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Abstract. The performance of signature-based network intrusion detection tools
is dominated by the string matching of packets against many signatures. In this
paper we study how the popular intrusion detecton system Snort can be best op-
timized to utilize different string matching algorithms. We analyze the perfor-
mance of Snort’s current string matching algorithm, Boyer-Moore, and several
alternate algorithms. We show that no single algorithm is fastest in the context
of a real Snort rule set. Instead, we develop a hybrid system that utilizes three
different search algorithms, including one new algorithm presented in this paper.
The result is a system that matches many common packets 5 times faster with an
average speedup of 50%. While the context of our analysis is intrusion detection,
other problem domains such as virus scanning, firewalls, and layer seven switches
benefit from our work.
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1 Introduction

Network intrusion detection systems are widely used and heavily depended upon. The
continued growth in both network traffic and intrusion signature databases makes the
performance of these systems increasingly challenging and important. The impact of
an under-performing intrusion detection system is severe: a passive system will drop
large amounts of network traffic and may miss attacks, while an in-line system acts as a
bottleneck to network performance. Therefore the performance weaknesses os intrusion
detection systems create denial of service vulnerabilities.

Per-packet string matching is important to a class of applications beyond intrusion
detection that includes firewalls scanning for viruses, layer seven switches doing web
load balancing based on URLs and even cookies [1], and content distribution networks.
Thus we believe that string matching over packet content is an important problem to be
studied.

As we will show, the performance of signature-based network intrusion detection
systems is dominated by the speed of the string matching algorithms used to compare
packets with signatures. A single network packet may be compared against hundreds of



signatures. It is therefore advantageous to use a class of algorithms designed for match-
ing against dictionaries of strings. However, intrusion detection rule sets differ from
normal dictionaries in many ways. First, rule sets occur in a variety of sizes. Second,
each rule may specifiy multiple strings. Third, strings may have varying case sensitivity
requirements.

In this paper, we experiment with the popular Snort [2] system as a typical, light-
weight example. We show that it is necessary to decompose rule sets into optimized
subsets. Further, we show that a suite of algorithms is necessary to support the variety
of resulting subsets, and we contribute a new string matching algorithm optimized for
small sets of strings. Overall, we show how to intelligently apply fast string matching
to the intrusion detection problem. The result is a system that matches many common
packets 5 times faster with an average speedup of 50%. And because our approach
makes intrusion detection systems more scalable, speedups will continue to improve as
rule sets grow in size.

Signature Detection versus Packet Filtering: Signature-based intrusion detection
systems such as the popular Snort program [2] and the Network Flight Recorder [3]
are typically configured with a set of rules to detect popular attack patterns. These
rules look almost exactly like firewall rule sets [4] in that patterns can be specified on
packet header fields (e.g., all packets from subnet X and sent to port 80) using the
usual flexibility of specifying prefixes, wild-carded fields, and port ranges. However,
signature detection systems go one step beyond packet filters in complexity by also
allowing an arbitrary string that can appear anywhere in the packet payload. This is
harder in some ways than firewall rules because firewall rules specify packet headers
that are in well-defined portions of the packet. Thus many firewall rules only have to
examine roughly 128 bits within the first 40 bytes of a packet header. By contrast, a
signature system has to search for a string that can be anywhere within the (say) 4500
bytes of packet payload for (say) an FDDI packet.

Set String Searching: Since a signature based system has several firewall style
rules, each of which may have an associated string pattern, signature systems marry all
the complexity of standard packet classification together with string matching. Today’s
systems such as Snort examine a rule at a time: each time a rule matches, Snort does
a fast string search on the associated pattern using the Boyer-Moore algorithm. While
the Boyer-Moore algorithm is very fast for a single string search, the problem is that a
given packet can match several rules with patterns (up to 300 rules in the sample Snort
database), forcing up to 300 Boyer-Moore searches. Thus this technique does not scale
with increasing rule sizes; it even motivates an algorithmic attack where an intruder
could send worst-case packets that slow down the search and cause dropped packets,
upon which the intruder could begin her attack.

In recent years there have been several papers in the literature (e.g., [4, 5]) that show
that there are more scalable approaches to firewall rule searching than iterating through
the rule set. The main idea is to combine all the rules into a single data structure that
can be searched once to find the first matching rule. Thus a natural question, which we
pose in this paper, is why the same approach cannot be taken to signature systems. Is
there, for example, a way to combine all string searches into a single string search? If
so, how much faster is such an integrated string search over separate string searches for



currently used and synthetic rule sets? Would deploying such a new algorithm in say
Snort reduce the likelihood of an algorithmic attack succeeding? Our paper attempts to
answer all these questions.

Paper Contributions and Organization: Thus the contributions of our paper are
as follows. First, we introduce an algorithmic aspect of content-based packet handling,
and specifically Intrusion Detection, as an important problem worth solving in the same
manner as IP lookups and packet classification. Our second contribution is an exami-
nation of a multiple-pattern search algorithm that combines the one-pass approach of
Aho-Corasick with the skipping feature of Boyer-Moore as optimized for the average
case by Horspool. This sublinear multiple-pattern algorithm is in the same class as those
by Commentz-Walter [6], Wu & Manber [7], Gusfield [8], and Kim & Kim [9], but to
the best of our knowledge, after consulting the literature and algorithm experts, our
setwise algorithm is a new algorithm and may be of independent interest.

Third, we have implemented commonly used versions of Boyer-Moore (BM), Aho-
Corasick (AC), and our new algorithm in a library that can easily be instantiated to
choose at will different string algorithms for use by a signature detection utility. Fourth,
we have measured the effects of replacing the string matching component in Snort with
the various algorithms in the library; the real comparisons take into account the rela-
tive importance of string searching both over real traces and benchmarks, and include
artifacts due to machine-dependent effects such as cache sizes. Fifth, we introduce tech-
niques of caching search results to preserve the ordering of matching rules and varying
case sensitivity. Finally, to improve the performance of set-wise string searching algo-
rithms, we also explore different techniques for partitioning rule sets.

The rest of the paper is structured as follows. In Section 2 we examine the popular
intrusion detection platform, the structure of a sample signature, and how Snort could
benefit from the use of better string matching algorithms. In Section 3, we explain the
operation of the popular Boyer-Moore and Aho-Corasick algorithms. In Section 4, we
present our set-wise Boyer-Moore-Horspool algorithm for searching sets of strings si-
multaneously and analyze its theoretical performance. In Section 5 we conduct numer-
ous performance tests of all of these algorithms and describe several key performance
characteristics. By carefully structuring the problem we are able to improve the perfor-
mance of Snort by a factor of 4.5. Finally, we conclude the paper in Section 7.

2 Snort and String Matching

In this section, we motivate and ground the solutions found in the rest of the paper by
examining a popular sample signature system (Snort). After briefly introducing Snort
in Section 2.1, we describe profiling information that shows that string matching is a
bottleneck. We then describe why it is important to improve the performance of Snort
as a whole. Finally, in Section 2.4, we show two ways to use set string matching within
Snort to potentially improve performance.

2.1 A Brief Introduction to Snort

Snort [2] is a freely available (under the GNU license), lightweight network intrusion
detection system that is configured with a list of rules that each define a signature and



a corresponding event log description. Snort also has a plug-in architecture that al-
lows stateful analysis to be performed and is currently used by preprocessors that avoid
some subterfuge attacks (as defined in [10]). Because of its free availability and effi-
ciency, Snort is quite commonly used and there are very large and current databases of
signatures maintained on the Internet [11, 12].

alert tcp !$HOME_NET any -> $HOME_NET 80
(msg:"IDS219 - WEB-CGI-Perl access attempt";
flags:PA; content:"perl.exe"; nocase;)

Fig. 1. Example Snort Rule

In Figure 1 we present an example Snort rule. Each rule contains an action (alert
in this case), a protocol (tcp), a source netmask, typically defined as anything but the
network being monitored, a source port (any), and a destination netmask and port (80).
Following these standard fields can be a list of arbitrarily many other options. The msg
string is the alert to send if this rule is matched. The optional flags field specifies a
set of TCP flags that must be set for a packet to match. The content field specifies a
string to match in the packet and the nocase flag specifies that the search should be case
insensitive.

The alert message in our example refers to IDS219 which is a unique key assigned to
this vulnerability. Such keys aid in the correlation of alerts between different products,
and lead response personnel to additional information. For example, the arachNIDS
web database [11] of these vulnerabilities contains the following description:

An attempt was made to execute perl.exe. If the Perl interpreter is available to web
clients, it can be used to execute arbitrary commands on the web server. This can be used
to break into the server, obtain sensitive information, and potentially to compromise the
availability of the web server and the machine it runs on.
Many web server administrators inadvertently place copies of the Perl interpreter into
their web server script directories. If perl is executable from the cgi directory, then
an attacker can execute arbitrary commands on the web server. CERT Advisory CA-
96.11.interpreters in cgi bin dir1

Over 30 vendors and security organizations are currently participating to create a
Common Vulnerabilities and Exposures ‘dictionary’ of common vulnerabilities[13].
This example rule is currently a candidate for inclusion in the CVE, but has yet to
be vetted by the CVE editorial board of security experts.

Most Snort signatures contain a payload byte string (84% of the January 8, 2001
Snort.org full rule set). In this paper, we examine algorithms for improving the perfor-
mance of string matching for these rule sets. Some other intrusion detection systems
such as Bro [10] and NFR [3] have specialized packet handling languages in which
inspection programs can be written. It is unlikely that the same degree of optimization

1 ftp://ftp.cert.org/pub/cert advisories/CA-96.11.interpreters in cgi bin dir



can be applied to those systems. However, most commercial systems such as those from
Cisco use string matching rules like those in Snort.

2.2 Snort Performance Profile

In [2], it is asserted that string matching is the most computationally expensive test that
Snort commonly performs on packets. Profiling of a typical Snort configuration sup-
ports this conclusion. Actual performance is clearly dependent on both the rule set used
and the characteristics of the traffic being monitored. We ran Snort 1.6.3 on a dataset
of 8.7 million packets totalling more than 1 gigabyte captured over a 25 minute period
from the Internet connection of a large enterprise with mixed business and scientific
users. Using the full rule set from Snort.org that accompanied this release of Snort and
the gprof [14] execution profiler, we show that string searching is the most expensive
part of the execution and accounts for 31% of the total execution time. The top four
routines are shown in Figure 2. The second most run routine accounts for less than 10%
of total execution time.

One common optimization is to use a kernel or hardware prefilter to exclude packets
that are not of interest to the detection system. Such prefiltering would only increase the
fraction of packets on which string searches would be performed.

Purpose Routine Portion
String match mSearch 31%
Packet classification EvalHeader 8.5%
Packet classification CheckSrcIPNotEq 6.7%
Other matching EvalOpts 5.8%

Fig. 2. Profile of Snort

2.3 Algorithmic Performance Attacks

Who would benefit if Snort could be made faster? In [10], Paxson presents a taxonomy
of attacks including the overload attack in which an attacker overloads an intrusion de-
tection system by flooding it with innocuous packets until the system starts dropping
packets. There is then a high probability that the detection system will not catch an
attack that is interjected in this stream of packets. To have strong assurance that a de-
tection system is not subject to such attacks, the system must be able to support full
utilization of the network that it is monitoring.

An ideal target of such attacks is what we call an algorithmic performance vul-
nerability in which the performance of a system is dependent on the inputs to certain
algorithms. Thus, an attacker can intentionally provide inputs, in the form of packets,
that will knowingly cause the worst-case performance of an algorithm. A detection sys-
tem that does not support full network utilization with worst-case packets is vulnerable
to an algorithmic performance attack. Paxson suggests that the site-specific policies



provide the most opportunity for loading and that these policies will not be known to an
attacker.2 However, it cannot be safely assumed that detection platforms will not make
use of common algorithms and their associated worst-case performance vulnerabilities.

The bottom line is that improving Snort performance increases the likelihood of an
attack being detected.

2.4 Set String Matching Options

Given that string matching is a bottleneck and performance is important, we note that
there are at least two ways that an efficient set string matching algorithm could be used
to improve the performance of Snort. These include:

1) Single Set of Strings: We can search for the strings of all rules simultaneously.
The results can be used in two ways. First, we can immediately exclude rules that have
content strings which do not match. Alternatively, we can cache the results and refer
to them whenever a string match is called for. A possible disadvantage is that a given
packet may match only a small subset of the rules, while the single set string search
(unnecessarily) includes in its search target strings that the packet may not match. Such
unnecessary inclusion may, for example, make the data structure too large to fit in cache

2) Multiple String Sets: It is common in Snort to have several rules whose criteria
differ only in the content string. Thus, we only group together such rules into subsets
and do efficient string matching within each subset of rules, while still doing multiple
string searching across the subsets. The current Snort implementation uses subsets of
size 1. A possible disadvantage of this approach is that we still have to iterate over
subsets unlike in the case of the Single Set Approach. A possible advantage is that we
can specialize the search easily to do standard Boyer-Moore for a rule subset if the size
of the subset is below some threshold.

3 String Search Algorithms

Before we introduce our setwise Boyer-Moore-Horspool string matching algorithm, we
briefly review the string matching problem, and the Boyer-Moore and Aho-Corasick
approaches. More information can be found in Gusfield’s book [8] and a comprehensive
review of string matching [15]. We focus specially on understanding the main ideas
behind standard Boyer-Moore because they are essential to understanding many of the
multiple-pattern algorithms, including our setwise Boyer-Moore-Horspool algorithm.
We also briefly describe Aho-Corasick because it is good worst-case performance and
is an important candidate for improving set string matching that is not used currently in
Snort.

Assume a text string T of length n and a pattern string P of length m, each com-
posed of an ordered set of characters from an common alphabet A. The general problem
is to determine the location of P within T , or that T does not contain P .

Let the characters of T and P be numbered sequentially from left to right starting
with one. If, for a given offset or shift s, every character Pi ∈ P1...Pm matches the

2 The strength of such security through obscurity is subject to debate.



corresponding character Ti+s ∈ T1...Tn, then P occurs at offset s in T . We write this
equality as follows:

Ti+s...Tm+s = Pi...Pm

3.1 Boyer-Moore

Current Snort implementations use the Boyer-Moore string matching algorithm, which
is widely regarded as the providing the best average-case performance of any known
algorithm. The algorithm is based on a few key observations that allow single patterns
to be found in sublinear time in the average case [16].

The first observation is that character comparisons can be made from right to left
starting at the end of the pattern instead of the beginning. Let e be the endpoint of the
pattern and e = m initially. For j = 0...(m − 1), we compare Te−j and Pm−j . Shifts
are logically performed by incrementing e.

Bad Character Heuristic: Second, consider when a character mismatch is found
between Te−j and Pm−j , so that j is the length of the matching suffix of P . If the last
occurrence in P of the character Te−j occurs q characters from the end of P , then there
is no point in trying new endpoints less than e + q − j. This bad character heuristic
allows us to skip many of the comparisons of the naive algorithm. The amount that we
can shift the endpoint is easily computed based on a function B(c) that computes the
distance from the end of P to the last occurrence of character c:

B(c) = min {q | Pm−q = c}

For each character c that does not occur in the pattern at all, B(c) = m. All values
for B can be pre-computed and stored in an array of length |A|.

If we find a character mismatch at Te−j , then we can safely set the endpoint e to
e + B(Te−j) − j and restart the right to left comparison of Te−m+1...Te and P1...Pm.

Note that the last occurrence may not be to the left of the current location e− j, and
so B(Te−j)− j ≤ 0. In this case the bad character heuristic provides no insight and the
endpoint must be shifted by just one additional position.

Good Suffixes Heuristic: The good suffix heuristic is the third key observation.
If a mismatch is found in the middle of the pattern at Pm−j , then there is a suffix of
0 or more characters Pm−j+1...Pm that do match. Thus, there is no point in testing
new endpoints e′ that do not cause that same suffix string to match (Te′−j+1...Te′ 6=
Pm−j+1...Pm).

A stronger version of the good suffix heuristic is attributed to Kuipers. This version
also skips over reoccurrences of the suffix that are preceded by the same character as
Pm−j . There is no point in attempting such shifts since it is known that Te−j 6= Pm−j .
This optimization does not significantly complicate the preprocessing step, and allows
the algorithm to be provably linear even in the worst case [8].

The full Boyer-Moore algorithm shifts by the greater of the values given by the
bad-character and good-suffix heuristics.

Examples of Boyer-Moore Operation: Let us first consider the following example:



↓
acdecdacdacda
acdacda

Since the character e does not occur in the pattern, the bad character heuristic tells
us than we can immediately shift the endpoint by 4 so that the pattern starts after the
current character. The good suffix heuristic determines that the suffix cda occurs 3
characters to the left of the current location.

acdecdacdacda
acdacda Good suffix recommendation
acdacda Bad character recommendation

We choose the larger of the two endpoint shifts, 4 characters.

We start comparing the end of the pattern at the new endpoint and immediately find
a mismatch. The bad characteristic heuristic tells us to shift by two. The good suffix
heuristic has nothing to add since there is no good suffix.

↓
acdecdacdacda

acdacda Bad character recommendation

So we shift by another two and eventually determine that the string is correct. Note
that over the entire comparison, we never examined the first three characters, but exam-
ined the seventh character (the first mis-match point) twice.

Performance Analysis of BM: Clearly the performance of the BM algorithm de-
pends on the characters in the text and pattern strings. Knuth showed that the original
Boyer-Moore algorithm performs O(n + rm) comparisons, where r is the number of
times the pattern occurs in the text. For r = 0, 6n comparisons are required [17, 15].

Cole showed that Boyer-Moore with the stronger good suffix heuristic requires only
4n comparisons if the pattern does not occur in the text. When the pattern occurs r times
in the text, the number of comparisons is Θ(rn) [8]. This complex analysis does not
even include any advantages caused by the bad character heuristic.

Galil developed a slight modification to Boyer-Moore that allows a proof of O(n)
performance regardless of the number of occurrences [18, 8]. In 1986, Apostolico and
Giancarlo developed a variant of Boyer-Moore algorithm that requires at most 2n com-
parisons, but requires O(m) additional space [19, 15, 8]. In 1996, Crochemore and
Lecroq showed that the Apostolico-Giancarlo algorithm has a tight bound of at most
1.5n comparisons [20]. This bound is better than the 2n of the KMP algorithm and en-
croaches on Rivest’s lower bound of n−m + 1 comparisons for any algorithm’s worst
case performance[21].

Many performance studies of Boyer-Moore and its variants have been performed.
Despite worst-case performance that is super-linear, the observed average case perfor-
mance is typically much better. Horspool studied a version of Boyer-Moore that does
not perform the good suffix comparisons. This version is O(nm) in the worst case, but
performs comparably to the original Boyer-Moore algorithm in the average case [15].



3.2 Aho-Corasick

The Aho-Corasick algorithm [22] is the classic algorithm for searching for multiple
patterns simultaneously. Roughly speaking, the Aho-Corasick algorithm uses the struc-
ture of a finite automaton that accepts all strings in the set. The automaton is structured
so that every prefix is represented by only one state, even if the prefix begins multiple
patterns. When the next character in the text is not one of the expected next characters
in the pattern, a failure link (an ε-transition) is taken to the state representing the longest
prefix of a pattern that is also the proper suffix of the current state. The Aho-Corasick
algorithm is O(n) and the precomputation is linear in the size of the pattern, O(m) [8].

4 Set-wise Boyer-Moore

In this section, we describe a newly developed algorithm for matching sets of strings.
We will discuss previous work in the category of sub-linear time, multiple-pattern al-
gorithms, and describe the tradeoffs that led us to our new algorithm. This class of
algorithms, including our own, performs better than Aho-Corasick in many cases by
using concepts from the Boyer-Moore family of algorithms.

Snort currently uses a single-pattern Boyer-Moore algorithm repeated separately
for each pattern. Repeating the Apostolico-Giancarlo algorithm for each of k patterns
would result in at most 1.5nk comparisons. In the best case, at least n

m
comparisons

would be required for a pattern of length m. For k patterns all of length m, the total cost
is therefore between nk

m
and 1.5nk. When k > 2m, then the Aho-Corasick algorithm is

clearly superior with its worst case performance of 2n.
However, the techniques of the Boyer-Moore family of algorithms can be adapted to

operate on sets of patterns in a single pass rather than iteratively. Commentz-Walter [6]
introduced the first such algorithm and Watson showed that the actual performance of
Commentz-Walter is much better than Aho-Corasick, particularly with long patterns
[23]. Gusfield argued for a simpler algorithm that uses suffix trees to compute the
good suffix heuristic [8]. Wu and Manber developed other techniques for implementing
Boyer-Moore heuristics for multiple patterns and achieved performance significantly
better than Aho-Corasick or Commentz-Walter for natural language texts [7].

Many of these algorithms have increasingly good, but complex algorithms for skip-
ping. As evidenced by Horspool’s variant of Boyer-Moore [24], simpler search algo-
rithms can often perform better than algorithms which skip more characters per com-
parison, but require much more work per skip. Horspool uses only the bad character
heuristic of Boyer and Moore and not the good suffix heuristic, without loss of average-
case performance.

Optimizations such as this are crucial in the context of high-speed network devices,
where the time scales for pattern matching are compressed down to packet inter-arrival
times measured in microseconds. It is also desirable to implement these algorithms in
relatively small, embedded memories. To address these needs for simple algorithms,
we introduce in this section a new, multiple-pattern algorithm that preserves the sim-
plicity of Horspool’s simplified Boyer-Moore. We believe this to be a new approach to
concurrent matching of strings.



The basic procedure of the algorithm is as follows. The initial position of the end-
point e is the length of the shortest pattern. The set of patterns can quickly be compared
to any position in the text by storing the reversed patterns in a trie. Comparisons con-
tinue from right to left until a character is found in the text that does not match a next
character in the trie.

Recall that in our description of the Boyer-Moore algorithm, the bad character
heuristic merely depends on knowing the distance from the end of the pattern of the last
occurrence of each possible character. This same pre-computation can be performed by
finding the minimum of the shifts of each pattern; let B(c) be the bad character func-
tion for the set as a whole and Bl(c) be the bad character functions for the k individual
patterns such that:

B(c) = min {Bl(c), 1 ≤ l ≤ k}

Clearly this unified B(c) function is as conservative as the most conservative of its
component functions. Thus the correctness of the algorithm remains unchanged.

Note that we have carefully described the bad character heuristic in this paper with-
out referring to a shift of the starting character of the pattern. Most presentations of this
material depend on the starting character. By making this simple, but inconsequential
translation in the description of Boyer-Moore, we make it clear that the same heuristics
can be applied to searching a set of patterns in parallel.

4.1 Average Case Analysis

We now examine the average performance of our set-wise Boyer-Moore-Horspool algo-
rithm (SBMH) using a probabilistic model. Because the performance of this algorithm
varies widely depending on the nature of the inputs, it is necessary to study its proba-
bilistic performance. Performance is measured in terms of the number of characters that
must be examined per character of shift. Let the size of the alphabet be a. We assume
uniform distributions of characters in both the text and all k patterns:

pc = Pr[Any given character] =
1

a

The size of each shift is determined by B(c) and the size t of the matching suffix:

Performance =
shifts

comparisons

=
max (1, B(Te−t) − t)

t + 1

The probability that the matching suffix length t equals some amount x is simply the
probability of x consecutive characters in the text matching one or more of k corre-
sponding characters in the patterns and one final character not matching:

Pr[t = x] =

{

(1 − kpc)(kpc)
x t < m′

(kpc)
x t = m′



Thus, the expected value of t is based on probabilities of each value of t from 0 to the
size of the longest pattern, m′:

E[t] =
m′−1
∑

x=0

x(1 − kpc)(kpc)
x + m′(kpc)

m′

It is clear that t is dominated by the likelihood that the first character will not match.
Given truly random input, the probability of matching any given string in an alphabet
of significant size is clearly low.

The probability that the bad character function B(c) = s, s < m′ is equal to the
probability that each the last s characters differs from the corresponding k characters of
the patterns and that at least one of the patterns has the same character c at position e−j.
B(c) = m′ is the only remaining case and occurs when all m′ characters mismatch:

Pr[B(c) = s] =

{

kpc(1 − kpc)
s s < m′

(1 − kpc)
s s = m′

Therefore, the expected value of the bad character function is as follows:

E[B(c)] =

m′−1
∑

s=0

skpc(1 − kpc)
s + m′(1 − kpc)

m′

We now have enough information to compute the total shift size as follows:

Shift =

{

1 B(c) ≤ t

B(c) − t B(c) > t
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Figure 3 shows the expected performance computed for various lengths of patterns
(m′) over multiple set sizes. The alphabet is 256 possible values for a network octet.
For sets of size 1, performance improves quickly as the pattern gets longer since each
character mismatch is likely to produce B(c) = m′ which is growing. However, as
the number of patterns in the set increases as well, it becomes more likely that a bad
character will occur late in one of the patterns and the shift will be small. Thus there
is a sweet-spot for our algorithm that is dependent on the size of the set as well as the
characteristics of the patterns in the set.

For 50 sets of 100 characters each, roughly 1.6 comparisons are made for each
character shift of progress. This value is unsurprising given the tight bound of 1.5n

found for other variants of Boyer-Moore.
In Figure 4, the progress has been divided by the number of iterations necessary to

compare a total of 50 patterns. This normalization lets us compare the performance of
using batches of z patterns in 50

z
iterations for z = 1, 5, 10, 20, 50. The resulting graph

shows that no single set size is optimal for all scenarios. In general it is better to do
many iterations over small sets or one iteration over large set sizes. A few iterations
over medium-sized sets is rarely preferable. Note that for virtually all conditions, there
is some combination that is preferable to the Aho-Corasick’s best case performance of
1. Choosing the proper set size, however is problematic.
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5 Experimental Performance

The complexity of implementing the Boyer-Moore algorithm has been cited as one of
the reasons why it has not been used more. We therefore developed a general purpose



library for matching a set of strings using one of several algorithms. This library is writ-
ten in C and will be freely distributed for use by other projects. The library currently
implements Boyer-Moore, Boyer-Moore-Horspool, Aho-Corasick, and our SBMH al-
gorithm. For more even comparison, the implementations of both Aho-Corasick and
our SBMH algorithm use the same trie data structure implementation.

Over the course of our tests we repeatedly found that subtle optimizations to the
performance of an algorithm’s implementation can have dramatic effects on the rela-
tive performance of algorithms. Thus any performance comparison of these algorithms
should not overlook the quality of the implementation. We hope that other groups will
make use of (and undoubtedly improve) our library in order to ensure meaningful per-
formance comparisons in the future.

Case Insensitivity: Roughly half of the strings in the Snort rule set are case insen-
sitive. Given the large number of Internet applications that use case insensitive, ASCII
text-based protocols, this is not surprising. Our string matching library has functions
specialized for case sensitive and insensitive searches using Boyer-Moore and Boyer-
Moore-Horspool. Our implementations of Aho-Corasick and Setwise Boyer-Moore-
Horspool are always insensitive to case. This is done at precomputation time by making
redundant entries for both upper and lower case in the tables used for trie branches
and the Boyer-Moore bad character heuristic. At run time, if there is a case-insensitive
match, but the pattern is case-sensitive, then we double-check the byte-strings to ensure
an exact, case-sensitive match. Since matches are relatively infrequent, this extra cost
is only occasionally incurred.
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5.1 Library Benchmarks

To compare the actual running time of the four algorithms, we pick sets of words from
an English dictionary and search for them in randomly generated binary strings. Figure
5 shows a log-scale representation of the time required for each of the algorithms to
perform case sensitive searches through sets of sizes 1 through 500. Times are measured
using Pentium hardware counters accumulated over 1000 runs. The two variants of the
standard Boyer-Moore algorithm perform similarly and for most set sizes are much
worse than both of the set-search algorithms. Figure 6 is a more detailed plot of only
the set algorithms.

There are several interesting points regarding the relative performance of Aho-
Corasick and our SBMH algorithm. First, we see that for sets with fewer than roughly
100 members, the character skipping heuristics of SBMH allow it to perform signifi-
cantly better than Aho-Corasick. As described in our theoretical analysis, the advantage
of the bad character heuristic degrades as the number of overall characters in the pattern
set increases. As this number rises, so does the probability that a character will occur
near the end of a pattern. Thus, the performance of SBMH degrades until, at set sizes
of around 100 elements, it begins performing worse than Aho-Corasick.

A second point of interest is that Aho-Corasick, which has proven linear perfor-
mance, also experiences a noticeable (but constant) performance degradation for sets of
roughly 100 or more elements. We believe that this crossover is due to capacity misses
in the cache. The average length of the patterns in this experiment is 7.26 characters.
For the set-wise algorithms, the size of the data structures used by the library is roughly
260 bytes per character. Out test program would therefore require roughly 139 patterns
to fill the 256KB on-chip cache.



5.2 Integration with Snort

The following measurements were made on a 733MHz Pentium III (Coppermine) sys-
tem with 256KB of on-chip cache and running Linux 2.2.18. We used Snort version
1.6.3-p2 modified to use our string matching library. The Snort rule set used was the
full rule set from the Snort 1.6.3-p2 distribution with the “ping” and “backdoor” rules
disabled (a common configuration). Timing information was acquired with the gprof
[14] execution profiler.

Snort uses libpcap [25] for capturing and filtering packets. As a result, Snort can
read packet traces stored by programs like tcpdump. We used this capability to replay
fixed traces with deterministic results. Operating on live traffic would make any results
inconclusive due to potential variations in traffic between tests.

The pcap library uses a callback to run the application’s packet handler on each
packet. The timing measurements shown below exclude the costs of pcap itself since our
experiments read packets from disk rather the network. Optimizing the performance of
libpcap is an area of our current research. In particular, the use of ring buffers shared by
the kernel and the application improve performance significantly by removing system
call overhead.

Decision Structure: Snort rules are categorized by which protocol (TCP, UDP, or
ICMP) they apply to. Since any given rule may only apply to one of these protocols,
they form mutually exclusive sets of rules. Rules are then grouped by their action Pass,
Alert, and Log, with each group being processed separately in a configurable order.

In order to minimize the amount of time spent performing expensive string match-
ing, Snort searches for strings only after comparing header attributes. For each group
(Pass, Alert, Log) of each protocol (TCP, UDP, or ICMP) rules are stored in an un-
ordered, two-dimension linked list. The first dimension contains a list of the different
filters used by rules. We use the term filters to refer to traditional packet classification
criteria such as IP addresses and TCP or UDP ports. Each filter on this first list contains
a list of every rule that is predicated on that filter. Each of these rules may then define
other criteria such as TCP flags and payload contents.

We chose to modify this structure as little as possible in order to make it a controlled
variable in our experiments. Thus we employed the technique of lazily performing a set-
wise string search the first time any element of that set is tested. However, we cache the
results of this set search so that subsequent tests of other elements of the set need only
check to see whether or not that element was flagged as found during the set search.

5.3 Average Traffic

We ran our modified Snort on a dataset of the full contents of 8.7 million packets to-
talling more than 1 gigabyte captured over a 25 minute period from the Internet con-
nection of a large enterprise with mixed business and scientific users. We conducted
several experiments involving different ways of constructing sets.

First, we built a small number of sets based on Snort’s initial decision criterion,
the protocol. Thus we build 3 sets of strings for TCP, UDP, and ICMP with sizes 490,
60, and 9, respectively. The breakdown of traffic in this packet trace as 98.199% TCP,
1.499% UDP, and 0.257% ICMP. Figure 7 compares the total amount of time spent



Method Total Search Time
(seconds)

Boyer-Moore 136.16
Horspool 102.83
Aho-Corasick 235.76
Setwise Horspool 1246.83

Fig. 7. Search time with all-encompassing sets

Method Min Set Total Set Singleton
Size Time Search Search

(s) (s) (s)
BM — 136.16 0 136.16
Horspool — 102.83 0 102.83
AC 1 132.73 132.73 0
SBMH 1 104.65 104.65 0
AC 2 93.95 84.36 9.59
SBMH 2 91.66 82.60 9.06
AC 3 101.21 87.78 10.69
SBMH 3 96.42 83.69 9.96
SBMH/AC 2 89.76

Fig. 8. Search times with one set for each filter

performing string searches using Aho-Corasick and our Setwise Horspool algorithm to
the time required with Snort’s traditional method of running Boyer-Moore separately
for each rule being checked. Overall performance actually suffers if setwise algorithms
are employed in this manner. The first-order conclusion is that set-wise string searching
must be carefully applied to this problem. The results of library tests presented in sec-
tion 5.1 show that very large sets can be much more expensive. Thus, we examine the
tradeoff of having larger numbers of smaller sets.

For each monitored packet, the optimal solution is to have a set that contains every
pattern string for every rule that matches that packet, but no additional strings. Un-
fortunately, the number of permutations of overlapping rules makes this prohibitively
expensive. Thus, we employ heuristics to approach this optimum.

Given Snort’s decision structure described in section 5.2, it is natural to build one
set per filter. There are two limitations to this approach. First the additional criteria
expressed by each rule may mean that only a small portion of the set gets used for any
particular packet. Second, a packet may match multiple filters requiring multiple sets to
be searched. The result of this structuring is that strings are now partitioned in 64 sets
instead of 3.

For singleton sets, the set-wise algorithms have a higher overhead and are slower
compared to the traditional Boyer-Moore and Boyer-Moore-Horspool algorithms. Of
the 64 sets, 24 of them are singletons. Thus, we create a set size threshold under which
the traditional algorithms are always used.



Figure 8 shows the results of this set of experiments. The first two entries, the single
pattern search algorithms, are the same as before. The next two entries show the perfor-
mance of the set-wise algorithms when there is one set for each filter (a total of 64 sets).
Performance is better than in Figure 7, but not significantly better than Snort currently
is.

For the fifth and sixth entries, the threshold for using the set-wise algorithm has
been raised to two so that all singleton sets will be processed with the Boyer-Moore-
Horspool algorithm rather than a set-wise algorithm. The right-hand column shows that
for the setwise algorithms, the vast majority (roughly 90%) of the time is still spent
performing setwise searches. Yet, the overall performance is now as much as 1.5 times
faster than Snort’s current algorithm, Boyer-Moore.

The next two entries show the effect of raising the threshold for using the set-
wise algorithms to three. This proves to be counter-productive since it results in more
searches per packet by splitting sets of two into two separate searches. Thus, the best
performance is achieved by making one set for each filter and reserving the use of the
set-wise algorithms to sets with more than one element. The result of using this tech-
nique rather than Snort’s current algorithm is a speed-up of 1.49. Note that in all cases
studied in this series of experiments, our SBMH algorithm performed marginally better
than Aho-Corasick.

Section 5.1 demonstrated that in practice, there is cross-over point in set size where
our SBMH algorithm performs best below this point, but beyond this point, Aho-Corasick
performs better. We therefore modify our set construction algorithm in Snort to handle
three different classes of sets. For singleton sets we use Boyer-Moore-Horspool which
has the best performance for single strings. For sets of size two through 100, we use
our SBMH algorithm, and for sets of more than 100, we use Aho-Corasick. The results
of this technique are shown in the final entry of Figure 8. The speed-up over Snort’s
current algorithm increases to 1.52.

We note that the threshold of 100 is dependent upon the implementation and plat-
form being used. However, the sets in our experiments skip from a size of 31 to 310.
Thus, we have been unable to determine the optimum threshold for our implementation.

Method Min Set Total Set Singleton
Size Time Search Search

(s) (s) (s)
BM — 21.25 0 21.25
Horspool — 22.47 0 22.47
AC 2 4.76 3.19 0
AC 2 4.36 3.22 0
AC 2 4.74 3.50 0
SBMH 2 4.63 3.66 0
SBMH 2 4.98 3.97 0
SBMH 2 4.73 3.51 0

Fig. 9. Search times for worst-case traffic



5.4 Worst-case Traffic

In terms of effect on load, the worst-case traffic is that which requires many string
searches. The largest single component of commonly distributed Snort rule sets is rules
that search web requests for well-known implementation vulnerabilities such as CGI
scripts. Our rule set contains 310 such strings that apply to TCP port 80 packets. Packets
that match this filter are the the worst-case load for a detection system which must check
each packet against all 310 rules. However, it is this sort of workload that best exposes
the benefits of the setwise string matching algorithms.

We filtered our original dataset to extract only the packets that match these filters.
The result is a dataset of 13084 such web request packets.3 It is worth noting that such
traffic may in fact dominate the workload of many e-commerce networks’ incoming
packets. In addition, an adept attacker wishing to overload a detection system would
want to generate this sort of hard to handle traffic, so it is important that Snort can
process it efficiently.

For the next experiment, we tested the performance of Aho-Corasick and SBMH
on this worst-case traffic.4 The results are shown in Figure 9. Because of the closeness
of some of the figures, we present results from three different runs for the set-wise
algorithms. The improvement over Snort’s current Boyer-Moore algorithm is much
more striking for this experiment. Switching from the currently used algorithm (Boyer-
Moore) to our SBMH algorithm (with an average search time of 4.78 seconds) results in
an average speedup factor of 4.6. Because this experiment is dominated by a very large
set (310 members), it is not surprising that Aho-Corasick performs slightly better with
an average search time of 4.62 seconds. For this experiment, the difference between
SBMH and Aho-Corasick is inconclusively small.

5.5 Performance Summary

As more and more vulnerabilities are discovered for a protocol or application, the num-
ber of rules that share a common filter for that protocol or application will grow. For
example, the web already accounts for 310 nearly identical rules that apply to HTTP
traffic. We can only expect that this number will continue to grow, as will the number
of rules that apply to other existing applications.

With regard to this problem, setwise algorithms scale much better than algorithms
that search each rule individually. The results presented in the previous section deal
with packets that involve fewer rules on average than this benchmark. The increased
speedup between the two benchmarks, 4.6 compared to 1.5, demonstrates that the set-
wise algorithms scale better as the number of rules per filter grows.

3 Most of these rules only look at TCP packets with the push bit set. While most legitimate web
requests will end in a packet with the push bit, a wily attacker would certainly choose to hide
their attacks by ensuring that the push bit is not set. To catch such attacks, string searches
would have to be run on a larger fraction of packets, thus increasing the relevance of this
benchmark even further.

4 The tri-modal algorithm presented at the end of the previous section would use Aho-Corasick
in this case since the data only exercises a single, large set



Figures 5 and 6 demonstrate this difference in scalability. While the SBMH algo-
rithm that we present in this paper performs slightly worse than Aho-Corasick for very
large sets, SBMH performs better for sets with less than 100 members. Finally, our
best construction adaptively makes use of Boyer-Moore-Horspool, Aho-Corasick, and
SBMH to pick the best of these algorithms for each set.

We presented the idea of an algorithmic performance attack in Section 2.3. A load
of incoming web requests would be an attractive way to perform such an attack on most
Snort systems. However, by improving our performance for these rules by a factor of
4.6, we have made it that much harder for such an attack to succeed.

6 Related Work

Concurrently with our work,5 Coit, Staniford, and McAlerney [26] identified the need
for better pattern matching in Snort, and intrusion detection in general, and imple-
mented Gusfield’s version of the Commentz-Walter algorithm using suffix trees for the
good suffix heuristic. The maximum speedup they achieved with real traffic and rule
sets was 1.18 while we achieved 1.5. For synthetic tests designed to demonstrate max-
imum speedup for difficult workloads, they achieved a speedup of 3.32 while ours was
between 4.3 and 4.6.

In addition, they took substantially different approaches to the structuring of sets
and the semantics of Snort rules. First, they reorder the rules despite the fact that Snort
rules, like firewall rules, are implicitly ordered and reordering them may substantially
alter the alerts generated by the system. Our technique of caching the results of set
searches avoids this problem.

Second, their pattern matching implementation does not support case-sensitive searches,
despite the fact that the default semantics of a Snort content rule are case-sensitive, and
ignoring those semantics may cause false matches. We address this problem without
requiring any duplication of search tables and data structures.

Third, their fast search algorithm can only be applied to rules with a single content
string to be matched, while our caching technique supports Snort’s feature of multiple
content strings per rule.

In summary, they only measured the performance of a single set-wise algorithm,
while we measure multiple algorithms and achieve better speedups without sacrificing
the semantics of Snort rule sets.

7 Conclusions

We have described a broad class of content-based packet handling applications (such
as intrusion detection, Layer 7 switching, and virus detection) and their dependence on
searching for sets of strings in packet data. Thus, while our paper focuses on network
based intrusion detection in order to allow concrete evaluation, our analysis of struc-
turing sets, our library implementations, and our new Setwise Boyer-Moore-Horspool
algorithm should be useful in all these applications. Further, the SBMH algorithm is of

5 They released a preprint only one week before an earlier version of this paper.



interest to applications in other problem domains that currently uses Aho-Corasick for
somewhat small sets.

Much of the paper focused on signature based systems and on improving the per-
formance of a popular open-source signature detection system called Snort. On packet
traces, we found that replacing the Snort Boyer-Moore algorithm with a set algorithm
(either Aho-Corasick or our new algorithm) improved performance only slightly unless
additional measures were taken to intelligently build the pattern sets. After this addi-
tional structuring of the problem we were able to improve performance on average by
50%. Additionally, related work to improve the performance of the search algorithms
themselves should improve this figure further.

More impressively, we found that for packet traces of web traffic, which dominates
many networks, the set algorithms improve the performance of standard Snort by a
factor of 5. This large improvement weakens an attacker’s ability to overload the system
by generating traffic that much be checked against a large number of filters.

We also found that our setwise Boyer-Moore-Horspool outperforms Aho-Corasick
for sizes up to say 100, upon which the Aho-Corasick algorithm does better. A com-
bined algorithm that switches from standard Boyer-Moore-Horspool (for sets of size 1)
to Setwise Boyer-Moore-Horspool (for sets of sizes between 2 and 100) and finally to
Aho-Corasick (for sizes > 100) seems to outperform all other variants.

We found that there were a number of implementation artifacts that suggest that
optimizing these algorithms for the particular architecture and cache size could provide
further improvements. Even our choice of thresholds to switch between algorithms is
likely to be machine dependent. Also, once the string matching component is no longer
a bottleneck, it may pay to improve the performance of other aspects of Snort. We leave
all these aspects to future work.
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