. This can

theoretically be done an infinite number of times to create

a single MR from an infinite number of leaves.

Since the calendar server might take some time to aggre-

gate other timestamps and complete the Bitcoin transaction

and wait for it to be verified on the blockchain, it cannot

synchronously provide the complete proof because the com-

plete timestamp does not yet exist. In lieu of the complete

timestamp, the calendar server returns a reduced timestamp

which is essentially a commitment that it guarantees it will

incorporate the submitted timestamp into a future transaction

and return a full timestamp at that point. This is one of

the primary examples where trust is placed squarely in the

OTHER domain. A malicious calendar server may provide a

commitment but discard the timestamp.

It is for this reason that OTS allows the user the ability to

submit to multiple calendar servers at the same time while

specifying that m of n calendars should return a positive

commitment before considering the timestamp submitted. A

user also has the ability to provide a whitelist of calendar

servers that will be used by the client. If none of those

calendars are available, or if the m of n minimum is not met,

the timestamp will be considered failed.

Once the incomplete timestamp is received from the calen-

dar server, the OTS client saves the timestamp to the same di-

rectory as that of the original file. The returned timestamp will

contain the relevant commitment operations and a timestamp

identifier for each calendar server that committed to submitting

the timestamp.

Once this has been performed the stamp process is com-

plete, albeit with a reduced or incomplete timestamp.

2) Info: The simplest of all the OTS functions is the

Info function which takes any timestamp as input, parses

the commitment operation contained within it and presents

them in a legible way to the user. This function is useful

if there is a need to see the commitment operation of a

particular timestamp or to see if the timestamp is correctly

formatted, as any small change in the timestamp will result

in a complete parsing failure. The Info function can also be

used to determine if a timestamp is complete or if an upgrade

request needs to be sent to the calendar server to retrieve the

complete timestamp. The Info function operates only locally

in the SELF trust domain.

The Info function does not perform any verification of the

commitment operations of the timestamp, but only the integrity

of the structure of the timestamp.

3) Upgrade: The Upgrade function attempts to upgrade

any given incomplete timestamp to a complete timestamp by

requesting the complete timestamp from the relevant calendar

server(s). A complete timestamp is a timestamp that is locally

verifiable without the need to contact a calendar server. Similar

to the Stamp function, the Upgrade function needs to interact

with a calendar server in the OTHER trust domain, as only

the calendar server has the ability to interact with the Bitcoin

blockchain. The mechanism for interacting with the calendar

server is also very similar, to the digest call, and is performed

via an OTS RPC call over HTTPS to a REST endpoint called

timestamp:

https://[calender server URL]/timestamp/[timestamp iden-

tifier]

If the timestamp has been completed by the calendar server,

the complete timestamp is returned synchronously to the OTS

client as a downloadable binary .ots file. Once the OTS client

verifies the structure of the timestamp, it proceeds to create a

backup of the original incomplete timestamp before appending

the .bak extension to it, and merging the complete timestamp

into the existing .ots file. The OTS client also confirms in the

CLI that the timestamp has been upgraded and that it is now a

complete timestamp which can be validated locally if a Bitcoin

node is present; it then no longer requires interaction with the

calendar server.

In the case where an upgrade request is made to a calendar

server and the timestamp is not yet complete or was not

found on the calendar server, the appropriate message is

returned synchronously to the OTS client. Incomplete but

found timestamps can again be requested at a later stage by

the OTS client.

4) Verify: Verification is the final OTS function, and pro-

vides an OTS user the most value by validating the saved

timestamp through replaying its commitment operations and

verifying the result against the state of the current file. Since it

is essential that a very good understanding of how this verifica-

tion works is obtained, a portion of a manual verification based

on the commitment operations contained in the timestamp is

conducted.

It is important to note that verification does not necessarily

require any interaction with a calendar server if the timestamp

has been upgraded. Since verification is such a sensitive and

critical operation, OTS was designed in such a way as to

ensure it does not require interaction with the OTHER trust

domain.

Verification does require that the OTS client be able to

query the Bitcoin blockchain for block headers, since the

timestamp ultimately points to the block header which contains

the transaction which contains the MR derived from the file

hash. Verification is performed between the OTS client (SELF)

and the Bitcoin blockchain (BTC), by using a locally running

Bitcoin node. In the scenario where access to a local Bitcoin

Vol.110 (2) June 2019 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 87

node or one in the SELF domain is not possible, the timestamp

can still be verified by contacting the calendar server, however

that necessarily weakens the proof as the OTHER domain is

involved in attesting to the validity of the timestamp.

There is a significant difference in size and complexity

between an incomplete timestamp and a complete timestamp.

This difference is a direct result of the Upgrade function, since

the entire timestamp and all relevant commitment operations

have been retrieved from the calendar server. This would

include commitment operations for local aggregation, calendar

server aggregation, and the Bitcoin transaction itself.

Note that although there may be multiple distinct com-

mitments, due to the initial timestamp being submitted to

multiple calendar servers, the complete timestamp only needs

to be retrieved from a single source. Retrieval of the complete

timestamps from other sources is pointless since a single valid

timestamp is sufficient to perform local verification. Verifica-

tion results in attestation, which is a statement that confirms

that a particular block, with a particular block creation time,

does contain the specified timestamp.

Below is a step-by-step walkthrough of exactly how a times-

tamp is verified, and how it is possible to make an attestation.

For the sake of brevity each commitment operation in the

complete timestamp will not be manually reproduced. Rather,

select examples will illustrate how that can be done. Since

the hashes can become very long, the example hexadecimal

data below has been rendered using ASCII85 encoding [23]

to reduce the amount of space required for display.

1) Compute the SHA256 hash of the data.
A=JKI*drCOFmd:PVZ:JOPJf¡!.=;BT’e!ˆNa¿Xi+

When run from the command-line, the first step the OTS

client performs is to look up the original file based on

the timestamp name. If the file is found in the same

directory, it performs a SHA256 hash of the file. This

hash value serves as the starting point for the timestamp

verification and is the first commitment in a series of

commitments.

2) Local noncing.
A=JKI*drCOFmd:PVZ:JOPJf¡!.=;BT’e!ˆNa¿Xi+Yt4S:fY@b(7ˆ89&¿,ˆ5n

Due to the privacy concerns of sending the hash of a

potentially sensitive file to an untrusted calendar server,

the OTS client appends a 128bit random nonce.

3) Re-hashing after noncing.
]e#&“K”12@¡))0tc6AkP,ˆC.U+7W%“;8uOB(’(]L

The concatenated value is then hashed again. This hides

the nonce from being viewed by any other party. The

user must retain the nonce value to be able to prove that

the calendar server has committed the stated data.

4) Submission and time encoding.
=jtVL’tc5!jci7HCeH!82D“j”kN92?H=B˙p0g’ai%˙Kbf

The value is now sent to the calendar server, which

prepends the system time on the server. This value is not

reliable since it is entirely dependent on the system clock

of the calendar server and the trustworthiness of the

calendar server. Nevertheless, it gives some indication

of when a submission may have been made.

5) Method authentication code.
=jtVL’tc5!jci7HCeH!82D“j”kN92?H=B˙p0g’ai%˙Kbf:t+#&:jIIg

The server then generates a hashed message authentica-

tion code (HMAC) based on the time and a secret key

that the server holds. This HMAC can be used to state

authoritatively that a particular calendar server handled

the message. The HMAC is appended to the message.

6) Re-hashing and reply.
¡]5)‘c”KdU.KeiS2)00O+nA#@TD;R3)r$NlY0rT1

The value is now hashed again, using SHA256, and

the entire sequence of operations (including prepended

value, appended value, and hashed result) are send back

to the client. The client is free to re-calculate the hashed

result using the prepended and appended values that

are supplied to it. The hashed result is what will be

aggregated into the MHT, the Merkle Root of which

will be entered into the blockchain.

When submitted as a transaction to the Bitcoin network, one

input and two outputs will be seen. The first input and output

are used to provide a transaction fee, and thus incentivize

miners to include the transaction. The second output stores

the MR within its scriptPubkey field (see Table II), and

precedes it with a Script instruction that makes it provably

unspendable under any circumstances. The entire transaction

is approximately 150 bytes, which provides a further incentive

to miners to include it since it does not take up too much

valuable space.

An upgraded timestamp provided by the calendar server will

include the submitted hash, all of the necessary hashes that

lead up towards the MR, and the transaction hash that uniquely

identifies the transaction on the blockchain. It is then possible

to look up the transaction on the blockchain independently of

the calendar server and verify that the provided operations

and hashes do lead up to the blockchain-stored MR. The

OTS client does this as part of its verification functionality.

It is important to note that the attested time that the OTS

client gives is, in fact, derived from the nTime field of the

transaction’s block, and not related to the prepended time used

by the calendar server.

By trusting the Bitcoin network with its inherent integrity

and immutability, assurance is established that this timestamp

cannot be forged and that the contents of the block also cannot

be forged or altered. And since the file hash indirectly exists in

a confirmed transaction output script in that block, it is known

that the file that produced that hash must have existed on or

before the stated date.

VI. TESTING

Testing of two aspects of OTS was conducted in order to

verify its usefulness in a digital forensics context: the timing

and accuracy of the timestamping, and the failure rate of

OTS. Data on the former was obtained by using the OTS

client to stamp, submit, upgrade, and verify timestamps, and

noting how long each of these operations took. The failure rate

was obtained by intentionally tampering with OTS artefacts to

create invalid files and timestamps, and attempting to verify

them using OTS.

Data gathering lasted for 34 days, from 5 September 2017

up to and including 8 October 2017. OTS timestamps were

created, upgraded, and verified every 10 minutes, resulting in

a data set of 4 702 unique files, their timestamps, timestamp

results, and operational metadata. These were then analyzed

to derive the following values:

Vol.110 (2) June 2019SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS88

• tStamp: the time in seconds that it takes to create a

timestamp and get a commitment from the calendar

server, including local processing time.

• tUpgrade: the time in seconds that it takes to upgrade

a timestamp to a complete timestamp, including local

processing time.

• tVerify: the time in seconds that it takes to verify a

timestamp, including local processing time.

• tAccuracy: the time difference in seconds between the

time the timestamp was completed (timeToUpgrade as

dipicted in Fig. 9) and the time attestation received by

the Bitcoin blockchain as per the OTS verify operation.

Supplementary to the base data set, some metadata about

OTS operations was captured by calculating the start and end

times of each OTS operation performed by the script. These

measurements aimed to accurately measure the execution time

of these OTS operations. Initially, this was simply for potential

troubleshooting, but it became clear that having a data set of

OTS operation times could be valuable and that this data set

was also analysed. The times taken to verify operations (Verify-

OperationTime) and stamp operations (StampOperationTime)

were recorded.

A final data set was gathered pertaining to the failure rate of

OTS. The data set was generated by intentionally tampering

with OTS components to induce invalid files and timestamps

and reverifying them using OTS. Modification and validation

were performed using a Python script, which also recorded the

results. The script enumerated all of the previously generated

files and timestamps, and alternated between modifying the

files, or the associated timestamp, by appending a few fixed

bytes. By intentionally breaking the timestamps, or modifying

the files in known and consistent way, more insight into

potential false positive and false negative results from the OTS

Verify function can be gathered.

Using the above-mentioned data sets, more in-depth analysis

was performed on each data set to highlight trends, issues and

other potentially significant facts.

A. Data analysis

For each of the tStamp, tVerify, tUpgrade, and tAccuracy

metrics, an average, minimum, maximum, and standard devi-

ation was calculated. These values are listed in Table IV.

All of the measurement values in Table IV are rounded

up to two decimal places. These values will henceforth be

referred to by concatenating the names of the relevant row

and column, e.g. the Average (A) timeToUpgrade (tUpgrade)

will be denoted by A-tUpgrade.

The time to create a complete timestamp has been visu-

alised in Fig. 9. On the x-axis is the creation time of the

timestamp (proofCreatedTime), and the time the proof was

created (timeToStamp) is on the y-axis. Additionally, there is a

calculated moving average per 144 data points (1 day) to assist

in visualising the timestamp completion-time without some of

the outlier values. The overall average for timeToUpgrade (A-

tUpgrade) is 3 563.04 seconds, as can be seen in Table IV.

Similarly, Fig. 11 shows the timestamp accuracy. Timestamp

accuracy is defined as the difference in time between the point

the timestamp was created (the known time data existed and

was committed), and the time verification can attest the data

first existed. This is used to measure accuracy as it shows

how precise OTS attestations are for a sample with a known

creation data.

A moving average over 144 data points is also calculated

and shown in Fig. 11 to account for outliers with the overall

average A-tAccuracy being 2687.64 seconds. Both of these

metrics visualised in Fig. 9 and Fig. 11 are relevant to

the responsiveness and performance of OTS within the test

environment.

Another aspect of OTS performance is the time it takes

to perform individual granular functions. Granular functions

refer to the actual time taken to perform a single operation,

i.e. Stamp or Verify. Previous measurements were related to

the time between multiple operations i.e., Stamp and Verify.

The following data set relates to the time it takes to perform

individual functions or the time it takes for OTS functions to

deliver a requested result.

Granular execution times were recorded for OTS functions:

• tStampG: Stamp (All stamp actions including RPC call

to remote calendar).

• tVerifyG: Verify (All verify actions including RPC call to

local Bitcoin node)

Table V shows a summary of a few metrics about execution

time of specific OTS operations that were measurable as part

of the testing design.

All values in Table V are measurements of seconds taken,

rounded up to two decimal places. As with the preceding data

sets, the sample covered all of the files created during the test

window.

The final piece of analysis was performed sought to evaluate

the error rate of the OTS Verify function. The Verify funtion,

as stated previously, is the most critical of all OTS operations

as it is the mechanism by which OTS delivers the attestation

result. It is also likely that Stamp and Upgrade may only be

executed once for any particular file, but that Verify might be

executed many times throughout the relevant life of the file.

Table VI shows a summary of the results of this analysis

phase.

VII. DISCUSSION

1) Observations and interpretation: In this section, the

results of the various analyses performed in Section VI-A are

discussed and key observations are drawn from the results.

a) Performance and timing: Looking at Table IV, A-

tStamp execution time is 2.13 seconds on average, with a

minimum execution time (Mi-tStamp) of 1.18 seconds and a

maximum execution time (Ma-tStamp) of 4.98 seconds; this

is particularly significant and will be elaborated on further in

the following section. It should be reiterated at this point that

the actions in tStamp includes the hashing of the file, noncing,

RPC call to a remote calendar server, and the response written

to the local disk. Lastly, the standard deviation at (S-tStamp)

is 0.34 seconds, showing a tight clustering around the mean,

and demonstrating consistency under test conditions. These

values tend to be low and consistent as the Stamp operation

only submits the timestamp to the calendar server and there

is no interaction with the Bitcoin blockchain at this point.

Higher values for tStamp can be expected for larger files, since

the SHA256 hash calculation will take longer. The size of

files however, will have no noticeable effect of the RPC call

Vol.110 (2) June 2019 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 89

TABLE IV

AVERAGE, MINIMUM, MAXIMUM, AND STANDARD DEVIATION

tStamp tUpgrade tVerify tAccuracy

Average (A) 2.13 3563.04 9.40 2687.64

Minimum (Mi) 1.18 600.92 1.36 21.90

Maximum (Ma) 4.98 25208.67 72.79 24568.47

Standard Deviation (S) 0.34 3105.17 7.66 3074.74

Fig. 9. Time, in seconds, to complete a timestamp relative to the date and time the timestamp was created.

Fig. 10. Overlay of average block confirmation time from [24] onto Fig. 9

Vol.110 (2) June 2019SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS90

Fig. 11. Accuracy of a timestamp, in seconds, relative to the date and time the timestamp was created.

TABLE V
GRANULAR OTS FUNCTION EXECUTION TIME

tStampG tVerifyG

Average (A) 2.11 0.26

Minimum (Mi) 1.22 0.16

Maximum (Ma) 8.67 13.64

Standard Deviation (S) 0.50 0.23

and response as the data being transferred is a fixed-length

SHA256 hash.

With regard to tUpgrade, A-tUpgrade is shown to have

a much larger value at 3 563.04 seconds; this represents

the time between two asynchronous, but related, operations.

Mi-tUpgrade is measured at 600.92 seconds, representing an

instance where the timestamp was upgraded to a complete

timestamp in approximately 10 minutes. The actual time to

upgrade to a complete timestamp could actually be an even

lower value, but due to the test script execution scheduled ev-

ery ten minutes, the best-case scenario would be 600 seconds

plus some processing time for the RPC call. Ma-tUpgrade is

high at 25 208.67 seconds or approximately 7 hours. High

values like these are a side-effect of slower Bitcoin network

performance and higher block confirmation times, as shown in

Fig. 10, where the six hour moving average block confirmation

time for the same period is displayed on top of the data set.

With an average block confirmation time of 10 800 seconds,

approximately the same time of Ma-tUpgrade, it is entirely

possible that Ma-tUpgrade could have even higher values as it

may have been included in a block with a higher than average

block confirmation time. S-tUpgrade, at 3 105.17 seconds, is

close to the value of A-tUpgrade, and shows more variation,

but none the less, consistent with times of operations between

only the OTS client and public calendar servers.
tVerify, being the time it takes to verify a timestamp

inclusive of local processing time, has an average value (A-

tVerify) of 9.40 seconds; a minimum value (Mi-tVerify) of 1.36;

and a maximum value (Ma-tVerify) of 72.79 seconds. The

standard deviation (S-tVerify) is 7.66 seconds, showing as with

other, primarily local operations, a close clustering around the

mean and consistent performance. The slightly higher value of

tVerify compared to tStamp, which is also a local operation,

can be attributed to the fact that, during the Verify function,

all of the commitment operations in the complete timestamp

need to be replayed and the result verified against the local

Bitcoin node.
The value of tAccuracy is referred to as the timestamp

accuracy, and is a measurement of the time difference between

the time the initial timestamp commitment was received from

a remote calendar server (the date and time the attestation

was requested), to the time the Bitcoin blockchain can attest

the data existed. The shorter the time span, the more accurate

the timestamp attestation can be considered. Accuracy is very

closely tied to the block confirmation time, as noted in Section

V-A, and thus heavily influenced by the Bitcoin network per-

formance. A-tAccuracy is 2687.64 seconds, which is slightly

lower than A-tUpgrade, as it excluded any lag induced by the

script execution timing. Ma-tAccuracy is 24 568.47 seconds

and Mi-tAccuracy is 21.90 seconds, both close to but slightly

less than Ma-tUpgrade and Mi-tUpgrade. Mi-tAccuracy, at

21.90 seconds, is an example of where a timestamp was

requested from the remote calendar server close to the end

of its aggregation cycle and transaction creation in the Bitcoin

blockchain. It is also clear that the block confirmation time

around the submission of transaction containing the data from

Mi-tAccuracy would be very short. Mi-tAccuracy was commit-

ted to the calendar server at 17/09/17 02:20:04, incorporated

Vol.110 (2) June 2019 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 91

TABLE VI
ERROR RATE OF VERIFY FUNCTION

Pre-

modification

result

Post-

modification

resultNumber of

files tested True False

Modify

action True False

False positive

result

False negative

result

2351 2351 0
Modify

file
0 2351 0 0

2351 2351 0
Modify

timestamp
0 2351 0 0

into the aggregated MHT of which the root was incorporated

into a Bitcoin transaction shortly afterward. This transaction

was contained in a block which was confirmed by 17/09/17

02:20:26. This very low block confirmation time is supported

by the data in Fig. 10, which indicates that the average

block confirmation time at its approximate creation time was

about 500 seconds. S-tAccuracy is close to A-tAccuracy which

indicates similar clustering around the mean to S-tUpgrade.

tStampG and tVerifyG are very granular measurements of

the OTS functions without local processing time performed

by the script like file creation or enumeration. A-tStampG, at

2.11, is slightly lower than A-tUpgrade, indicating a script pro-

cessing time overhead of 0.02 seconds. Similarly, A-tVerifyG

shows very fast execution times of 0.026 seconds as a result of

it being a local operation between the OTS client and the local

Bitcoin node. S-tStampG is very low, at 0.50 seconds, showing

very tight clustering around the mean and very consistent

performance. S-tVerifyG is close to A-tVerifyG, which indicates

slightly less consistent execution times than that of A-tStampG.

In Fig. 11, there is an instance between the dates 05/10/17

00:00:00 and 06/10/17 00:00:00 of an apparent cascading

effect from very high y-axis values to lower values, with

fixed intervals on the Y-axis. This cascading effect, along with

others on Fig. 11, can be explained by slow block confirmation

times during those dates. Regardless, the script that created the

file and submitted the timestamp executed every 10 minutes

irrespective of the Bitcoin network performance. This means

that as the calendar server aggregates timestamp and waits

for a block to be confirmed, multiple timestamps could have

been submitted to it. Since the calendar server timing is

subject to the block confirmation and the testing script is

not, there is a backlog of timestamps being created on the

calendar server when block confirmation is delayed. When

the block confirmation finally occurs, all of these backlogged

timestamps, created over a long time span, are included in the

next block. Since this block now contains timestamps created

over a matter of hours, ten minutes apart, but has a single

confirmation time, the time difference between submission

and attestation of the first timestamp submitted is very high

and gradually gets smaller for each subsequent timestamp.

Looking at Fig. 11, it can be seen that the y-axis values cascade

down at intervals of approximately 600 seconds (10 minutes)

is indicative of the testing script executing and submitting a

new timestamp every 10 minutes. This explanation is further

supported by Fig. 10, which clearly indicates higher average

block confirmation times around these instances of cascading

values.

b) Errors: A very important aspect of this research

relates to identifying error rates of OTS as a protocol and

implementation. Without known error rates, it is difficult to

gauge the level of confidence one can have in OTS. As such,

errors rates will be discussed from two perspectives:

• Verification errors: Errors in the verification of valid OTS

timestamps.

• Creation errors: Errors in creating a complete OTS times-

tamp.

Verification errors are the most serious of potential OTS

errors, as they indicate that the verification operation does

not return a truthful or accurate result. Since the use case for

OTS is to reliably get accurate attestations as to the integrity

and timestamp of a particular file, any error in this process

should be considered serious. Errors in the verification process

undermine the fundamental purpose of OTS, and high error

rates would indicate that OTS cannot be trusted.
OTS verification was tested extensively over the entire test

sample. Exactly half of the test sample (2 351), previously

validated, was modified by appending a few fixed bytes to the

original file. The other half were modified by appending the

same fixed bytes to the timestamp associated to the file. In

this way, the error rates for invalid files or invalid timestamps,

both of which should result in an outright failure to verify,

were tested.
Errors during this testing could fall into one of two cate-

gories: false negative or false positive. False negative results

are results where a valid combination of file and timestamp

resulted in a failure to verify. False negative results would

indicate that either the file integrity was compromised, or the

timestamp changed when it was not the case. False positive

results are results where an invalid combination of file and

timestamp (either modified) resulted in a positive verification

result, indicating that the file integrity is sound or that the

timestamp is valid when it is, in fact, not the case. A false

negative result would result in OTS users trusting files and

attestations that are not correct.
As can be seen in column 5 in Table VI, there were no

instances of false positive OTS verifications for the tested

sample. Similarly, in column 6 it can be seen that there were

also no false negative OTS verification results in the tested

sample. With zero errors in the tested sample, it is clear

that the robust verification mechanism and the fragility of the

timestamp structure combine to create a very reliable system

with a near 0%, or insignificant, failure rate.
Creation errors are the second type of error, and relate to

any error in creating a complete OTS timestamp for a file.

This type of error is less serious than a failure to verify, as it

Vol.110 (2) June 2019SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS92

Fig. 12. Missing timestamps results due to a failure to create timestamp.

does not make any claim toward the integrity of the file. The

risk with a failure to create a file is that some critical data or

evidentiary item may not receive a complete timestamp and

could therefore not be validated at some future point in time

when its integrity is questioned. During the testing process

there was no specific test for a failure to create a timestamp,

but as data was being analysed and correlated along with

metadata from the script logs, it became apparent that a small

number of timestamps failed to complete.

The log entries were created when the Upgrade function was

attempted, but failed for a particular file. They indicated that

the Upgrade function could not find the timestamp file for

the file in question. There were 26 instances of such errors

in the tested sample. Manual verification confirmed that all

26 files did not have any timestamp file and there was no

indication that a timestamp file existed at any point in time,

despite the script log confirming a timestamp was created.

There were also no errors in the logs indicating that the OTS

Stamp function failed. The only common factor between all 26

instances of these failures, were that the stamp creation time

logged in the script execution was higher than the maximum

stamp time Ma-tStamp allows for valid timestamp. These

logs did not reveal a root cause for this failure, but by a

process of elimination it was determined that the failure either

occurred in the RPC call to the calendar server, or locally

when the returned timestamp commitment was saved to disk.

Unfortunately, there were no logs to indicate which of the two

processes were malfunctioning.
Instances of such failures to create a timestamp can be seen

in Fig. 12, where there are clear gaps between two data points.
Being unable to isolate the root cause to an OTS- or

operating system-specific failure, it is necessary assume the

worst-case scenario from the perspective of OTS, which is

that the calendar server did not return a valid timestamp

commitment for the 26 stamp requests. Even so, the number

of failures as a proportion of the overall data set is extremely

small at 0.553%. Even though the timestamp failed to create

when requested, this does not prevent the request from simply

being resubmitted if the failure is detected. It is, therefore,

suggested that all timestamp creation be immediately validated

when OTS is used in potentially significant use cases, such as

a digital forensic investigation relating to legal proceedings.

VIII. CONCLUSION

This paper has described the field of digital forensics, its

requirements, blockchain technology, the interaction between

these, and independently analysed promising open source

software in this niche. The results have been impressive, and

certainly merit a great deal of discussion in the field of digital

forensics. Blockchain technology, coupled with the design of

OTS, has the potential to take one more human factor out

of the digital forensics equation and increase trust in digital

evidence as a whole. One caveat, however, is that timestamp

accuracy is not to be taken for granted. The blockchain may

therefore not be appropriate for digital evidence that must be

independently timestamped with great accuracy.

REFERENCES

[1] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp.
382–401, Jul. 1982. [Online]. Available: http://doi.acm.org/10.1145/
357172.357176

[2] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[3] Ethereum Foundation, “Ethereum,” 2016. [Online]. Available: https:
//www.ethereum.org/

[4] Zerocoin Electric Coin Company, “About Us,” 2016. [Online].
Available: https://z.cash/about.html

[5] B. Nelson, A. Phillips, and C. Steuart, Guide to Computer Forensics
and Investigations, 5th ed. Delmar Learning, 2015.

[6] A. Valjarevic and H. S. Venter, “Implementation guidelines for a
harmonised digital forensic investigation readiness process model,” 2013
Information Security for South Africa - Proceedings of the ISSA 2013
Conference, pp. 1–9, aug 2013.

[7] J. Dykstra and A. T. Sherman, “Acquiring forensic evidence from
infrastructure-as-a-service cloud computing: Exploring and evaluating
tools, trust, and techniques,” Digital Investigation, vol. 9, pp. 90–98,
2012.

[8] C. Wilson, “Digital Evidence Discrepancies: Casey Anthony
Trial,” 2011. [Online]. Available: http://www.digital-detective.net/
digital-evidence-discrepancies-casey-anthony-trial/

[9] J. H. Witte, “The Blockchain: A Gentle Introduction,” pp. 1–5, 2016.
[10] B. Preneel, “Cryptographic hash functions,” European Transactions on

Telecommunications, vol. 5, no. 4, pp. 431–448, 1994.
[11] Y. M. Motara, “Preimages for SHA-1,” Ph.D. dissertation, Rhodes

University, 2017.
[12] G. C. Kessler, “Anti-Forensics and the Digital Investigator,” Proceedings

of the 2014 47th Hawaii International Conference on System Sciences,
pp. 1–7, 2006.

[13] P. Rogaway, Nonce-Based Symmetric Encryption. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 348–358.

[14] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source
Code in C. New York, NY, USA: John Wiley & Sons, Inc., 1993.

[15] A. Back, “Hashcash - A Denial of Service Counter-Measure,” 2002.
[Online]. Available: http://www.hashcash.org/papers/hashcash.pdf

[16] K. Okupski, “(ab) using bitcoin for an anti-censorship tool,” Ph.D.
dissertation, Eindhoven University of Technology, 2015.

Vol.110 (2) June 2019 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 93

[17] B. Gipp, N. Meuschke, and A. Gernandt, “Decentralized Trusted Times-
tamping using the Crypto Currency Bitcoin,” iConference 2015, pp. 1–6,
2015.

[18] V. Wayne, S. Wilkinson, and J. Bukowski, “Chainpoint: A scalable
protocol for recording data in the blockchain and generating blockchain
receipts,” 2016. [Online]. Available: https://tierion.com/chainpoint

[19] M. Araoz and E. Ordano, “Proof of Existence,” 2013. [Online].
Available: http://proofofexistence.com/

[20] P. Todd, “OpenTimestamps: Scalable, Trustless, Distributed
Timestamping with Bitcoin,” 2016. [Online]. Available: https:
//petertodd.org/2016/opentimestamps-announcement

[21] R. C. Merkle, “Protocols for Public Key Cryptography,” Synopsis on
Security and Privacy, pp. 122–134, 1980.

[22] Bitcoin Foundation, “Wallet: Pruning,” 2016. [Online]. Avail-
able: https://github.com/bitcoin/bitcoin/blob/v0.12.0/doc/release-notes.
md#wallet-pruning

[23] Adobe Systems Incorporated, PostScript Language Reference Manual,
2nd ed. Addison-Wesley Publishing Company, 1990.

[24] Blockchain Luxembourg S.A, “Average block confirmation
time,” 2017. [Online]. Available: https://blockchain.info/charts/
avg-confirmation-time?timespan=60days&showDataPoints=true

William Thomas Weilbach Thomas, who started
his career as a software developer, quickly gravitated
to information security after being exposed to ap-
plication security. After completing his postgraduate
research on the topic of digital forensics, he made
information security his primary professional focus
as an information security specialist at a major
South African bank. Thomas then completed his
MSc in Computer Science at Rhodes University
where he continued his work on digital forensics
and graduated with distinction in 2018, having been

awarded the MWR prize for the Best Information Security Student. Presently
Thomas continues his passion for information security, but returned his focus
to Application Security by enabling the same at a major sovereign wealth
fund.

Yusuf Moosa Motara Yusuf Motara is a Senior
Lecturer in Computer Science at Rhodes University.
His interests are functional programming, informa-
tion security, software development, and computer
science education. He is presently working on the
modeling of functional programs. Dr Motara lives
in Makhanda with his wife, children, and a great
deal of contentment.

