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ABSTRACT

The required high sensitivities and large fields of view of the new generation of radio interferometers impose high dynamic ranges,
e.g., ∼1:106 to 1:108 for the Square Kilometre Array (SKA). The main problem for achieving these high ranges is the calibration
and correction of direction dependent effects (DDE) that can affect the electro-magnetic field (antenna beams, ionosphere, Faraday
rotation, etc.). It has already been shown that the A-Projection is a fast and accurate algorithm that can potentially correct for any given
DDE in the imaging step. With its very wide field of view, low operating frequency (∼30–250 MHz), long baselines, and complex
station-dependent beam patterns, the LOw Frequency ARray (LOFAR) is certainly the most complex SKA pathfinder instrument.
In this paper we present a few implementations of the A-Projection in LOFAR which can deal nondiagonal Mueller matrices. The
algorithm is designed to correct for all DDE, including individual antennas, projection of the dipoles on the sky, beam forming,
and ionospheric effects. We describe a few important algorithmic optimizations related to LOFAR’s architecture that allowed us to
build a fast imager. Based on simulated datasets we show that A-Projection can dramatically improve the dynamic range for both
phased array beams and ionospheric effects. However, certain problems associated with the calibration of DDE remain (especially
ionospheric effects), and the effect of the algorithm on real LOFAR survey data still needs to be demonstrated. We will be able to use
this algorithm to construct the deepest extragalactic surveys, comprising hundreds of days of integration.

Key words. instrumentation: interferometers – techniques: interferometric – techniques: image processing

1. Introduction: LOFAR and direction-dependent

effects

With the building or development of many large radio telescopes
(LOFAR, EVLA, ASKAP, MeerKAT, MWA, SKA, e-Merlin),
radio astronomy is undergoing a period of rapid development.
New issues arise with the development of new types of inter-
ferometers, and certain approximations applicable to imaging
with the older generation of instruments are not valid anymore.
Specifically, they have wide fields of view and will be seri-
ously affected by direction dependent effects (DDE). Dealing
with DDE represents serious challenges, in the theoretical, nu-
merical, and technical aspects of calibration and imaging (see
Bhatnagar 2009, for a detailed review).

This is particularly true for the LOw Frequency
ARray (LOFAR), an instrument that observes in a mostly
unexplored frequency range (ν � 240 MHz), and will be one of
the largest radio telescopes ever built in terms of collecting area.
LOFAR’s design is based on a combination of phased array and
interferometer concepts (see de Vos et al. 2009, for a description
of the LOFAR system). It presently consists of 40 stations in
the Netherlands, and 8 international stations (5 in Germany,
and 1 each in France, Sweden, and the United Kingdom). Each
high band antenna station (110–240 MHz, HBA hereafter)

comprises 24 to 96 tiles of 4 × 4 coherently summed antennas,
while in a low band antenna station (10–80 MHz, LBA) they
are clustered in groups of 96 elements. At the station level, the
signals from the individual antennas or tiles (for LBA and HBA,
respectively) are phased and summed by the beamformer. This
step amounts to forming a virtual antenna pointing towards the
targeted field location. The data are transported from the various
stations of the LOFAR array to the correlator. The whole process
and the pipeline architecture are described in more detail in
Heald et al. (2010). LOFAR is affected by many complex
baseline-time-frequency4 dependent DDE, consisting mainly
of effects in the antenna/station beams and the ionosphere. We
currently have models of both the high-band and low-band
station beams (HBA and LBA, respectively).

As shown in Bhatnagar et al. (2008), A-Projection allows sky
images to be estimated, taking all possible complicated effects
associated with DDE into account (see also Bernardi et al. 2011;
Mitchell et al. 2012; Sullivan et al. 2012, in the context of the
Murchison Widefield Array and forward modeling). However,
unlike dish-based interferometers, whose fields of view are typ-
ically 0.5 degree and where the beam shape and polarization
angle are affected by pointing errors and rotated on the sky by
the parallactic angle (depending on the dish mount), LOFAR is
based on phased arrays that have very wide fields of view (up to
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Fig. 1. LOFAR stations are phased arrays characterized by a large field of view. X/Y polarimetric measurements made with it are therefore
nontrivial compared to a radio telescope using dishes: we have to take into account the projection of the dipoles that are generally nonorthogonal
on the sky and the fact that this angle varies across the field of view. This figure shows the Mueller matrix corresponding to baseline (01) in a given
time and frequency slot, normalized by the Mueller matrix at the phase center (see text). Each pixel in the plot (i, j) shows the amplitude of the
(i, j) Mueller matrix element in a certain direction s using a logarithmic scale. Even in this normalized version, the off-diagonal Mueller terms are
as high as 10% and cannot be neglected.

∼12 degrees), and nontrivial and quickly varying beams, thereby
driving complicated polarization effects. Technically speaking,
very wide field-of-view instruments that aim to reach a high dy-
namic range have to deal with baseline-dependent nondiagonal
Mueller matrices (see Sect. 2 for a detailed discussion). For the
VLA, due to its relatively small field of view, it was sufficient
for A-Projection to take only the diagonal terms of the Mueller
matrices into account to demonstrate corrections for instrumen-
tal polarization. This is not possible for LOFAR, however, due
to its heavily nondiagonal baseline-associated Mueller matrices,
where all 4 × 4 Mueller terms have to be taken into account (see
Sect. 3 for a detailed discussion).

We show in this paper that the scheme described in
Bhatnagar et al. (2008) can indeed deal with the heavily nondiag-
onal Mueller matrices associated with the very wide field of view
of phased arrays. Our imaging algorithm can take any model
or calibration solution or ionosphere phase screen as input. In
Sect. 2 we describe the issues related with the usage of phased
arrays in interferometers, and focus on LOFAR-related issues,
i.e., polarization aspects and baseline dependence of DDE. We
describe a few important algorithmic optimizations related to
LOFAR’s architecture, which allow us to build a fast imager1.
In Sect. 3 we describe the A-Projection algorithm first presented
in Bhatnagar et al. (2008), and the various implementations and
optimizations we have found that make it reasonably fast in the
case of LOFAR. We present the results in Sect. 4 and show that
beam and ionosphere corrections can both be performed at high

1 Our software (awimager) is built on the Casa imager implementation.

accuracy. We summarize and discuss the next developments in
Sect. 5.

2. Polarization effects associated with very wide

fields of view interferometers

In this section we describe the polarizations effects associated
with the complex structure of DDE that are inherent in the use
of phased arrays with very wide fields of view and nondiago-
nal, baseline-dependent Mueller matrices (or nonunitary Jones
matrices in the case of interferometers having similar antennas,
see Fig. 1 and the discussion in Sect. 2.1).

For an instrument with long baselines, large fractional band-
width, very wide field of view, and station-dependent effective
Jones matrices (due to beam, ionosphere, Faraday rotation), the
Mueller matrices to be considered are not only nondiagonal, but
also baseline-dependent. To highlight some of the main compli-
cations associated with very wide field-of-view instruments, in
Sect. 2.1 we describe in detail the structure of the linear oper-
ator introduced by Bhatnagar et al. (2008). In Sect. 2.2 we pro-
pose a method to approximately correct for the associated effects
corrupting the image plane (see also Rau & Cornwell 2011, for
other examples of the use of linear operators in the context of
image synthesis and deconvolution).

2.1. Description of baseline-dependence, DDE,
and polarization effects

For convenience, in this section and throughout the paper, we

do not show the sky term
√

1 − l2 − m2 that usually divides the

A105, page 2 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220882&pdf_id=1


C. Tasse et al.: Applying full polarization A-Projection to very wide field of view instruments

Fig. 2. Correction (DH
0
.D0)−1 that can be applied to the image before the minor cycle. This is a first-order correction for the complicated phased

array beam, which depends on time, frequency, and baseline.

sky to account for the projection of the celestial sphere onto the
plane, as this has no influence on the results. The DDE below
are baseline-dependent, since is the case for LOFAR, and the
measurement equation formalism can properly model those ef-
fects (for extensive discussions on the validity and limitations
of the measurement equation see Hamaker et al. 1996; Smirnov
2011, and see Appendix A for a short review of our require-
ments). If Vmeas

pq is the set of four-polarization measurement (XX,
XY, YX, YY) and Gp is the direction independent Jones matrix
of antenna-p, then the corrected visibilities on baseline pq are
Vcorr

pq = [Gtν,p]−1.Vmeas
pq .[G

H
tν,q]−1, and we can write

Vec(Vcorr
pq ) =

∫

S

(Dtν,∗
q,s ⊗ Dtν

p,s).Vec(Is)

× exp (−2iπφ(u, v, w, s))ds
(1)

where I is the four-polarization sky, ⊗ the Kronecker prod-
uct, Vec the operator12 that transforms a 2 × 2 ma-
trix into a four-dimensional vector, and φ(u, v, w, s) =

u.l + v.m + w.(
√

1 − l2 − m2 − 1) models the product of the
effects of correlator, sky brightness and array geometry. The ma-
trix Dtν∗

q,s ⊗Dtν
p,s is a 4×4 matrix, and throughout the text we refer

to it as the Mueller matrix2. We can also write Eq. (1) in terms
of a series of linear transformations:

V t,ν
pq = W t,ν

pq .S
t,ν
pq.F.Dt,ν

pq.I (2)

where V t,ν
pq are the 4Nt,ν

pq visibility measurement points in the
time-frequency block in which the DDE are assumed to be con-
stant. If Npix is the number of pixels in the sky model, the

2 This is not entirely true, since traditionally the Mueller matrix mul-
tiplies an (I,Q,U,V) vector and not a (XX, XY, YX, YY) correlation
vector.

true sky image vector I has a size of 4Npix, and it contains
the full polarization information (XXx, XYx, YXx, XYx) on the
xth pixel at the 4x position. Then, Dt,ν

pq contains the DDE, and
is a (4Npix) × (4Npix) block diagonal matrix. On a given base-

line (p, q), each of its 4×4 block is theDt,ν
pq(sx) = D∗q(sx)⊗Dp(sx)

Mueller matrix evaluated at the location of the xth pixel. F is
the Fourier transform operator of (4Npix) × (4Npix). Each of its
(4 × 4) blocks is a scalar matrix, the scalar being the kernel of
the Fourier basis exp (−2iπφ(u, v, w, s)). The matrix S t,ν

pq is the uv-

plane sampling function for that visibility, of size 4Nt,ν
pq × 4Npix,

and W t,ν
pq is the diagonal 4Nt,ν

pq × 4Nt,ν
pq matrix containing the

weights associated with the 4Nt,ν
pq visibilities.

We show in Fig. 1 that the Mueller matrix is nondiagonal for
LOFAR. The various panels show the amplitude of the direction
dependent Mueller matrix using our beam model alone (there-
fore it does not include Faraday rotation and ionosphere), for
the baseline (p, q) = (0, 1) in a given time and frequency slot.
To minimize the off-diagonal elements, we computed D0(s) =
[D(s0)]−1.D(s) in the direction s, where s0 is the phase center
direction. Intuitively, the normalization of the Mueller matrix by
D(s0) makes the projected dipoles on the sky orthogonal at the
phase centre (off-diagonal elements are zero there), while this
becomes less true as we go further from the targeted location.
The off-diagonal elements can be as high as ∼10% at a few de-
grees from the pointed location and, unlike most interferometers,
they cannot be neglected in the case of LOFAR.

We are generally interested in using the total set of visibil-
ities over baselines, time, and frequencies, having 4NV points.
We can write

V = A.I + ǫ (3)
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where ǫ is the noise, and A a (4NV ) × (4Npix) matrix made

of all W t,ν
pq .S

t,ν
pq.F.Dt,ν

pq matrices on top of each other. Then A
has dimensions 4NblockNt,ν

pq × 4Npix, where Nblock is the total
number of time-frequency-baseline blocks. We can also write
A =WSFD, where D has size 4NblocksNpix × Npix and has all

the Dt,ν
pq effects on top of each other. F is the block-diagonal

Fourier transform operator of size 4NblocksNpix × 4NblocksNpix,
with all of its blocks 4Npix × 4Npix equal to the matrix F appear-
ing in Eq. (2). S andW are the sampling and weight matrices
of size (4NV) × (4NblocksNpix) and (4NV) × (4NV ) respectively.
The transformation of Eq. (3) is exact. Estimating a sky from
a sparsely sampled measured set of visibilities is less trivial,
however.

2.2. Estimating a sky image: polarization effects

There are different ways to solve for I from the set of visibilities,
and reversing Eq. (3) relies on the linearity of the sky term in the
measurement equation. As mentioned above, our deconvolution
scheme uses A-Projection. This generalization of CS-CLEAN is
now better understood in the framework of compressed sensing,
which includes other new techniques (see McEwen & Wiaux
2011, for a review). In this section we describe a method of
approximately correcting the polarization effects in the image
plane. To highlight the issues associated with polarization and
the baseline dependence of the DDE, we simply write the sky

least square solution Î as the pseudo inverse:

Î =
(

AH.A
)−1
.AH.V (4)

where the term AH.V is the 4Npix dirty image, and (AH.A)−1

is the (4Npix) × (4Npix) image plane deconvolution matrix. Its
structure is rather complicated, and its size makes its estimation
prohibitive.

In the simple case of a matrix D being unity (no DDE), we
can see that each 4 × 4 block number (x, y) of the matrixAH.A
is the instrumental response to a source centered on the location
of the xth pixel, evaluated at the yth pixel. Therefore, comput-
ing (AH.A)−1 would involve estimating the point spread func-
tion (PSF) centered on the location of each pixel and inverting
a 4Npix × 4Npix matrix. In the presence of nontrivial baseline-
dependent DDE involving nondiagonal Mueller matrices, the
problem becomes more complex. However, we show below that
under some assumptions, the operator (AH.A)−1 (sometimes
called the deconvolution matrix) affected by DDE is decompos-
able in a classical deconvolution matrix (containing information
on the PSF), and a simple correction performed separately on
each pixel.

Following the notation introduced above, we can write
AH.A = DHPD as a 4Npix × 4Npix matrix, with P ≡
F HSHWHWSF of size 4NblocksNpix × 4NblocksNpix. The latter
matrix is block diagonal, and each of its 4Npix × 4Npix blocks
describes the PSF of the instrument for a given baseline-time-
frequency block. Their 4 × 4 xy-blocks are scalar matrices, the
scalar pt,ν,pq(x, y) being the response of the instrument evaluated
at the yth pixel to a source being centered at the xth pixel in the
given baseline-time-frequency block. We then have

[AH.A](x, y) =
∑

t,ν,pq

pt,ν,pq(x, y)DH
t,ν,pq(y)Dt,ν,pq(x). (5)

It is virtually impossible to compute this matrix, and this illus-
trates the difficulty of doing an image plane deconvolution in the

presence of time-frequency-baseline dependent DDE. To apply
a first-order correction to the image plane, we assume that the
DDE are constant enough across time, frequency, and baseline.
Then we can write
[

AH.A
]

(x, y) ∼ Nt,ν,pq p(x, y)DHD(x, y)

where Nt,ν,pq is the number of baseline-time-frequency blocks,

DHD(x, y) is a 4×4 matrix that is the average ofDt,ν
pq(y)H.Dt,ν

pq(x)
over baselines, time, and frequency, and p(x, y) is the PSF
stacked in baselines, time, and frequency. If the uv-coverage
is good enough, then AH.A is block diagonal (p(x, y) = 0 for
x � y, p(x, y) = 1 otherwise). All the x � y terms cancel out

in the final product, and in the relevant part of the DHD ma-

trix the Npix 4 × 4 blocks are on the diagonal. ApplyingDHD
−1

to AH.V can then be done on each pixel separately, by comput-

ing the productDHD(x, x)−1.Ix, where Ix contains the full polar-
ization information (XXx, XYx, YXx, XYx) for the xth pixel. This
provides a way to estimate an approximate least-square clean-
component value from a flux density in the dirty image in a
given direction sx. The details of this image-plane normalization
are discussed further in Sect. 3.1. Although a few assumptions
underlie this normalization, from the simulations presented in
Sect. 4.3 we argue that the complex 4 × 4 matrix normalization
per pixel presented here brings clear improvement. However, it
does not seem necessary for the sky solutions to convergence
(see Sect. 7).

3. Implementation of A-Projection for LOFAR

As explained above, the full polarization A-Projection scheme
has been described in Bhatnagar et al. (2008). However, for the
VLA implementation only the diagonal Mueller matrix terms
had to be taken into account. As explained in Sect. 2, LOFAR
has very wide fields of view, and the baseline-dependent Mueller
matrices associated to the four-polarization correlation products
are nondiagonal. This basically means that each individual polar-
ization cannot be treated independently of the others. In this sec-
tion we describe in detail a few implementations of A-Projection
that allow correcting for the nondiagonal Mueller matrices. We
propose optimizations in relation to the telescope architecture.
We show in Sect. 4 that this algorithm can indeed deal with the
heavily nondiagonal Mueller matrices associated with LOFAR’s
wide fields of view.

Following Bhatnagar et al. (2008), we built our implemen-
tation of A-Projection on top of a traditional Cotton & Schwab
CLEAN algorithm (Schwab 1984). It is an iterative deconvolu-
tion algorithm that consists of two intricate steps. The CLEAN
and A-Projection algorithms perform a series of operations that
can be described in the following way:

În+1 = În + Φ.AH
(

V −AÎn
)

(6)

where the true sky estimate În+1 at step n+ 1 is built from its es-
timate În at step n and Φ is a nonlinear operator. It basically
estimates the deconvolved sky from the residual dirty image
AH(V − AÎn). The minor cycle performs operations that ap-
proximate (AHA)−1 as discussed in Sect. 2, and takes the es-
timated image vector to zero but at the strongest components
above a certain threshold. For the sky solutions to converge,
the predict step AÎn or degridding) has to be accurate and un-
biased. A-Projection is a fast way to apply A or AH. If we
separate the phase of the Fourier kernel in Eq. (1) as the sum
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of φ0(u, v, s) = u.l + v.m and φ1(w, s) = w.(
√

1 − l2 − m2 − 1),
then following Bhatnagar et al. (2008) invoking the convolution
theorem Eq. (1) becomes

V t,ν
pq(u, v, w, i) = F

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

4
∑

j=1

Dt,ν
pq(i, j, s)W(w, s)I j(l,m)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

4
∑

j=1

[

F
(

Dt,ν
pq(i, j, s)W(w, s)

)

∗ F
(

I j (l,m)
)

]

(7)

where ∗ is the convolution product, F is a 2D Fourier trans-

form, W(w, s) = exp
(

−2iπw.(
√

1 − l2 − m2 − 1)
)

, and i and j in-

dex the polarization number (running over (XX, XY, YX, YY)).
This method is efficient because the DDE are smooth on the sky,
meaning the support of the corresponding convolution function
can be small (no high frequency terms). Indeed, as shown in
Fig. 1 the LOFAR station beam is very smooth, and depend-
ing on the field of view, the typical support is of the order
of 5–11 pixels.

3.1. Naive implementation

The operation AÎ in Eq. (6) converts a sky model into visibil-
ities. To apply this operator to a massive amount of data in an
algorithmically efficient way, we apply the scheme outlined in
Eq. (7). First a two-dimensional, fast Fourier transform (FFT)
is applied to the sky model image Î, independently on the
4 polarizations. Then for each baseline in a time-frequency
block ∆(t, ν), where the DDE are assumed to be constant, the
16 convolution functions are computed as the Fourier trans-
form of the image plane Kronecker product of the DDE. For the
LOFAR beam on a given baseline this block is typically 10 min
and 0.2 MHz wide. The residual visibilities in each polarization
are interpolated from the sum in Eq. (7). In practice, to mini-
mize the support of the W-term and associated aliasing effects,
we multiply the DDE in the image plane by a Prolate spheroidal
function (see Appendix B for more details).

The predicted visibilities are removed from the measured
visibilities by computing the residual visibilities Vresidual = V −
AÎ

N
. Then AH applies a correction to the residual visibilities,

projects the result onto a grid (the gridding step) and Fourier
transforms it. In practice this is done as

V
(t,ν),(p,q)

corr,u,v,w,i
=

4
∑

j=1

(

F
(

D∗t,νpq ( j, i, s) W∗ (w, s)
)

∗ V
(t,ν),(p,q)

residual,u,v, j

)])

(8)

and

Idirty(l,m, i) = F −1

(

∑

(t,ν),(p,q)

V
(t,ν),(p,q)

corr,u,v,w,i

)

. (9)

The resulting dirty image is still corrupted by the phased-array
beam-related effects discussed in Sect. 2.2. Before the minor
cycle we can either multiply each xth four-polarization Idirty(x)

pixel by the 4 × 4 matrix DHD(x)−1, or simply normalize each

polarization of Idirty by DHDii(x), the diagonal elements of

DHD(x). As shown in Sect. 4.3, fully applying DHD(x)−1 to
each pixel in Idirty lead to a minor improvement.

The computational cost of taking DDE into account using
A-Projection depends on (i) whether its baseline dependence;
(ii) the angular size at which the effect needs to be sampled
(thereby constraining the size support of the convolution func-
tion); and (iii) the amplitude of the terms of the 4 × 4 Dt,ν

pq(sn)
matrix. In the case of the full polarization A-Projection, the
data need to be corrected per baseline, time, and frequency slot.
For each of those data chunks, to recover the corrected four-
polarization visibilities, one needs to take all 16 terms of the
4 × 4 Dt,ν

pq(x) Mueller matrix into account, along with the four
visibilities built from the 2D Fourier transform of the sky model.
Therefore in addition to the 16 convolution function estimates
per baseline and time-frequency slot, in the gridding and de-
gridding steps one needs to compute 16 × N2

S
operations per

four-polarization visibility point, where NS is the support of the
convolution function. The algorithmic complexity is discussed
further in Sect. 4.4, but this implementation is too slow to be
practical.

3.2. Separating antenna beam pattern
and beam-former effects

Depending on the assumptions and system architecture one can
find powerful algorithmic optimizations. We show here that in
the case of LOFAR, we can use the fact that although stations
are rotated with respect to each other, the elementary antennas
are parallel. The effective phased-array beam Bp,s of station p is
modeled as Bp,s = ap,s.Ep,s, where ap,s is the array factor, and
Ep,s is the element beam pattern. The term ap,s depends on the
phased array geometry and on the delays applied to the signal
of the individual antennas before the summation (by the beam-
former of each individual LOFAR stations). The term Ep,s mod-
els both the individual element antenna sensitivity over the sky
and its projection on the sky. We have

Vec(Vcorr
pq ) =

∫

S

Vec(ap,s.Ep,s.Is.E
H
q,s.a

∗
q,s)

× exp (−2iπφ(u, v, w, s))ds
(10)

where ap,s is scalar valued and Ep,s nondiagonal because (intu-
itively) the element beam projection on the sphere depends on
the direction. Applying the convolution theorem to Eq. (10) we
obtain

Vec(Vcorr
pq ) = F [E∗q,s ⊗ Ep,s]

∗ F
[

ap,s.a
∗
q,s. exp

(

−2iπφ1(w, s)
)]

∗
∫

S

Is. exp
(

−2iπφ0(u, v, s)
)

ds.

(11)

All LOFAR stations have different layouts on the ground, so the
scalar-valued array factor ap,s is station dependent. However, all
individual antennas of all stations point in the same direction,
and we can assume that the Mueller matrix is baseline indepen-
dent, i.e. E∗q,s⊗Ep,s = E∗

0,s
⊗E0,s. Although this requires an addi-

tional correction step of the gridded uv-plane visibilities, as we
see below this is an interesting algorithmic shortcut because the
element-beam correction can be applied to the baseline-stacked
grids.

The element beam is very smooth over the sky, and in most
cases it can be assumed to be constant on time scales of an hour,
so that the polarization correction step does not need to be ap-
plied often. The degridding step goes as follows. (i) In each time-
frequency slot ∆(t, ν)E where the Mueller matrix of the element
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beam is assumed to be constant, the polarization correction is
applied to the (XX, XY, YX, YY) grids as the sum of con-
volved grids by the terms of E∗

0,s
⊗E0,s. We then loop3 over base-

line (pq), and time-frequency range ∆(t, ν)a where the array fac-
tor and w-coordinate are assumed to be constant within ∆(t, ν)E.
For each step in the loop; (ii) the oversampled convolution func-
tion for baseline (pq) is estimated in ∆(t, ν)a for the term in the
second line of Eq. (11); and (iii) it is used to interpolate the pre-
dicted visibilities at the given uv-coordinate, separately on each
polarization.

As explained in Sect. 4.4, the computing time for estimat-
ing the convolution functions can be quite significant, and this
scheme allows us to compute only one convolution function per
baseline instead of 16, and 4 gridding/degridding steps instead
of 16. We note, however, that the assumption of baseline inde-
pendence of the Mueller matrix on which this optimization is
based starts to become invalid in case of direction-dependent
differential Faraday rotation, or for the longer baselines where
the curvature of the earth starts to be important (in that case
the element beams are not parallel). As discussed in Sect. 4.4,
the computing time of this implementation is dominated by the
convolution function estimate.

3.3. Separating the W-term: hybrid w-stacking

The support of the A-term is determined by the minimum an-
gular scale to be sampled in the image plane. The beam or
ionospheric effects are in general very smooth on the sky so
that only small numbers of pixels are needed to fully describe
the effects, thus corresponding to a small convolution function
support size (typically 11 × 11 pixels). The highest spatial fre-
quency in the image plane is the W-term and its support can
be as large as ∼500 × 500 pixels for the long baselines in wide
fields of view, when the target field is at low elevation. This
forces us to (i) compute a convolution function with a large
support; and (ii) grid each individual baseline using the large,
W-term-dominated convolution function.

We note, however, that the W-term is in itself baseline in-
dependent4: two baselines characterized by different ionosphere
and beams, but with the same w-coordinate, will have the same
W-term. We therefore slightly changed the piping of the algo-
rithm at this point by taking the A-Term and the W-term into
account separately, as follows

Vec(Vcorr
pq ) = F [E∗s ⊗ Es]

∗ F
[

exp
(

−2iπφ1(wplane, s)
)]

∗ F
[

ap,s.a
∗
q,s. exp

(

−2iπφ1(∆w, s)
)]

∗
∫

S

Is. exp
(

−2iπφ0(u, v, s)
)

ds.

(12)

We consecutively grid or degrid the data in w-slices, i.e., which
have similar w-coordinates. This algorithm is also known as
W-stacking5. In addition, we take into account that the points can
lie either above or below the associated w-plane central coordi-

nate, using the term exp
(

−2iπφ1(∆w, s)
)

, where ∆w = w−wplane.

This step is similar to the traditional w-projection algorithm. If
we have enough w-stacking planes, ∆w is small, and the support

3 We can parallelize the algorithm at this level.
4 Baseline dependence becomes an issue when a set of baselines with
exactly the same uvw coordinates can give different visibilities.
5 See for example Maxim Voronkov’s presentation at http://www.
astron.nl/calim2010/presentations in the context of ASKAP.

of the baseline-time-frequency dependent convolution function
remains small, leading to a dramatic decrease in the total convo-
lution function estimation time. Conversely, given a convolution
function support we can find the maximum usable ∆w and derive
the number of w-stacking planes as a function of the observa-
tion’s maximum w coordinate (see Sect. 4.4.3 for more detailed
discussion). In the case of LOFAR, choosing a convolution func-
tion support of ∼21 pixel gives a number of w-stacking planes
of ∼30.

This requires yet an additional step as compared to the im-
plementation described in Sect. 3.2, the degridding step AÎn,
which can be described as follows. First, following the no-
tation introduced above, (i) in each time-frequency interval
∆(t, ν)E we correct the four-polarization grids from the ele-
ment beam (including projection effects) using E∗

0,s
⊗ E0,s.

Then (ii) we loop over the number of w-planes (ranging from
−wmax to wmax, see Sect. C), and convolve the grid obtained
in (i) by the associated w-term (appearing in the second line
of 12). Finally in (iii) for each w-plane obtained in each step
of the loop (ii), we loop over the set of baselines (pq)w and
the time-frequency range ∆(t, ν)a,w associated with the given
w-plane. We interpolate the predicted visibilities at the given uv-
coordinate, separately for each polarization, based on the over-
sampled F [ap,s.a

∗
q,s. exp (−2iπφ1(∆w, s))] convolution function.

As discussed in Sect. 4.4.3, this is the fastest implementation of
A-Projection we have obtained so far.

4. Simulations

To test the algorithmic framework described above, we per-
formed a series of tests on LOFAR simulated datasets. In this
section we summarize those results and discuss the computa-
tional costs of A-Projection for LOFAR.

4.1. One off-axis strongly polarized source

As discussed above, by using A-Projection we can compute the
exact value of the four-polarization visibilities on a given base-
line at a given time and frequency, from (i) the sky model and
(ii) the baseline-time-frequency-direction dependent effects. In a
first step, we focus on testing the full polarization A-Projection

degridding (or predict) step (A.Î). The accuracy of this step is
vital for the convergence of the CLEAN/A-Projection algorithm.
Our experience suggests that any small numerical systematic
bias in this operation can lead to strong divergence of CLEAN.

To test this transformation, we simulated a dataset having
only one strongly polarized off-axis point-like source in a low-
band 62 MHz LBA dataset. The four-polarization visibilities
were generated using BBS (BlackBoard Selfcal6), which di-
rectly calculates the visibilities following Eq. (1). It takes the
beams of the individual elementary antennas into account (and
their projection on the sky), as well as the phasing of the indi-
vidual antenna within a LOFAR station (the array factor). We
located the simulated source a few degrees from the phase cen-
ter, and its flux density is strongly polarized, in a nonphysi-
cal way (with Stokes parameters of I,Q,U,V = 100, 40, 20,
10 Jy). Figure 3 shows the real part of BBS and A-Projection pre-
dicted visibilities on baseline (01). The residuals are centered at
zero, and A-Projection performs very well in predicting the four-
polarization visibilities, taking the complicated effects of the

6 See http://www.lofar.org/wiki/doku.php?id=public:

documents:lofar_documents\&s[]=bbs for a review of BBS
functionalities.
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Fig. 3. Essential part of the A-Projection algorithm relies on the predict step, which transforms a 2D sky image (the projection of the celestial
sphere on a plane) into a set of visibilities. We have simulated a dataset having one off-axis source, where the true visibilities (black dashed
line) have been estimated using Eq. (1), taking the beam into account. This plot shows the comparison in all measured polarizations between the
exact value of the visibility of a given baseline and the A-Projection estimate (gray line). Contrary to a traditional predict step, the visibilities are
modulated by the beam amplitude (dotted line), and we have time-dependent polarization leakage. The overplotted graph shows a zoom in the
small region shown in the top-right panel. In the degridding step, we use a computationally efficient closest-neighbor interpolation, creating steps
in the predicted visibilities.

LOFAR phased array station beams into account. A traditional
predict using simple Fourier transform, facets, or W-Projection
would suffer from much higher residuals, driving systematics in
the deconvolution, and thereby limiting the dynamic range. Here
the residual errors are dominated by the type of interpolation we
use in the uv domain (closest neighborhood, see Appendix B for
details).

4.2. Dataset with many sources

4.2.1. LOFAR station beam

To test our modified implementation of the entire CLEAN algo-
rithm (involving gridding and degridding steps), we simulated
a dataset containing 100 sources, with the source count slope
following the 1.4 GHz NVSS source count (Condon et al. 1998).
Most of these sources have flux densities between 10−2 and 1 Jy,
to which we added two much stronger sources of 100 and 10 Jy,
respectively.

As in the dataset described above, the visibilities are gen-
erated using BBS6. We have considered the Jones matrices of
the individual elementary antennas, as well as the array-factor
(the beam-forming step). As explained in Sect. 3.2 and shown in
Fig. 3, because the LOFAR stations are rotated with respect to
each other, all baselines will be affected differently by beam ef-
fects. We have applied first-order corrections for the beam effect

to the visibilities by computing V
t,ν
pq,corr = [D

t,ν
p ]−1

s0
V

t,ν
pq[D

t,ν,H
q ]−1

s0
,

where Dp(s0) is the Jones matrix of station p computed at the
center of the field. This mostly compensates for the element
beam effects, in particular the projection of the dipoles on the
sky. However, as shown below, the LOFAR fields are large, and
the projections of the dipoles vary across the field of view.

Figure 4 shows the restored images produced using three
different modified CLEAN algorithms. Each of the images is

∼3000 × 3000 pixels in size, and is ∼6 degrees wide. We used
15 w-stackings, 128 ∆w-planes (see Sect. 3.3), a maximum base-
line of 5 kλ, a Briggs7 weighting scheme, a cycle factor of 2.5
and 10 000 minor cycle iterations. The first map was generated
using W-Projection (Cornwell et al. 2008) as implemented in
CASA8. Strong artifacts are present around the brightest off-axis
source, and the dynamic range is only 1:230. In the second im-
age we used our implementation of A-Projection taking the array
factor only into account. This has reduced the effect of the resid-
ual visibility levels on each individual baselines and raised the
dynamic range to ∼1:3.400. In the third image we have taken
into account all LOFAR beam effects: individual antenna sen-
sitivity, spatially varying projections, and the array factor. The
dynamic range increased to ∼1:12.000 9.

The source flux densities in the restored maps were deter-
mined using the LOFAR source extraction software pyBDSM10.
As shown in Fig. 4, the input flux densities are very well
recovered.

7 With a robust parameter of 0, see http://www.aoc.nrao.edu/
dissertations/dbriggs
8 http://casa.nrao.edu
9 It seems the accuracy of the output images of our imager is presently
limited to ∼10−4 due to some numerical precision problem: through-
out the code, single-precision floating-point numbers are used, and the
rounding-off of products and sums involved in the algorithm seem to
generate limitations at this level. Detailed tests based on comparing of
single and multi-threading consistently show an instability at this level.
For the LOFAR surveys we might not need higher accuracy however,
since we plan to use direction-dependent peeling to subtract the bright-
est sources.
10 See http://www.lofar.org/wiki/doku.php for more
information.
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Fig. 4. Dramatic differences between the estimated deconvolved sky when using three different modified CLEAN algorithms on a simulated
dataset containing 100 sources. The visibilities have been generated by taking (i) the individual antennas; (ii) their projection on the sky and
(iii) the beam-forming step (the scalar array factor) into account. The top-left image shows the deconvolved sky as estimated with a traditional
imager not taking time, frequency, baseline, direction-dependent effects into account. The top right and lower left images have been generated by
considering, respectively, the array factor only and both the array factor and the element beam. The lower right panel shows that the input flux
densities are correctly recovered.

4.2.2. LOFAR station beam and the ionosphere

To test the ionospheric correction with A-Projection, we sim-
ulated a dataset containing 100 sources, affected by a simu-
lated ionosphere. The ionospheric effects essentially consist of
a purely scalar, direction-dependent phase, without including
Faraday rotation. In addition to these purely scalar ionospheric
phase effects, the visibilities are affected by the direction-
dependent LOFAR station beam effects discussed above.

The ionosphere is modeled as an infinitesimally thin layer at
a height of 200 km. The total electron content (TEC) values at
a set of sample points11 are generated by a vector autoregressive
random process. As described in van der Tol (2009) the spatial
correlation is given by Kolmogorov turbulence, and the TEC val-
ues needed to construct the phase screen are determined using
Kriging interpolation.

Figure 5 shows dirty images at the location of a bright
source before and after A-Projection correction of beam and

11 For each station, the sample points correspond to the piercing points
in the ionosphere of five directions located at the four corners and the
center of the field of view. This way the ionospheric layer is sampled
in the most relevant area and there are at least five sample points within
the field of view of each station.

Fig. 5. Dirty images at the location of a bright source in a simu-
lated dataset. The images are 1deg in diameter. Without applying the
A-Projection correction for an ionospheric phase screen (left panel)
the dirty image shows important distortions as a result of ionospheric
effects. Application of this correction (right panel) clearly shows im-
provements.

ionosphere. This suggests that the dirty undistorted sky is prop-
erly recovered from the corrupted visibilities. We compare in
Fig. 6 the cleaned image with and without the A-Projection cor-
rection. These simulations demonstrate that A-Projection can
indeed deal with the complicated effects associated with the
ionosphere.
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Fig. 6. This figure shows the deconvolved image synthesized from the simulated dataset described in Sect. 4.2.2. In the left panel, the ionospheric
effects are not taken into account, and our deconvolution scheme naturally produces severe artifacts and high residuals in the reconstructed sky. The
deconvolved image shown in the right panel has been estimated using our implementation of A-Projection with the time-dependent ionospheric
phase screen.

Fig. 7. The evolution of the estimated flux density as a function of
the major cycle iteration for one polarized off-axis source. From top
to bottom, and left to right, the panels show results generated by us-
ing (i) W-Projection only; (ii) AW-Projection with the array factor
only; (iii) AW-Projection taking the full beam model into account; and
(iv) image plane corrections as described in Sect. 2.2.

4.3. Convergence

We have also studied the influence of the various corrections de-
scribed in this paper on the convergence speed of the flux den-
sities estimated through the major cycle loop. For this we used
the dataset described in Sect. 4.1 containing one off-axis source
having Stokes parameters (IQUV) = (100, 40, 20, 10) Jy.

Figure 7 shows the evolution of the estimated flux density
as a function of the major cycle iteration number for differ-
ent algorithms. Using only the W-Projection merely shows a
weak convergence towards the observed flux density (i.e., to the
“beam-multiplied” sky). The situation improves somewhat when
we apply a full polarization A-Projection without the element
beam (therefore assuming the dipole projections on the sky are
constant across the field of view). We note that in the absence
of polarization, the situation is not as bad. Taking the element
beams into account, the algorithm makes the estimated flux den-
sities converge to the true values to within one percent. In this

version of the algorithm, the image plane correction is the same
in all polarizations and just a scalar, the average primary beam
normalization. The situation improves slightly in terms of con-
vergence speed by applying the image-plane renormalization de-
scribed in Sect. 2.2.

In any case, the accuracy of the recovered flux densities
seems to be guaranteed by the accuracy of the degridding step.
Our experience in implementing A-Projection suggests that any
small systematic error in the degridding step can lead to biases
in the recovered flux densities or even to divergence in the more
severe cases. Adding the image-plane polarization correction
seems to improve the convergence speed, but does not appears
to be necessary.

4.4. Computational and memory-related costs

Given the large amount of data that has to be processed for imag-
ing an interferometric dataset, reducing the algorithmic com-
plexity is of primary importance.

4.4.1. Memory-related issues

The A-term is generally very smooth in the image plane, with
corresponding small support convolution functions, and under
those conditions the A-Projection algorithm is virtually free in-
terms of computing time as explained in Bhatnagar et al. (2008)
(and in Cornwell et al. 2008, in the case of W-Projection): the
A-term and the low w-coordinate convolution function support is
less than, or comparable to, the spheroidal function support that
needs to be applied anyway in a traditional gridder/degridder.
However, as described in Sect. 3.2, all LOFAR stations are ro-
tated with respect to each other, and the synthesized stations
beams are all different in a given direction. This gives rise to a
serious algorithmic complication because it makes convolution
functions baseline-dependent: the number of possible convolu-
tion functions are 16×Ntimes×NFreqs×NStations× (NStations −1)/2.
With ∼800 to ∼1500 baselines, even with only one convo-
lution function every ten minutes, a typical observing run of
eight hours, one frequency channel, and an average support size
of ∼30 pixels (taking the w-term into account), this requires
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∼100 Gbytes of storage. This is optimistic because in the case
of other DDE such as the ionosphere, the A-term will have to be
evaluated every 30 s. Even if the storage is done at the minimum
necessary resolution, those numbers are clearly prohibitive for
storing the convolution into memory. The convolution functions
therefore have to be computed on the fly, and algorithmically,
this represents an additional cost.

4.4.2. Naive and element-beam-separated A-Projection

The LOFAR station beams are smooth on the sky, and the cor-
responding convolution function supports are small (typically
11–15 pixel complex images), while the W-term needs up to
�500 pixels depending on the w-coordinate (with an average of
∼30 pixels). The computing time depends on the convolution
function support NS, and for the implementations described in
Sects. 3.1 and 3.2, we have

NS =
∑

c f={S ,Ap,Aq,W}
NS(c f ) (13)

where the subscripts S , Ap, Aq and W stand for the pro-
late spheroidal (∼7–11 pixels), A-terms of antenna p and q,
and W-term, respectively. For a typical field-of-view, we have
NS(A) = 9−15 and NS(W) ∝∼ D2.w, where D is the field-of-view
diameter and w is the W-coordinate of the given baseline in the
given time-slot (see Appendix B). For that baseline, time and
frequency slot we can write the total computing time as ttν

pq,tot =

ttν
pq,grid

+ ttν
pq,CF

, where ttν
grid

and ttν
CF

are the estimated gridding and

convolution function times, respectively. For LOFAR data, in
most cases we have NS ∼ NS(W) and tgrid

∝∼ D4w2. Our expe-
rience has shown that tCF is dominated by the computing time of
the Fourier transform of the zero-padded convolution function
(see Fig. 8), whose size is O.NS, where O is the oversampling
parameter that controls the quality of the nearest neighborhood
interpolation. If NW

buf
∝ 1/(∆Twin∆νwin) is the number of visibil-

ity buffers associated with the W-plane (∆Twin and ∆νwin are the
time/frequency window intervals in which the DDE are assumed
to be constant), then we have tW

CF
∝∼ NW

buf
.O2w2D4. log (OwD2)).

The gridding time for a given w-plane is simply tW
grid
∝ NW

vis
w2D4,

where NW
vis

is the number of visibilities associated with the
w-plane. The total computing time can then be written as

ttot ∼ Neltel +

(

∑

W−planes

[

atW
grid + btW

CF

])

(14)

where a and b are constants, Nel the number of time/frequency
blocks in which the element beam is assumed to be constant,
and tel

∝∼ cN2
pix

(1 + 2 log (Npix)) is the computing time needed to

apply the element beam to the grids (c = 16 for full polariza-
tion imaging, and c = 8 for only I-stokes). For the implemen-
tation described in Sect. 3.1, we have tel = 0, but both a and b
are 16 times higher (8 for only I-stokes) than in the case of the
algorithm described in Sect. 3.2. Figure 8 shows the estimated
gridding and convolution function times as a function of the
w-coordinate of the given baseline in the given time slots. From
this figure it is clear that the W-term is the most important limit-
ing factor and that the estimate of the convolution function rep-
resents a major limitation of those implementations, especially
in cases of a rapidly varying DDE, such as the ionosphere, where
the convolution function calculation would largely dominate.

w-coordinate of the baseline (m)

-

-

-
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o
m
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u
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Gridding time

CF estimate time

Fig. 8. This figure shows the computing time of both the gridding and
convolution function steps for a 10 degree diameter field of view, a max-
imum w-coordinate of 104 m and a time-window of Twindow = 1200 s.
When the DDE vary rapidly (such as in the case of the ionosphere),
a baseline-dependent convolution function is often required, and the
convolution function computing time can largely exceed the gridding
computing time. Our hybrid W-staking algorithm is not affected by this
scaling law.

4.4.3. Hybrid W-stacking and A-Projection

As explained in Sect. 3.3 for the W-staking implementation,
the baseline-time-frequency-dependent oversampled convolu-
tion function is the Fourier transform of the zero-padded image-
plane product of the spheroidal and A-terms, plus a W-term
accounting for the ∆w-distance between the given visibilities
and the corresponding w-planes. The larger the support of the
convolution function, the fewer w-planes we need to fully cor-
rect for the w-term. As explained in Appendix B, in order to
properly sample the w-term in the image plane, to a given
w-coordinate and field of view corresponds a certain convolu-
tion function support. We can then obtain ∆w = a.NS/D

2 (with

a =
√

2/(4π)), and the necessary number of w-planes between
−wmax and wmax is NW = wmaxD2/(a.NS). Because we compute
the W-term convolution in the image plane, the cost of this step
is tW ∝ N2

pix
(1 + 2 log (Npix)). The total computing time is then

ttot ∼ bNvisN
2
S + cNbufO2N2

S log(ONS) + Nel [tel + NW tW ] (15)

where Nel is the number of time/frequency buffers in which
the element beam is assumed to be constant, Nbuf is the num-
ber of time/frequency buffers in which the A-/∆w-terms are as-
sumed to be constant, and b and c are constants. In Table 1 we
present the typical computing times for a major cycle with the
implementation discussed here and presented in Sect. 3.3.

5. Summary and future work

The new generation of low-frequency interferometers (EVLA,
MWA, LWA) and pathfinders and precursors of the SKA
(LOFAR, ASKAP, MeerKAT) cannot be used properly and effi-
ciently without the development of new calibration and imaging
techniques that take the many DDE that influence the electro-
magnetic field into account. These effects mainly include com-
plicated antenna/station beam effects, fast ionosphere phase, and
amplitude variations, along with the associated Faraday rotation.

In this paper we have focused on the issues associated with
the application of new techniques for the LOFAR elementary
antenna and station beams, which involves using few levels
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Table 1. Computational performance of our fastest A-Projection implementation described in Sects. 3.3 and 4.4.3.

Npix d D Nstokes wmax NS NW ∆t,∆ν ∆el
t ,∆

el
ν tCF tgrid tel tW Memory t

grid
tot

(deg) (km) (s, MHz) (h, MHz) (%) (%) (%) (%) (Gb) (s)

1024 40 11.4 IQUV 20 15 14 300, 0.78 3, 3.5 67.8 10.2 19.7 2.1 1 40.9
4096 10 11.4 IQUV 20 15 14 300, 0.78 3, 3.5 24.5 4.9 57.5 12.8 4.5 117.4
4096 10 11.4 I 20 15 14 300, 0.78 none 52.0 11.4 0.0 36.5 1.5 143.7
8192 5 11.4 I 20 15 14 300, 0.78 none 32.8 6.1 0.0 60.9 6.1 335.7

Notes. Columns list various performance parameters corresponding to different imaging settings. The tests were performed for a 12 sub-band
dataset (1 channel per sub-band) on the CEP2 LOFAR cluster node each having 24 AMD Opteron(tm) 6172 Processors, and 64 Gb of RAM

memory. t
grid
tot is the total time for a gridding or degridding step. The times tCF, tgrid, tel, and tW are given as fractions of t

grid
tot , and they correspond

to the times needed to compute convolution functions, grid/degrid the data, apply the element beam and apply the W-term, respectively. We are
confident we can still gain a factor of �2–4 in time over these values.

of phased arrays (see Sect. 1). Using the measurement equa-
tion formalism, the associated high complexity (wide field of
view, individual station rotations, projection of the elementary
dipoles on the sky), the problem of imaging and deconvolu-
tion LOFAR calibrated datasets can be solved by applying the
A-Projection algorithm described in Bhatnagar et al. (2008).
Because of its very large field of view (∼5–10 degrees in di-
ameter), a full-polarization A-Projection implementation deal-
ing with nondiagonal Mueller matrices is needed for LOFAR.
We showed that A-Projection can indeed deal with the heavily
baseline-dependent, nondiagonal, direction-dependent Mueller
matrices associated with LOFAR baselines. We also demon-
strated that efficient ionospheric corrections can be performed
using A-Projection. We proposed a series of implementations of
A-Projection for LOFAR, taking nondiagonal Mueller matrices
into account, aiming at accuracy and computing efficiency.

5.1. Optimizations

As explained in Sect. 4.4 the DDE, although varying rapidly, are
smooth on the sky, so the convolution functions have a small
support. However, in the case of LOFAR, the wide field of view
requires considering (i) the W-term; and (ii) the off-diagonal
terms of the Mueller matrices (due to the varying projection of
the dipoles on the sky or to Faraday rotation). In addition (iii),
the baseline dependence renders the storage of the convolution
functions prohibitive, so they have to be computed on the fly.

In our first implementation (Sect. 3.1), the constraint (i) often
makes the W-term convolution function support dominant; while
(ii) requires the implementation of a complicated gridding and
degridding step, taking all polarizations into account to correct
for polarization leakage. In the case of a quickly varying DDE
such as the ionosphere; step (iii) can completely dominate the
computing time (usually set by gridding/degridding operations).

Using the fact that LOFAR station elementary antennas (re-
sponsible for the complicated projection effects) are parallel,
although the station layouts are rotated with respect to each
other, we could separate the first implementation into two steps
(Sect. 3.2). The first is a purely scalar gridding/degridding,
which suffers from (i) and (iii), while the second is only affected
by (ii). As the nondiagonality of the Mueller matrix is corrected
in the baseline-stacked uv-plane, we win a computational fac-
tor of 10 to 16 as compared to the first implementation. It is
important to note that this optimization breaks down when the
nondiagonal Mueller matrix becomes baseline-dependent, as in
the case of very long baselines (due to the earth’s curvature) or
due to the ionosphere’s differential Faraday rotation.

In the last implementation (Sect. 3.3), we still applied
the direction-dependent nondiagonal Mueller matrix of the

baseline-independent element-beam, but go further by separat-
ing the W-term from the A-Term. The former is responsible for
the large support sizes and is baseline independent (around a
given w-plane), while the latter has small support and is baseline
dependent. In this implementation, we grid/degrid the data based
on a small support baseline-dependent, oversampled convolution
function, and convolve the input and output grids (forward and
backward steps, respectively) with the non-oversampled W-term
convolution function. We saved computing time by calculat-
ing the oversampled convolution function of a generally much
smaller support, giving a net gain of two to ten over the second
implementation (Sect. 3.2, and Table 1).

Such optimizations are vital for the feasibility of the LOFAR
extragalactic surveys, given their huge total integration times of
hundreds of days. Also for the SKA, it will be important to take
such algorithmic optimizations into account, which are linked to
the instrument and system architecture, because they can reduce
the algorithmic complexity by orders of magnitude.

5.2. Application to LOFAR survey data and future work

We conducted many experiments on real LOFAR data in order
to test our imager. Specifically, we repeatedly observed the same
set of objects, each time shifting their pointing centers by a few
degrees. Our implementation of A-Projection gives coherent cor-
rected flux densities at the level of 5–10% on the edge of the
field. However, although we have shown in this paper that the
algorithm gives excellent results in simulated datasets, it shows
little or no dynamic range improvement in the resulting images,
as compared to a traditional imager.

LOFAR is a very complex machine and feeding the imager
with an incorrect direction-dependent calibration solution will
not lead to any improvement in the deconvolved sky, and can
even decrease the dynamical range. To improve LOFAR’s dy-
namic range we will have to make progress in understanding
the calibration aspects of DDE, especially those related to iono-
sphere and differential Faraday rotation. Much effort is being
given to this, and DDE calibration algorithms of low complexity
are under development or have already been achieved, such as
SAGECal (Yatawatta 2008).

On the imager side, other ongoing developments include
(i) implementation on GPU, of the gridding, degridding, or the
convolution function calculations; (ii) compressed sensing in
the image plane; (iii) uv-plane interpolation techniques differ-
ent from zero-padding FFT; and (iv) wide-band A-Projection
Bhatnagar et al. (in prep.). Ionosphere and true beam calibration,
in combination with peeling techniques, will hopefully allow us
to use the framework presented in this paper to reach the high
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∼105−106 dynamic range needed to construct the deepest extra-
galactic LOFAR surveys.
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Appendix A: Measurement equation formalism

To model the complex direction-dependent effects (DDE – sta-
tion beams, ionosphere, Faraday rotation, etc.), we make exten-
sive use of the measurement equation formalism developed by
Hamaker et al. (1996), which provides a model of a generic in-
terferometer. Each of the physical phenomena that transform or
convert the electric field before the correlation is computed is
modeled by linear transformations (2×2 matrix). If s = (l,m, n =√

1 − l2 − m2) is a sky direction, and H stands for the Hermitian
transpose operator, then the correlation matrix Vpq between an-
tennas p and q can be written as

Vmeas
pq = Gp

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∑

s

Dp,s.Kp,s.Fs.F
H
s .K

H
q,s.D

H
q,s

⎞

⎟

⎟

⎟

⎟

⎟

⎠

GH
q (A.1)

where Dp,s is the product of direction-dependent Jones ma-
trices corresponding to antenna p (e.g., beam, ionosphere
phase screen and Faraday rotation), Gp is the product of
direction-independent Jones matrices for antenna p (like elec-
tronic gain and clock errors). The matrix Kp,s describes the
effect of the array geometry and correlator on the observed
phase shift of a coherent wavefront between antenna p and
a reference antenna. This effect is purely scalar, so it is
reducible to the product of a scalar and the unity matrix
and we can write Kp,s.K

H
q,s = exp (−2iπφ(u, v, w, s)).1, where

(u, v, w) is the baseline vector between antennas p and q
in wavelength units and 1 is the unity matrix. We then

have φ(u, v, w, s) = u.l + v.m + w.(
√

1 − l2 − m2 − 1), where the
−1 term models the correlator effect when phasing the signals in
the direction of w. Finally, the product Fs . FH

s is the sky con-
tribution in the direction s and is the true underlying source co-
herency matrix [[XX,XY], [YX, YY]].

This elegant formalism enables us to model the full polar-
ization of the visibility as a function of the true underlying elec-
tric field correlation. In a simple and consistent way it takes the
direction dependent and direction independent effects into ac-
count. Indeed, most of the Jones matrices in the measurement
equations have a fairly simple formulation, and radio calibration
problems amount to finding the various components of G and E,
given a sky model Is = Fs.F

H
s .

The measurement equation introduced above can be written
in a more extended and continuous form that is better suited to
imaging by applying the Vec operator12 to Vcorr

pq . We obtain

Vec(Vcorr
pq ) =

∫

S

(D∗q,s ⊗ Dp,s).Vec(Is)

× exp
(

−2iπφpq(u, v, w, s)
)

ds
(A.2)

where ⊗ is the Kronecker product, Vec is the operator that trans-
forms a 2 × 2 matrix into a dimension 4 vector.

12 The Vec operator transforms a matrix into a vector formed from
the matrix columns being put on top of each other. It has the following
useful properties: (i) Vec(λA) = λVec(A); (ii) Vec(A + B) = Vec(A) +
Vec(B); and (iii) Vec(ABC) = (CT ⊗ A).Vec(B).

Appendix B: Further algorithm details

In this section we describe some important details of the various
implementations of A-Projection for LOFAR. In particular, we
make extensive use of the Prolate spheroidal function for resolu-
tion adaptation and zero-padding for uv-plane interpolation.

As explained in Sect. 3, since LOFAR stations are charac-
terized by different primary beams, the gridding and degridding
steps are baseline dependent. Therefore the convolution func-
tions cannot be computed once and then kept stored in memory
as is done for W-projection. Instead, they have to be computed
on the fly (see Sect. 4.4). However, because the station’s beam
model is fairly complex and costly to evaluate (coordinates trans-
formation, estimate of the Element beam Jones matrix), we only
store the 4-polarization image plane beams in memory (their
Jones matrices) at the minimal resolution. The necessary reso-
lution is simply estimated as λ/(2.Dstation), where Dstation is the
given station’s diameter.

The W-term is also estimated only once and stored in
memory at the minimal resolution. This amounts to finding the
maximum frequency to be sampled in the image plane, and the
corresponding number of pixels corresponding to the minimum
support required for the W-term convolution function. If the im-
age has an angular diameter Dim, the resolution needed to prop-
erly sample to W-term is the inverse of the highest spatial fre-
quency, located in one of its corners. The support of the W-term

is then NW = (4πwD2
im

)/

√

2 − D2
im
∼ 4πwD2

im
/
√

2.

To interpolate the visibilities on the grid in the gridding step
(or conversely in the degridding step), or to adapt the resolution
of the A and W-terms we use a zero-padding interpolation. Since
this scheme can produce artifacts due to the presence of sharp
edges and aliasing problems, we have to make extensive use of
a Prolate spheroidal function. It is computed at the maximum
resolution in the image plane. We then Fourier-transform it, find
its support NS (Suv

ph
), “cut” it down to that size, and store it in the

uv-plane (hereafter Suv
p ).

For the various algorithms presented in this paper, we have to
compute the products of various DDE in the image plane. For ex-
ample for the algorithm described in Sect. 3.1, we have to adapt
the A and W-term resolutions before multiplying them in the
image plane. We first have to find the support NS of the convo-
lution function as in Eq. (13). We first compute the image plane

spheroidal at the resolutions of the A and W-terms (S
NS (A)
p and

S
NS (W)
p respectively), as follows

SNS (A)
p = F −1ZNS (A)Suv

p

SNS (W)
p = F −1ZNS (W)Suv

p (B.1)

where F is the Fourier transform, and Zn the zero-padding op-
erator that puts the input into a grid of size n. To estimate the
A-term interpolated on an NS×NS pixel image:

ANS = (SNS )−1F −1
(

ZNS .F
(

S
NS (A)
p A

))

. (B.2)

We obtain the image plane effects at the same resolution and
multiply them according to the specific needs of the various im-
plementations described in Sect. 3 and obtain the image plane
product Pim. We then compute the oversampled convolution
function as

CFONS = F
(

ZONS

(

SNS Pim

))

(B.3)

where the resulting interpolated convolution function CFONS has
ONS × ONS pixels, with O as the oversampling parameter. If
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Fig. C.1. The W-term increases for lower elevations of the target
field. Using the W-Projection algorithm, the computing time increases
with w2. This figure shows the normalized cumulative distribution of the
w-coordinate (left panel) for a typical LOFAR observation, and the cor-
responding normalized cumulative computing time (right panel). We
can see that rejecting the ∼5% of the points with w > 104 saves ∼70%
of the computing time.

the final image is Npix × Npix pixels, because we have used the
spheroidal function, after applying the inverse Fourier transform,
we have to normalize the dirty image by the spheroidal function

S
Npix

p = F −1ZNpix Suv
p .

As outlined above, all LOFAR stations are different, and the
convolution functions are baseline dependent. The for loops de-
scribed in Sect. 3 are therefore parallelized on baseline. For the
degridding step from a common read-only grid, the residual vis-
ibilities are estimated independently using different threads. The
code has been created in the LOFAR package and depends on
the casacore and casarest packages.

Appendix C: Limiting the maximum w-coordinate

For the traditional interferometers operating at relatively high
frequencies compared to LOFAR, in general the field of view
is small enough so that the W-term can always be neglected

(w. (
√

1 − l2 − m2 − 1) ∼ 0). However, for the new wide fields of
view, long-baseline interferometers, the W-term is very impor-
tant, and not taking it into account produces artifacts and con-
siderably reduces the dynamic range. For a given field of view

or a given angular distance to the phase center, the importance
of the W-term increases as the w-coordinate value, i.e., when
the targeted field is at low elevation. It is therefore important to
stress that wide fields of view or long baselines do not directly
mean that the W-term will be important: irrespective of its base-
line or field of view, a planar array that would observe at zenith
would always have a null w-coordinate.

Algorithmically, for A-Projection, the W-term is one of
the main limiting factors. Using the W-Projection algorithm
(Cornwell et al. 2008) and assuming the W-term support is
higher than the Prolate spheroidal support, the gridding time
evolves as tgrid,w ∝ w2.D4, because the highest spatial frequency
in the image plane has to be properly sampled. We found that in a
typical LOFAR dataset this nonlinear behavior generally makes
the �5% of the points with the highest w-coordinates responsi-
ble for �70% of the computing time (as in Fig. C.1). This small
amount of data does not necessarily add to the overall sensitiv-
ity or resolution. Setting a wmax value above which the visi-
bilities are not gridded significantly increases the computational
efficiency, without losing sensitivity or resolution. Not that our
hybrid W-stacking (Sect. 3.3) algorithm is not affected by these
limitations.
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