
Applying Genetic Algorithms to Decision Making in
Autonomic Computing Systems

Andres J. Ramirez, David B. Knoester, Betty H.C. Cheng, Philip K. McKinley
Michigan State University
3115 Engineering Building

East Lansing, Michigan 48824
{ramir105, dk, chengb, mckinley}@cse.msu.edu

ABSTRACT
Increasingly, applications need to be able to self-reconfigure
in response to changing requirements and environmental
conditions. Autonomic computing has been proposed as a
means for automating software maintenance tasks. As the
complexity of adaptive and autonomic systems grows, de-
signing and managing the set of reconfiguration rules be-
comes increasingly challenging and may produce inconsis-
tencies. This paper proposes an approach to leverage ge-
netic algorithms in the decision-making process of an auto-
nomic system. This approach enables a system to dynami-
cally evolve reconfiguration plans at run time in response to
changing requirements and environmental conditions. A key
feature of this approach is incorporating system and environ-
mental monitoring information into the genetic algorithm
such that specific changes in the environment automatically
drive the evolutionary process towards new viable solutions.
We have applied this genetic-algorithm based approach to
the dynamic reconfiguration of a collection of remote data
mirrors, with the goal of minimizing costs while maximiz-
ing data reliability and network performance, even in the
presence of link failures.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search

General Terms
Experimentation.

Keywords
Autonomic computing, evolutionary algorithm, genetic al-
gorithm, intelligent control, distributed systems

1. INTRODUCTION
As distributed computing applications grow in size and

complexity in response to increasing computational needs, it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAC’09, June 15–19, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-564-2/09/06 ...$5.00.

is increasingly difficult to build a system that satisfies all re-
quirements and design constraints that it will encounter dur-
ing its lifetime. Many of these systems must operate continu-
ously, disallowing periods of downtime while humans modify
code and fine-tune the system. For instance, several stud-
ies [5, 27] document the severe financial penalties incurred
by companies when facing problems such as data loss and
data inaccessibility. As a result, it is important for applica-
tions to be able to self-reconfigure in response to changing
requirements and environmental conditions [22]. IBM pro-
posed autonomic computing as a means for automating soft-
ware maintenance tasks [16]. Autonomic computing refers to
any system that manages itself based on a system adminis-
trator’s high-level objectives while incorporating capabilities
such as self-reconfiguration and self-optimization. Typically,
developers encode reconfiguration strategies at design time,
and the reconfiguration tasks are influenced by anticipated
future execution conditions [3, 8, 12, 30]. We propose an ap-
proach for incorporating genetic algorithms [10] as part of
the decision-making process of an autonomic system. This
approach enables a decision-making process to dynamically
evolve reconfiguration plans at run time.

Autonomic systems typically comprise three key elements:
monitoring, decision-making, and reconfiguration. Moni-
toring enables an application to be aware of its environ-
ment and detect conditions that warrant reconfiguration;
decision-making determines which set of monitored condi-
tions should trigger a specific reconfiguration response; and
reconfiguration enables an application to change itself in
order to fulfill its requirements. Many adaptive and au-
tonomic systems have applied rule-based decision-making
approaches to match particular events against specific re-
configuration plans [7, 12]. Others leverage utility-based
decision-making approaches to address multiple reconfigu-
ration objectives and dimensions [3, 30]. These approaches,
however, enable a system to self-adapt only against scenar-
ios that were considered at design time. Furthermore, as
the complexity of adaptive logic grows, designing and man-
aging the set of reconfiguration rules becomes unmanageable
and potentially inconsistent [3]. To address these concerns,
several researchers have applied evolutionary computation
techniques to the design of adaptive and autonomic sys-
tems [8, 9]. Although these approaches provide a rich set
of reconfigurations, most are still limited to a specific set of
reconfiguration strategies.

This paper proposes an approach to incorporate genetic
algorithms in the decision-making process of autonomic sys-
tems. A genetic algorithm is a stochastic search-based tech-

nique for finding solutions to optimization and search-based
problems [10]. Genetic algorithms comprise a population
of individuals that encode candidate solutions in the search
space. Domain-specific fitness functions are used to deter-
mine the quality of each individual. Genetic algorithms use
this fitness information, along with the processes of selec-
tion, crossover, and mutation, to direct the search process
towards promising parts of the search space. In practice, ge-
netic algorithms can be surprisingly fast in efficiently search-
ing complex, highly nonlinear, and multidimensional search
spaces [18]. For this work, we developed Plato, a genetic-
algorithm based decision-making process that searches the
vast and complex space of possible reconfigurations with the
goal of evolving suitable reconfiguration plans in response
to changing requirements and environmental conditions. A
key benefit of Plato is that developers need not prescribe
reconfiguration plans in advance to address specific situa-
tions warranting reconfiguration. Instead, Plato harnesses
the power of natural selection to evolve suitable reconfigu-
ration plans at run time.

We have applied Plato to the dynamic reconfiguration of
an overlay network [2] for distributing data to a collection of
remote data mirrors [11, 13]. Plato was able to evolve suit-
able reconfiguration plans at run time in response to chang-
ing requirements and environmental conditions. Specifically,
Plato evolved overlay networks for data diffusion that bal-
anced the competing goals of minimizing costs while maxi-
mizing data reliability and network performance, even while
facing adverse conditions such as link failures. Our prelim-
inary results suggest genetic algorithms may be integrated
with decision-making processes of autonomic systems to dy-
namically evolve reconfiguration plans that balance compet-
ing objectives at run time.

The remainder of this paper is organized as follows. In
Section 2 we present background material on remote data
mirroring systems and genetic algorithms. Section 3 overviews
other approaches to decision-making and dynamic configu-
ration of networks involving genetic algorithms. Section 4
illustrates the proposed approach for integrating Plato with
the decision-making process in autonomic systems. Section
5 overviews the experimental results obtained when applying
Plato to the dynamic reconfiguration of an overlay network.
Section 6 discusses Plato. Lastly, in Section 7 we summarize
our main findings and present future directions for our work.

2. BACKGROUND
This section briefly overviews two topics fundamental to

this paper. First, we present the concept of remote data
mirrors and describe the challenges that complicate their
designs. We then describe genetic algorithms and explain
how they search for fit solutions amidst complex solution
landscapes.

2.1 Remote Mirroring
Remote data mirroring is a particular form of data mir-

roring in which copies of important data are stored at one
or more secondary sites. The main objective of remote data
mirroring is to isolate the protected data from failures that
may affect the primary copy [15]. Thus, by keeping two
or more copies of important information isolated from each
other, access can continue if one copy is lost or becomes
unreachable [11, 32]. In the event of a failure, recovery typi-
cally involves either a site failover to one of the remote data

mirrors, or data reconstruction. Designing and deploying
a remote mirror, however, is a complex and expensive task
that should only be done whenever the cost of losing data
outweighs the cost of protecting it [11]. For instance, ad
hoc solutions may provide inadequate data protection, poor
write performance, and incur high network costs [15]. Simi-
larly, over-engineered solutions may incur expensive costs to
defend against negligible risks. In general, remote data mir-
roring designs involve a tradeoff between better performance
with lower cost against greater potential for data loss.

Two important design choices for remote data mirrors in-
clude the type of network link connecting the mirrors and
the remote mirroring protocol. Each network link incurs an
operational cost. In addition, each network link has a mea-
surable throughput, latency, and loss rate that determine
the overall remote mirror design performance [15]. Remote
mirroring protocols, which can be categorized as either syn-
chronous or asynchronous propagation, affect both network
performance and data reliability. In synchronous propaga-
tion the secondary site receives and applies each write be-
fore the write completes at the primary [15]. In batched
asynchronous propagation, updates accumulate at the pri-
mary site and are periodically propagated to the secondary
site, which then applies each batch atomically. While syn-
chronous propagation achieves zero potential data loss, it
consumes large amounts of network bandwidth. Batched
asynchronous propagation, on the other hand, achieves more
efficient network performance than synchronous propaga-
tion, but it has a higher potential data loss.

2.2 Genetic Algorithms
Genetic algorithms are stochastic-based search techniques

that comprise a population of individuals, where each indi-
vidual encodes a candidate solution in a chromosome [10].
In each generation, the fitness of every individual is calcu-
lated, and a subset of individuals is selected, then recom-
bined and/or mutated to form the next generation. For
example, Figure 1 shows two individuals in a population
of overlay network topologies. Each individual contains a
vector to encode which overlay links are used in the corre-
sponding topology. Specifically, given the underlying net-
work topology vector <AB, BC, CD, AD, AC, BD>, a 1
indicates the link is part of the overlay and a 0 otherwise.
Other link properties, such as the propagation methods de-
scribed above, can be encoded in such vectors. In addition,
each individual has an associated fitness value that is de-
termined by evaluating the encoded solution against certain
domain-specific fitness functions. This fitness information
enables a genetic algorithm to choose promising solutions
for further processing.

Genetic algorithms use crossover to exchange building
blocks between two fit individuals, hopefully producing off-
spring with higher fitness values. The two most common
forms of crossover in genetic algorithms are one-point and
two-point crossover. In one-point crossover, a position in
the chromosome is selected at random and the parts of two
parents after the crossover position are exchanged. In two-
point crossover, two positions are chosen at random and the
segments between them are exchanged. Figure 2 illustrates
two-point crossover for the representation described in Fig-
ure 1. Specifically, the link properties between <CD, AD>
are exchanged between both parents to form two new off-
spring. As a result, Offspring I deactivates link <CD>,

a

b

c

d

A

B

C

D

a

b

c

d

A

B

C

D

Underlying Physical Network

Overlay Network

Encoding = <1, 1, 1, 0, 0, 0> Encoding = <1, 0, 0, 1, 1, 0>

Network Representation:

Figure 1: Encodings of two overlay network solu-
tions as individuals in a genetic algorithm.

from Parent I, and activates link <AD>, from Parent II.
Likewise, offspring II deactivates link <AD>, from Parent
II, and activates link <CD>, from Parent I.

A

B

C

D
A

B

C

D

Two-Point Offspring

A

B

C

D
A

B

C

D

Parent I

Encoding = <1, 1, [1, 0,] 0, 0> Encoding = <1, 0, [0, 1], 1, 0>

Encoding = <1, 1, [0, 1], 0, 0> Encoding = <1, 0, [1, 0], 1, 0>

Two-Point Crossover:
Parent II

Offspring I Offspring II

Figure 2: Performing two-point crossover in overlay
networks.

Unfortunately, genetic algorithms are susceptible to de-
ceptive landscapes, possibly evolving suboptimal solutions
(i.e., local maxima). The key idea behind mutation is to in-
troduce genetic variation that may have been lost through-
out the population as a result of the crossover operator [10].
Mutation takes an individual and randomly changes parts of
its encoded solution based on some specified mutation rate.
For example, Figure 3 illustrates a sample mutation where
link <BD> is activated in one of the individuals. The ac-
tivation of this link would not have been possible with the
crossover operator only.

A

B

C

D

Encoding = <1, 1, 0, 1, 0, 1>

Activated Link

Mutation:

Figure 3: Performing mutation on an overlay net-
work.

Genetic algorithms are typically executed until one of two
conditions is met: Either the allocated execution time is
exhausted or the algorithm converges upon a particular so-
lution. If the execution time has been exhausted, then the
best solution found thus far is considered to be the solution.
Otherwise, if the algorithm has converged upon a particular
solution, then the solution should be assessed for its quality.
In particular, it is possible for the algorithm to converge pre-
maturely upon a suboptimal solution. One common strategy
to address this problem in practice is to reseed and restart
the genetic algorithm while altering some configuration pa-
rameters such as crossover and mutation rates, forcing the
search process to explore different parts of the solution land-
scape.

3. PROPOSED APPROACH
We designed Plato with the goal of diffusing data to a col-

lection of remote data mirrors [11, 15] across a potentially
unreliable network. Specifically, given a network containing
a set of remote data mirrors, Plato must construct and main-
tain an overlay network so that data may be distributed to
all nodes while satisfying the following properties. First, the
overlay network must remain connected at all times. If the
overlay network becomes disconnected for any reason, then
it must be reconfigured to re-establish connectivity. Second,
it should never be the case that the constructed overlay net-
work exceeds the allocated monetary budget specified by the
end-user. Third, data should be distributed as efficiently as
possible, that is, minimizing the amount of bandwidth con-
sumed when diffusing data. All considerations combined,
the task of data diffusion is a multi-objective problem in
which data must be distributed as efficiently as possible,
while minimizing expenses and data loss.

Extensive research has been conducted on many aspects
of self-adaptive and autonomic systems [16, 22, 30]. As a
result, we assume the existence of a monitoring [7, 24, 25,
28] and reconfiguration [7, 26, 33] infrastructure to support
self-adaptation with assurance [34, 35] at run time. The
monitoring infrastructure periodically observes both the sys-
tem and its execution environment and reports those values
to the decision-making process. The decision-making pro-
cess interprets the monitoring data, determines when a re-
configuration is required, and selects the appropriate recon-
figuration plan. The reconfiguration infrastructure effects
the changes throughout the system through the use of an
adaptation driver. In the proposed approach, the decision-
making process comprises a genetic algorithm that accepts
monitoring information as input and produces reconfigura-
tion plans as output.

3.1 Plato Design
Representation. Developers must select a suitable rep-

resentation scheme for encoding candidate solutions as indi-
viduals in a genetic algorithm. For example, in Plato, every
individual in the population encodes a complete network,
where each link is either active or inactive and is associated
with one of seven possible propagation methods (Table 1).
Table 1 lists the average data batch size associated with
each of the seven propagation methods, previously reported
in [15]. This table also illustrates how larger amounts of data
can be lost due to a failure as the amount of time for data
propagation increases. In particular, synchronous propa-
gation (time interval equal to 0) provides the maximum

amount of data protection while asynchronous propagation
with a 24-hour time interval provides the least amount of
data protection. Using a representation scheme similar to
the one previously illustrated in Figure 1, the active links
encoded by each individual defines a candidate overlay net-
work topology for data diffusion. In terms of complexity,
this representation scheme comprises 2n(n−1)/2 choices for
constructing an overlay network and 7 different propagation
methods for each link. With 25 nodes, for example, there
are 7 ∗ 2300 possible link configurations. The total number
of possible configurations makes it infeasible to exhaustively
evaluate all possible configurations in a reasonable amount
of time.

Table 1: Link Propagation Methods

Time Interval Avg. Data Batch Size
0 0 GB
1 min. 0.043.6 GB
5 min. 0.2067 GB
1 hr. 2.091 GB
4 hrs. 6.595 GB
12 hrs. 15.12 GB
24 hrs. 27.388 GB

GA Operators. Crossover and mutation operators are
specific to the encoding scheme used. The default crossover
and mutation operators are designed to work on fixed-length
binary string representations [10]. If a different represen-
tation scheme is used to encode candidate solutions, then
specialized crossover and mutation operators need to be de-
veloped and used. For example, each individual in Plato
encodes a candidate solution that comprises binary, integer,
and floating-point values. As a result, Plato uses encoding-
specific crossover and mutation operators to directly manip-
ulate overlay network topologies. The crossover operator
used by Plato (shown in Figure 2) exchanges link properties
between two parents. Specifically, two network links in the
link vector are selected at random and the segments between
them are exchanged. Likewise, the mutation operator used
by Plato (shown in Figure 3) randomly activates/deactivates
a link and changes its propagation method.

GA Setup. Developers must set up the GA for the prob-
lem being solved. Typical parameters include the population
size, crossover type, crossover and mutation rates, and the
alloted execution time, typically expressed in generations.
Table 2 gives the different parameters and values used for
Plato. In particular, notice that for each generation, we
perform two-point crossover on 10 individuals, thereby pro-
ducing 20 offspring for the next generation. Likewise, ap-
proximately 5 individuals are mutated each generation.

Table 2: GA Parameters.
Parameter Value
Max. population size 100
Crossover type Two-Point.
Crossover rate 10%
Mutation rate 5%
Selection Method Tournament (K=2)
Max generations 2500

3.2 Fitness Sub-Functions
In general, a single fitness function is not sufficient to

quantify all possible effects of a particular reconfiguration
plan when balancing multiple objectives [4]. Instead, devel-
opers should define a set of fitness sub-functions to evalu-
ate a reconfiguration plan according to the optimization di-
mensions specified by end-users. Each fitness sub-function
should have an associated coefficient that determines the
importance or relevance of that sub-function in comparison
to others. A weighted sum can be used to combine the val-
ues obtained from each fitness sub-function into one scalar
value [6, 19, 23].

Plato uses several fitness sub-functions to approximate the
effects of a particular overlay network in terms of costs, net-
work performance, and data reliability. Most of the fitness
sub-functions used by Plato were derived from studies on op-
timizing data reliability solutions [15] and modified for our
specific problem. This set of sub-functions enables Plato to
search for overlay networks that not only satisfy the previ-
ously mentioned properties, but that also yield the highest
fitness based on how the end-user defined the sub-function
coefficients to reflect the priorities for the various fitness
sub-functions.

We use the following fitness sub-function to calculate an
overlay network’s fitness in terms of cost :

Fc = 100 − (100 ∗ cost

budget
);

where cost is the sum of operational expenses incurred by all
active links, and budget is an end-user supplied constraint
that places an upper bound on the maximum amount of
money that can be allocated for operating the overlay net-
work. This fitness sub-function, Fc, guides the genetic algo-
rithm toward overlay network designs that minimize opera-
tional expenses.

Likewise, we use the following two fitness sub-functions
to calculate an overlay network’s fitness in terms of perfor-
mance:

Fe1 = 50 − (50 ∗ latencyavg

latencywc
);

and

Fe2 = 50 ∗ (
bandsys − bandeff

bandsys
+ bound);

where latencyavg is the average latency over all active links
in the overlay network, latencywc is the largest latency value
measured over all links in the underlying network, bandsys

is the total available bandwidth across the overlay network,
bandeff is the total effective bandwidth across the overlay

network after data has been coalesced, and bound is a limit
on the best value that can be achieved throughout the net-
work in terms of bandwidth reduction. The first fitness func-
tion, Fe1, accounts for the case where choosing links with
lower latency will enable faster transmission rates. Like-
wise, the second fitness function, Fe2, accounts for the case
where network performance can be increased by reducing
the amount of data sent across a network due to write co-
alescing. We note that the maximum achievable value of
Fe1 + Fe2 is 100.

Lastly, we use the following two fitness sub-functions to
calculate an overlay network’s fitness in terms of reliability :

Fr1 = 50 ∗ linksused

linksmax
;

and

Fr2 = 50 ∗ datalosspotential

datalosswc
;

where linksused is the total number of active links in the
overlay network, linksmax is the maximum number of pos-
sible links that could be used in the overlay network given
the underlying network topology, datalosspotential is the to-
tal amount of data that could be lost during transmission
as a result of the propagation method (see Table 1), and
datalosswc is the amount of data that could be lost by select-
ing the propagation method with the largest time window
for write coalescing. The first reliability fitness function,
Fr1, accounts for the case where an overlay network with
redundant links may be able to tolerate link failures while
maintaining connectivity. The second reliability fitness func-
tion, Fr2, accounts for the case where propagation methods
leave data unprotected for a period of time. We note that
the maximum achievable value of Fr1 +Fr2 is 100, the same
as the fitness sub-functions for cost and performance.

The following fitness function combines the previous fit-
ness sub-functions into one scalar value:

FF = α1 ∗ Fc + α2 ∗ (Fe1 + Fe2) + α3 ∗ (Fr1 + Fr2),

where αi’s represent weights for each dimension of optimiza-
tion as encoded into the genetic algorithm by the end user.
These coefficients can be scaled to guide the genetic algo-
rithm towards particular designs. For example, if developers
want to evolve types of overlay network designs that opti-
mize only with respect to cost, then α1 could be set to 1 and
α2 and α3 could be set to 0.

To integrate Plato into the application and factor current
environmental conditions into the reconfiguration plans, de-
velopers must define a global view construct that reflects the
executing system and its environment. This construct will
be updated by the monitoring infrastructure and accessed by
the genetic algorithm’s fitness sub-functions when evaluat-
ing candidate reconfiguration plans. For instance, although
Plato currently simulates the network monitoring process,
each candidate overlay network in Plato stores information
about the underlying complete network topology. Specifi-
cally, each link stores values such as throughput, latency,
loss rate, etc. As a result, when Plato evaluates a candi-
date overlay network, it computes its fitness value based on
current system and environmental conditions.

Rescaling Sub-Functions. If requirements are likely
to change while the application executes, then developers
should introduce code to rescale the coefficients of individual
fitness sub-functions. In particular, the fitness landscape is
shifted when the coefficients of a fitness sub-function are
rescaled. By updating the relevance of each fitness sub-
function at run time, the genetic algorithm will be capable
of evolving reconfiguration plans that address changes in
requirements and environmental conditions.

For example, when an overlay network link fails, Plato
automatically doubles the current coefficient for network re-
liability. Note that although we prescribe how these coef-
ficients should be rescaled in response to high-level moni-
toring events, we do not explicitly specify reconfiguration
plans. That is, Plato does not prescribe how many links
should be active in the overlay network, or what their prop-
agation methods should be.

4. CASE STUDY
We conducted a case study to evolve solutions to the prob-

lem of diffusing data to a set of remote mirrors across dy-
namic and unreliable networks. Each of the experiments fo-
cuses on a single aspect of this problem, namely constructing
and maintaining an overlay network that enables the distri-
bution of data to all nodes. Each experiment was designed
to give us insight into how different environmental factors
and scenarios affect the suitability of genetic algorithms for
decision-making in adaptive systems. Each experiment was
simulated on a MacBook Pro with a 2.53 GHz Intel Core 2
Duo Processor and 4 GB of RAM. For each set of results pre-
sented, we performed 30 trials of the experiment and present
the averaged results.

4.1 Single-dimensional optimization
The purpose of the first set of experiments is to con-

firm that for degenerate scenarios involving single fitness
sub-functions, Plato would produce solutions consistent with
those that can be predicted. As a representative example,
consider the overlay network shown in Figure 4, which was
evolved by Plato when only cost was considered, i.e., α1 =
1, α2 = 0, α3 = 0. This overlay network comprises 24 links
and connects all remote data mirrors in the network. The
genetic algorithm was able to reduce the overlay network
to a minimum spanning tree that connects all remote data
mirrors while incurring operational costs significantly below
the maximum allocated budget. Figure 5 shows the maxi-
mum fitness achieved by the candidate overlay networks as
Plato executed. This plot illustrates how Plato converged
upon an overlay network topology with a fitness value of
approximately 50, indicating that Plato found overlay net-
works whose operational costs were roughly 50% of the al-
located budget. Although the first few hundred generations
obtained negative fitness values due to ill-formed candidate
topologies that were either disconnected or exceeded the al-
located budget, Plato had found suitable overlay network
designs by generation 500 (approximately 30 seconds on the
MacBook Pro).

0

1

2

345 6
7

8

910 11

12

13

14

15

16

17

18 1920 21

2223 24

Figure 4: Overlay network produced when optimiz-
ing for cost.

For the next experiment, reliability was chosen as the sin-
gle optimization criterion, i.e., α1 = 0, α2 = 0, α3 = 1. The
evolved overlay network provides the maximum amount of
reliability possible by activating all 300 links. Furthermore,
the dominant propagation method for this overlay network
was synchronous propagation, which minimizes the amount
of data that can be lost during transmission.

0 500 1000 1500 2000
−400

−350

−300

−250

−200

−150

−100

−50

0

50

Generation

M
ax

. F
itn

es
s

Max. Fitness

Figure 5: Fitness of overlay networks when optimiz-
ing for cost only.

Figure 6 plots the maximum fitness achieved by Plato
in this experiment. Plato converged upon a maximum fit-
ness value of 88. In the context of reliability, a value of 88
means that although the overlay network provides a high-
level of data reliability, it is not completely immune against
data loss. Specifically, even though all 300 links were acti-
vated in the overlay network to provide redundancy against
link failures, not every link in the overlay network used a
synchronous propagation method. Instead, a few links in
the overlay network used asynchronous propagation meth-
ods with 1 and 5 minute time bounds. Nonetheless, we note
the rapid development of fit individuals achieved by genera-
tion 600; by this point, Plato had evolved complete overlay
networks with most links using synchronous propagation.

0 500 1000 1500 2000
70

72

74

76

78

80

82

84

86

88

Generation

M
ax

. F
itn

es
s

Max. Fitness

Figure 6: Fitness of overlay networks when optimiz-
ing for reliability only.

4.2 Multiple Dimensional Optimization
Next, we conducted an experiment to assess whether Plato

is able to efficiently balance multiple objectives, namely,
cost, performance, and reliability. For this experiment, we
configured Plato to produce network designs that emphasize
performance and reliability over cost, i.e., α1 = 1, α2 = 2,
α3 = 2. Figure 7 shows a representative overlay network de-
sign that Plato evolved. This overlay network comprises 32

active links, the majority of which use asynchronous propa-
gation methods with 1 and 5 minute time bounds. Overall,
this overlay network provides a combination of performance
and reliability while keeping operational expenses well below
the allocated budget.

01 23

4

5

6 7

8 9

10

1112

1314

15 16

17 1819 2021

2223 24

Figure 7: Overlay network produced when optimiz-
ing for cost, performance, and reliability.

Figure 8 plots the average rate at which Plato converged
on the resulting overlay network designs. On average, Plato
terminated within 3 minutes. In particular, note that Plato
found relatively fit overlay networks by generation 500 (ap-
proximately 30 seconds). Thereafter, Plato fine-tuned the
overlay network to produce increasingly more fit solutions.
For instance, Figure 9 plots the average number of active
links in the evolved overlay networks. At first, the more fit
overlay networks were those that comprised the fewest num-
ber of active links while still maintaining connectivity. By
the end of the run, 8 additional links had been added to the
overlay network. Although these additional edges increased
the overall operational cost of the overlay network, they also
increased the network’s fault tolerance against link failures,
thus improving the overlay’s reliability fitness value. More-
over, subsequent generations achieved higher fitness values
by using asynchronous propagation methods of 5 minutes
and 1 hour, thus improving network performance while pro-
viding some level of data protection as it is transmitted.

0 500 1000 1500 2000

50

100

150

200

250

300

350

400

450

Generation

M
ax

. F
itn

es
s

Max. Fitness

Figure 8: Maximum fitness of overlay networks
when optimizing for cost, performance, and relia-
bility.

4.3 Reconfiguration Against Link Failures
We next conducted a two-step experiment to assess the

feasibility of using Plato to dynamically reconfigure the over-
lay network topology in real-time. First, we ran Plato to
produce an initial overlay network design whose primary de-
sign objective was minimizing operational costs, i.e., α1 =

0 500 1000 1500 2000
30

40

50

60

70

80

90

100

110

120

130

Generation

N
um

. L
in

ks

Num. Links

Figure 9: Number of links active in overlay network
when optimizing for cost, performance, and reliabil-
ity.

1, α2 = 0, and α3 = 0. Although we could have generated
a design to account for cost and reliability, the objective
of this experiment was to force the reconfiguration of the
overlay network. Figure 10 presents a representative over-
lay network evolved by Plato that comprises 24 active links,
a minimum spanning tree. We then selected an active link
at random and set its operational status to faulty. This link
failure disconnected the overlay network and thus prompted
Plato to address this change in the underlying topology by
evolving a new reconfiguration plan.

0

1

2

3

4

5

6

78

9

10

11 12

13 14

15

16

17

18

1920

21

22

23

24

Figure 10: Initial overlay network topology with cost
being the lone design factor.

In response, Plato evolved a new overlay network topol-
ogy that addressed these environmental changes. Since the
initial overlay network suffered from a link failure, the indi-
vidual fitness sub-functions were automatically rescaled such
that reliability became the primary design concern. When-
ever an individual was evaluated, if the encoded overlay net-
work made use of the faulty link, then it was severely pe-
nalized by assigning it a low fitness value. Figure 11 shows
the overlay network that evolved in response to the environ-
mental change in the underlying network. This new overlay
network, with 6 redundant links, provides more reliability
against link failures than the initial overlay network.

Figure 12 plots the maximum fitness achieved by Plato as
it evolved both the initial and the reconfigured overlay net-

0

1

2

3

4

56

7

8

9

10

11

12

13

14

15

16

17

18

19 20

2122

23 24

Figure 11: Overlay network topology evolved in re-
sponse to a link failure.

work designs. We terminated an active link at generation
2500. As a result, the maximum fitness achieved at gen-
eration 2501 dropped to negative values. Within roughly
1000 generations (1 min.), Plato had evolved considerably
more fit overlay network topologies. Notice the relative dif-
ference in maximum fitness achieved by Plato before and
after reconfiguration. The initial overlay network optimizes
only with respect to operational costs, while the reconfig-
ured overlay network optimizes primarily for reliability, but
also optimizes with respect to operational costs. Since Plato
doubled the coefficients for reliability in comparison to cost
(α1 = 1, α2 = 2, and α3 = 2), candidate overlay networks
after generation 2500 achieved a higher relative fitness value
than the initial overlay network.

1000 2000 3000 4000 5000
−400

−200

0

200

400

Generation

M
ax

. F
itn

es
s

Fitness

Figure 12: Maximum fitness achieved before and
after reconfiguration.

Figure 13 plots the average number of active links in both
the initial and reconfigured overlay network designs. While
the initial overlay design obtains a higher fitness by reducing
the number of active links, the reconfigured overlay design
obtains a higher fitness by adding several active links to
improve robustness against future link failures. Figure 14
plots the average potential data loss in both the initial and
reconfigured overlay networks. The average data loss, mea-
sured on a log scale, is a byproduct of the propagation
methods. Lower values of data loss imply data is better
protected against link failures and vice-versa. After a link
failure occurs, the reconfigured overlay network design reset

most propagation methods to either synchronous or asyn-
chronous propagation with a 1 minute time bound, thus im-
proving data protection at the expense of degraded network
performance.

1000 2000 3000 4000 5000

20
40
60
80

100
120

Generation

N
um

be
r o

f L
in

ks

Num. of Links

Figure 13: Number of active links in overlay network
before and after reconfiguration.

1000 2000 3000 4000 5000
0

0.5

1

1.5

Generation

Po
te

nt
ia

l A
vg

. D
at

a
Lo

ss

Potential for Data Loss

Figure 14: Potential average data loss across overlay
network before after reconfiguration.

5. DISCUSSION
The experiments conducted for this paper indicate that

an approach such as Plato, that incorporates genetic algo-
rithms into decision-making processes of adaptive and auto-
nomic systems, can be executed online to support dynamic
reconfiguration. In terms of execution time, Plato termi-
nated within 3 minutes or less, and typically converged on
a solution within one minute. For an application such as re-
mote data mirroring, we consider this time well within the
acceptable range. In terms of evaluations performed, Plato
typically required between 50, 000 and 100, 000 evaluations
of candidate overlay network designs. Whereas other com-
plementary approaches [17, 23] make use of simulators to
assess the effects of candidate reconfiguration plans, Plato’s
fitness functions were mathematical calculations that were
computationally inexpensive in comparison. As a result,
Plato was able to perform many evaluations in a reasonably
short amount of time.

Plato has several advantages over more traditional ap-
proaches for decision-making in autonomic systems. Specif-

ically, Plato does not require developers to explicitly encode
prescriptive reconfiguration strategies to address particular
scenarios that may arise. Instead, Plato exploits user-defined
fitness functions to evolve reconfiguration plans in response
to changing environmental conditions. For instance, when
an active link failed in our reconfiguration experiment, Plato
did not explicitly encode how many or which specific links
should be activated in response. Instead, Plato automat-
ically evolved a reconfiguration plan that balanced these
competing objectives at run time. This approach enables
Plato to handle more reconfiguration scenarios than tradi-
tional prescriptive approaches.

One potential drawback of this approach is that genetic
algorithms are not guaranteed to find the optimal solution.
As a result, Plato may not find suitable solutions for some
domains and problems. In these situations, however, tradi-
tional decision-making approaches could be integrated with
Plato. Specifically, Plato could evolve reconfiguration plans
in the background in case a reconfiguration strategy is not
available for the current system conditions. In addition,
Plato uses fitness functions that are not computationally ex-
pensive.

6. RELATED WORK
This section presents related work in utility-based decision-

making processes, remote mirroring, and the application of
genetic algorithms to the construction of dynamic overlay
networks.

Utility-based Decision Making. Walsh et al. intro-
duced an architecture for incorporating utility functions as
part of the decision-making process of an autonomic sys-
tem [30]. Utility functions were shown to be effective in
handling reconfiguration decisions against multiple objec-
tives. In the context of autonomic computing, utility func-
tions map possible states of an entity into scalar values that
quantify the desirability of a configuration as determined by
user preferences. Given a utility function, the autonomic
system determines the most valuable system state and the
means for reaching it. In the approach proposed in [30], a
utility calculator repeatedly computes the value that would
be obtained from each possible configuration. Despite their
advantages, utility functions may suffer from complexity is-
sues as multiple dimensions scale depending on the evalua-
tion method used. In contrast, although genetic algorithms
use fitness functions, which are akin to utility functions, the
process of natural selection efficiently guides the search pro-
cess through the solution space.

Automated Design of Remote Mirrors. Researchers
have developed automated provisioning tools to alleviate the
high complexity associated with designing data reliability
systems, such as remote mirrors and tape backups [1, 15].
These automated tools rely on mathematical solvers to pro-
duce optimal designs. As a result, these approaches require
a set of functions to quantify the effects of particular con-
figurations in terms of design costs, network performance,
and data reliability. However, such approaches may not
scale well as the complexity of the solution grows [14]. Fur-
thermore, designs are produced according to expected usage
rates and environmental conditions, which may change once
the system is deployed. For example, the methods described
in [11, 15] do not address dynamically reconfiguring the sys-
tem when actual conditions differ from those assumed at
design time.

Genetic Algorithms for Data Replication. Loukopou-
los et al. [19] applied genetic algorithms to the problem of file
replication in data distribution. Specifically, some files are
replicated at multiple sites to reduce the delay experienced
by distributed system end-users. The decision as to which
files to replicate and where to replicate them is a constraint
optimization problem considered to be NP-complete [23].
The initial approach in [19] leveraged a genetic algorithm to
solve the file replication problem when read and write de-
mands remained static. However, this initial approach was
not applicable when read and write demands continuously
changed. Loukopoulos et al. proposed a hybrid genetic al-
gorithm that took as input a current copy distribution and
produced a new file replication distribution using knowledge
about the changing environment. This hybrid genetic algo-
rithm is not executed at run time to dynamically solve the
file replication problem, but instead incorporates possible
dynamic changes into the initial design.

Genetic Algorithms for Dynamic Networks. Ge-
netic algorithms have been used to design overlay multicast
networks for data distribution [6, 20, 29, 31]. These overlay
networks must balance the competing goals of diffusing data
across the network as efficiently as possible while minimizing
expenses. A common approach for integrating various ob-
jectives in a genetic algorithm is to use a cost function that
linearly combines several objectives as a weighted sum [6, 19,
23]. Although most of these approaches [20, 29, 31] achieved
rapid convergence rates while producing overlay networks
that satisfied the given constraints, to our knowledge, the
methods were not applied at run time to address dynamic
changes in the network’s environment.

Genetic Algorithms for Reconfiguration. Montana
et al. [23] developed a genetic algorithm to reconfigure the
topology and link capacities of an operational network in
response to its operating conditions. Experimental results
confirm that for small networks, comprising fewer than 20
nodes and fewer than 5 channels, the optimization algorithm
would support online adaptation. However, due to the com-
putational expenses, online adaptation was not supported
for larger networks. Specifically, the approach in [23] made
repeated use of a network simulator, ns/2 [21], to accurately
model the effects of topology reconfigurations at run time.
Plato, on the other hand, makes use of computationally in-
expensive fitness functions to reduce the time required for
convergence.

7. CONCLUSION
Having examined the evolution of reconfiguration plans by

Plato, we make several observations. First, it is possible to
integrate genetic algorithms with decision-making processes
of autonomic systems to dynamically evolve reconfiguration
plans that balance competing objectives at run time. Sec-
ond, decision-making processes that leverage genetic algo-
rithms do not require prescriptive rules to address particular
scenarios warranting reconfiguration. Instead, an approach
such as Plato is able to evolve reconfiguration plans to ad-
dress situations that were not anticipated at design time, by
incorporating system and environmental monitoring infor-
mation with a genetic algorithm. Lastly, different types of
reconfiguration plans can be evolved in response to chang-
ing requirements and environmental conditions by rescaling
individual fitness functions. Future directions for this work
include integrating the evolved reconfiguration plans with

formal verification tools to ensure the reconfigured system
satisfies invariant and local properties.

8. ACKNOWLEDGMENTS
We gratefully acknowledge John Wilkes for introducing us

to this application problem and his insight for asking how
evolutionary computation techniques might be able to ad-
dress the problem. This work has been supported in part
by NSF grants CCF-0541131, CNS-0551622, CCF-0750787,
CNS-0751155, IIP-0700329, and CCF-0820220, Army Re-
search Office W911NF-08-1-0495, Ford Motor Company, and
a grant from Michigan State University’s Quality Fund.

9. REFERENCES
[1] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer,

R. Becker-Szendy, R. Golding, A. Merchant,
M. Spasojevic, A. Veitch, and J. Wilkes. Minerva: An
automated resource provisioning tool for large-scale
storage systems. ACM Transactions Compututing
Systems, 19(4):483–518, 2001.

[2] D. Andersen, H. Balakrishnan, F. Kaashoek, and
R. Morris. Resilient overlay networks. ACM SIGOPS
Operating Systems Review, (5):131–145, 2001.

[3] S.-W. Cheng, D. Garlan, and B. Schmerl.
Architecture-based self-adaptation in the presence of
multiple objectives. In Proceedings of the 2006
International Workshop on Self-adaptation and
Self-Managing Systems, pages 2–8, New York, NY,
USA, 2006. ACM.

[4] K. Deb. Multi-Objective Optimization Using
Evolutionary Algorithms. Wiley, 2001.

[5] EagleRock2001. Online survey results: 2001 cost of
downtime. Eagle Rock Alliance Ltd,
http://contingencyplanningresearch.com/2001
Survey.pdf, August 2001.

[6] R. Fabregat, yezid Donoso, B. Baran, F. Solano, and
J. L. Marzo. Multi-objective optimization scheme for
multicast flows: A survey, a model and a MOEA
solution. In Proceedings of the 3rd International
IFIP/ACM Latin American Conference on
Networking, pages 73–86, New York, NY, USA, 2005.
ACM.

[7] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl,
and P. Steenkiste. Rainbow: Architecture-based
self-adaptation with reusable infrastructure.
Computer, 37(10):46–54, 2004.

[8] H. J. Goldsby and Betty H.C. Cheng. Automatically
generating behavioral models of adaptive systems to
address uncertainty. In Proceedings of the 11th
International Conference on Model Driven
Engineering Languages and Systems, pages 568–583,
Berlin, Heidelberg, 2008. Springer-Verlag.

[9] H. J. Goldsby, Betty H.C. Cheng, P. K. McKinley,
D. B. Knoester, and C. A. Ofria. Digital evolution of
behavioral models for autonomic systems. In
Proceedings of the fifth IEEE International Conference
on Autonomic Computing, pages 87–96, Washington,
DC, USA, 2008. IEEE Computer Society.

[10] J. H. Holland. Adaptation in Natural and Artificial
Systems. MIT Press, Cambridge, MA, USA, 1992.

[11] M. Ji, A. Veitch, and J. Wilkes. Seneca: Remote
mirroring done write. In USENIX 2003 Annual

Technical Conference, pages 253–268, Berkeley, CA,
USA, June 2003. USENIX Association.

[12] G. Kaiser, P. Gross, G. Kc, and J. Parekh. An
approach to autonomizing legacy systems. In
Proceedings of the first Workshop on Self-Healing,
Adaptive, and Self-MANaged Systems, 2002.

[13] K. Keeton, D. Beyer, E. Brau, and A. Merchant. On
the road to recovery: Restoring data after disasters.
SIGOPS Operating Systems Review, 40(4):235–248,
April 2006.

[14] K. Keeton and A. Merchant. Challenges in managing
dependable data systems. SIGMETRICS Performance
Evaluation Review, 33(4):4–10, 2006.

[15] K. Keeton, C. Santos, D. Beyer, J. Chase, and
J. Wilkes. Designing for disasters. In Proceedings of
the 3rd USENIX Conference on File and Storage
Technologies, pages 59–62, Berkeley, CA, USA, 2004.
USENIX Association.

[16] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. Computer, 36(1):41–50, 2003.

[17] R. Khanna, H. Liu, and H.-H. Chen. Dynamic
optimization of secure mobile sensor networks: A
genetic algorithm. Proceedings of the IEEE
International Conference on Communications, pages
3413–3418, June 2007.

[18] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection (Complex Adaptive Systems). The MIT
Press, December 1992.

[19] T. Loukopoulos and I. Ahmad. Static and adaptive
distributed data replication using genetic algorithms.
Journal Parallel Distributed Computing,
64(11):1270–1285, 2004.

[20] J. Lu and W. Cheng. A genetic-algorithm-based
routing optimization scheme for overlay network. In
Proceedings of the 3rd International Conference on
Natural Computation, pages 421–425, Washington,
DC, USA, 2007. IEEE Computer Society Press.

[21] S. McCanne and S. Floyd. The lbnl network simulator.
Software on-line: http://www.isi.edu/nsnam, 1997.

[22] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and
Betty H.C. Cheng. Composing adaptive software.
Computer, 37(7):56–64, 2004.

[23] D. Montana, T. Hussain, and T. Saxena. Adaptive
reconfiguration of data networks using genetic
algorithms. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages
1141–1149, San Francisco, CA, USA, 2002.

[24] H. Newman, I. Legrand, P. Galvez, R. Voicu, and
C. Cistoiu. MonALISA: A Distributed Monitoring
Service Architecture. In Proceedings of the 2003

Conference for Computing in High Energy and
Nuclear Physics, March 2003.

[25] A. J. Ramirez. Design patterns for developing
dynamically adaptive systems. Master’s thesis,
Michigan State University, East Lansing, MI 48823,
2008.

[26] S. M. Sadjadi and P. K. McKinley. ACT: An adaptive
CORBA template to support unanticipated
adaptation. In Proceedings of the IEEE International
Conference on Distributed Computing Systems, pages
74–83, 2004.

[27] SEC2002. Summary of “lessons learned” from events of
september 11 and implications for business continuity.
http://www.sec.gov/divisions/marketreg/lessonslearned.htm,
February 2002.

[28] C. Tang and P. K. McKinley. A distributed approach
to topology-aware overlay path monitoring. In
Proceedings of the 24th International Conference on
Distributed Computing, pages 122–131, Washington,
DC, USA, 2004. IEEE Computer Society.

[29] S.-Y. Tseng, Y.-M. Huang, and C.-C. Lin. Genetic
algorithm for delay- and degree-constrained
multimedia broadcasting on overlay networks.
Computer Communications, 29(17):3625–3632, 2006.

[30] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das.
Utility functions in autonomic systems. In Proceedings
of the First IEEE International Conference on
Autonomic Computing, pages 70–77, Washington, DC,
USA, 2004. IEEE Computer Society.

[31] D. Wang, J. Gan, and D. Wang. Heuristic genetic
algorithm for multicast overlay network link selection.
In Proceedings of the Second International Conference
on Genetic and Evolutionary Computing, pages 38–41,
September 2008.

[32] R. Witty and D. Scott. Disaster recovery plans and
systems are essential. Technical Report FT-14-5021,
Gartner Research, September 2001.

[33] Z. Yang, Betty H.C. Cheng, R. E. Kurt Stirewalt,
J. Sowell, S. M. Sadjadi, and P. K. McKinley. An
aspect-oriented approach to dynamic adaptation. In
Proceedings of the First Workshop on Self-Healing
Systems, pages 85–92, New York, NY, USA, 2002.
ACM.

[34] J. Zhang and Betty H.C. Cheng. Model-based
development of dynamically adaptive software. In
Proceedings of the 28th International Conference on
Software Engineering, pages 371–380, New York, NY,
USA, 2006. ACM.

[35] J. Zhang, H. J. Goldsby, and Betty H.C. Cheng.
Modular verification of dynamically adaptive systems.
In Proceedings of the Eighth International Conference
on Aspect-Oriented Software Development, 2009.

