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ABSTRACT

The traditional assembly line balancing problem
considers the manufacturing process of a product where
production is specified in terms of a sequence of tasks
that need to be assigned to workstations. Each task
takes a known number of time units to complete. Also,
precedence constraints exist among tasks: each task can
be assigned to a station only after all its predecessors
have been assigned to stations. The U-shaped assembly
line balancing problem is a relatively new problem
derived from the traditional assembly line balancing
problem. In the U-shaped assembly line balancing
problem tasks can be assigned to stations either after all
its predecessors or all of its successors have been
assigned to stations. This paper presents a genetic
algorithm (GA) solution to the Type | U-shaped
assembly line balancing problem. Our research
provides a global framework which can be used to deal
with the two possible variations of this problem,
minimizing total idle time, and balance of the workload
among stations, or a combination of both. We
developed six different assignment algorithms as a
means for interpreting a chromosome and assigning
tasks to workstations. The results show the GA to be an
excellent technique for this problem. In the 61 standard
test cases from the literature, our GA obtained the same
results as previous researchers in 49 cases, superior
results in 11 cases, and in only one case did worse.
Moreover, the GA proved to be computationally
efficient.

1. Introduction

The traditional assembly line balancing
problem considers the manufacturing process of asingle
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product as a sequence of tasks which need to be assigned
to different workstations. The distribution of tasks
among the workstations is based on the required time
units to complete each task as well as the precedence
constraints that exist among these tasks [2].
Historically, the traditional assembly line balancing
problem scenario leads to two types of optimization
problems, Type | and Type Il [2,10,12]. In the Type |
problem, the cycle-time (maximum amount of time units
that can be spent at each workstation) is fixed and the
objective is to minimize the required number of
workstations. The Type |l problem attempts to minimize
the maximum cycle-time given a fixed number of
workstations.

In 1994, Miltenburg and Wijngaard [12]
presented a new problem derived from the traditional
assembly line balancing problem where production lines
are arranged as U-shaped lines instead of straight lines.
The U-shaped assembly line is an attractive alternative
for assembly production systems since operators
(workers) become multi-skilled by performing tasks
located on different parts of the assembly line.
Moreover, since the U-shaped line disposition alows
for more possibilities on how to assign tasks to
workstations, the number of stations needed for a U-
shaped line layout is never more than the number of
stations needed for the traditiona straight line [12]. The
reason for this is that in the traditional assembly line
balancing problem, for a given workstation, the set of
possible assignable tasks is conformed by those tasks
whose predecessors have already been assigned to
workstations, whereas in the U-shaped line problem the
set of assignable tasks is determined by all those tasks
whose predecessors Or successors have aready been
assigned.



[T @

H s

% §
%
5,

Op1 ‘op2’

H{T oF—1 1. O 1 O 166 [ T OF—1 T3 [ T: )

'.Op3.' '.Op4.-

(a) Traditional Linear Assembly Line

—[n @ @@L e 6=

N /
1
/Op\

N /

Op2

|
<[ T, B T: Qf¢——T; (9)]¢«—TsO)

IOp 3
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Figure 1. Example Traditional

Assembly Line and U-shaped

Assembly Line where the cycle time is 12, task time is

shown in parenthesis and tasks

Consider Figure 1 where each workstation has
acycletime of 12 and the predecessors of the tasks are
such that task 1 must precede task 2, which must
precede task 3, etc. to task 9. The time units for each
task are given in parentheses. Figure I(a) shows a
schedule for the 9 tasks for a traditional (linear)
assembly line. Note four stations (or four operators) are
required each with efficiency of 9/12,11/12,10/12 and
6/12, respectively. In Figure I(b) the same tasks are
scheduled using a U-shaped assembly line where three
workstations (operators) are required each with 100%
efficiency. Notice in Figure I(b) a higher levd of
operator skill is reguired.

It is aso possible to consider both Type | and
Type Il problems when dealing with the U-shaped
assembly line problem.  In this paper we limit our
research to the Type | U-shaped assembly line problem,
i.e.,, minimizing the number of stations given afixed
cycle-time. Note within this context two factors can be
considered for the distribution of tasks to stations [10]:
(a) tota idle time, and (b) work balance among the
workstations. Taking these two factors into account,
the Type | U-Shaped assembly line balancing problem
developed by Miltenburg and Wijngaard[12] can be
rewritten and formally stated as follows:

Given
asetofntasks, T ={T;, T,,....T,}
afunction ¢: T—-N, where(T,) is the necessary
time units to complete T
afixed cycletime C,
ahinary precedence relation on elements of T
P = {(T,,T,) | T, must be done before T} },
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are ordered 1 to 9.

the objectiveisto find/] that satisfies:
(1) IT=[S;, S, ...Sw], apartition of T.

(2) X «Ty) cCfordl S;ell
TkESj

(3) For each T, e T:
for al T, such that (T, ,T)) € P, T:€ §;, T, € §j,
then i<j or
for all - such that (T, ,T;) e P, Ty € S, T,€ Si
then k<j

afunction f is minimized.

Condition (1) requires /7to be a partition of set
T. This ensures that al tasks will be assigned to a
station and a given task will not be assigned to more
than one station. At each workstation, the total time
units to complete all tasks assigned to it will not exceed
cycle-time C; this is guaranteed by Condition (2).
Precedence constraints are expressed by Condition (3):
atask is assigned to a workstation either after al its
predecessors have been assigned or before its
predecessors have been assigned.

Finally, afunction fis defined to evaluate the
goodness of an assignment of tasks to workstations.
Based on the above factors, we considered three
possible definitions for f specified as f;, f3, and f5
specified below.



fi=WC=3 > u(T,)

W i=l T,eS; 2
£ =Z(Zta‘k)—cj /W
fi=daf,+b4f,

where fI minimizes total idle time, f2 minimizes mean-
squared idle time, and f3 is a combination of f1 and f2
wherea and b are arbitrary constants each between 0
and 1,and a+b=I.

2. Previous Work

Thetraditiona (linear) assembly line balancing
problem is known to be NP-hard [9]. If there are m
tasks and r ordering constraints then there are m//2"
possible tasks sequences [2]. With such a vast search
space it is nearly impossible to obtain an efficient
solution using a deterministic algorithm.  However,
many attempts have been made [3,7,8,11,15,16]. None
of these methods have proven to be of practical use for
large problems due to their computational inefficiency.

Several heuristic-based methods for the
traditional assembly line balancing have been
developed. Baybars[1] and Talbot et al. [14] review
and evaluate these different approaches. Another
proposed solution considers a five-phase method using
task elimination, decomposition and heuristics [2].
Also, a genetic algorithm was used to obtain near
optimal solutions to the traditional assembly line
balancing problem in combination with heuristic-based
methods [10].

Miltenburg and Wijngaard adapted heuristics
developed for the traditiona assembly line and applied
it to the U-shaped line balancing problem [ 12]. They
tested their algorithm using previously studied
examples and test cases found throughout the assembly
line literature. They also devised a dynamic
programming procedure. However, because of
computational costs of the dynamic programming
technique results were reported for small datasets only
(those consisting up to 11 tasks).

3. A GA Solution for the U-Shaped
Assembly Line Balancing Problem

A genetic agorithm operates on a collection of
candidate solutions. Each solution is encoded as a
finite length string, typically a string of bits or integers.
The gtring is called a chromosome, and each element
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in the string is called a gene. Each chromosome
represents a possible solution to the problem. A fitness
function is applied to each chromosome in a population
of chromosomes to determine how fit each
chromosome is.  Chromosomes are probabilistically
selected based on their fitness. Genetic recombination
operators take the selected chromosomes, exchange
genetic material and produce children chromosomes.
Davis [5], Goldberg [6], and Mitchel[ 13] provide an
excellent in-depth study of the fundamentals of genetic
algorithms. It is assumed the reader is familiar with
the fundamental concepts of genetic algorithms.
Our GA implementation for the U-shaped

assembly line balancing problem is order-based, i.e., a
chromosome of length n is a permutation of 1,2,... ,n.
For a problem consisting of n tasks, each chromosome
of length n represents a specific task ordering. Notice
that in the U-shaped assembly line balancing problem,
not every permutation will constitute a valid solution.
Only those permutations in which all predecessors of a
task precede that task in the permutation are
considered feasible chromosomes. We dealt with only
feasible chromosomes. Thus, it was necessary for usto
generate only valid chromosomes in our initial
population. Each gene of a chromosome in the initial
population was obtained by randomly choosing the
next task among unselected tasks whose predecessors
had aready been chosen. We aso used a feasihility
preserving crossover operator that ensures feasible
chromosomes.

We used the crossover operator developed by
Leu et al. in their GA solution for the traditional
assembly line balancing problem [10]. We call this the
“ ordered two-point crossover”.  Given two parent
chromosomes, two random crossover points are
selected partitioning them into a left, middle and right
portion. The ordered two-point crossover behavesin
the following way: child 1 inherits its left and right
section from parent 1, and its middle section is
determined by the genes in the middle section of parent
1in the order in which the values appear in parent 2.
A similar processis applied to determine child 2.

Parentl: 4 211 316 5
Parent 22 2 311 415 6
Child 1: 4 213 116 5
Child 2; 2 314 115 6

Figure 2. Example of Ordered Two-
Point Crossover where crossover
points are indicated by | Ssymbol.



Given two chromosomes than encode feasible
solutions, then the ordered two-point crossover
operator yields two new feasible chromosomes.
Consider Figure 2. It is obvious that there are no
violations of precedence constraints in either the left or
right portion of Child 1, since they are exact copies of
the left and right portions of Parent 1, which is known
to be feasible. The placement of 1 and 3 in the middle
portion of Child 1 does not violate any precedence
congtraint since they are located after 4 and 2 and
before 6 and 5 in Parent 1. Finaly, positioning task 3
before task1 does not violate any precedence constraint
since task 3 preceded taskl in Parent 2 which is also
assumed to be a feasible solution.

We did not use mutation in our GA
implementation. The traditional mutation operators for
order-based GAs are not appropriate for this problem
since mutating a feasible chromosome can easily result
in an infeasible chromosome. In order to use mutation,
a new mutation operator would have had to be
developed. Some alternatives were considered,
including the one used by Leu et al. [10]. This operator
did not enhance any of our solutions since it replicated
work done by our initialization algorithm. Note that
unlike Leu's GA implementation for the traditional
assembly line problem|[ 10], our GA implementation for
the U-shaped assembly line problem starts with a
randomly generated, initial population of 100 feasible
solutions. This population size appeared to contain
sufficient “genetic material” to allow the GA to evolve
to a solution. No improvements were observed by
increasing population size.

In order to compute the fitness value of a
chromosome, it is necessary to determine how a
particular order of tasks can be assigned to
workstations. Given a chromosome depicting an
ordering of the tasks, we developed as part of this
research six different algorithms to assign tasks to
stations. We denote this six assignment algorithms as
assignment algorithms (a) through (f). The fitness
value of a chromosome is determined by applying all
six assignment algorithms (a)-(f) to it, and using the
lowest fitness value. Assignment algorithm (a)
attempts to always assign aternatively unassigned
tasks at the beginning and the end of the sequence of
tasks; assignment (b) does the same as (a) but giving
priority to tasks located at the end of the sequence. In
assignment (c), all possible unassigned tasks located at
the beginning of the sequence are assigned and then all
possible unassigned tasks at the end of the sequence are
assigned. Similarly, assignment (d) attempts to assign
all possible tasks at the end of the sequence and then to
assign al possible tasks at the beginning of the
sequence. Assignments (€) and (f) give aternate
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priority to the task at the beginning and end of the
sequence, changing this priority at each iteration.
Initially assignment (€) gives priority to the task at the
beginning of the sequence, while assignment (f) does
S0 to the task at the end of the sequence. Although
these differences might seem trivia, they can lead to
different assignments producing a different number of
stations. Notice that all these variations in the
assignment procedures respect the constraint that a
task must be assigned to a station after all its
predecessors or successors have been assigned to
stations. It is possible that different assignment
procedures end up with the same disposition of the
assembly line, even though the order in which stations
are determined is different.

4. Computational Results

Our GA solution was implemented using
LibGA [4]. Our GA was applied to the 12 well known
datasets from the literature for the traditional assembly
line balancing problem. When one considers all
possible cycle times used in these 12 datasets, this
results in 61 different problems. The 61 problems
include six problems from Merten, one problem from
Bowman, five problems from Jaeschke, and so forth
ending with six problems from Arcus. All 61 problems
with results are listed in Table 1. Note Table 1 is
depicted in two parts due to its size, but should be
considered as one continuous table. Table 1 lists the
problem source in the first column with the number of
tasks listed below the problem source name. Next the
various cycle times for each problem are given. The
ideal (optimal) for each problem is given. Under the
column, Others, solutions from previous researchers
are given. For each of the 61 cases, Npp represents the
optimal results obtained using dynamic programming,
and Ng.,. represents the best known results to date
using various heuristic algorithms as reported by
Miltenburg and Wijngaard [12]. We tested each of
these 61 problems using our three GAs whose fithess
functions dealt with: total idle time (GA,), balance of
the workload among stations (GA,), and both criteria
with an equal weight,a = b = 0.5, (GAs). Note GA,,
GA,, GA;3, correspond to the fitness functions fi, f2, f;
described earlier. Our GA results are shown in Table
1. The number of stations obtained with each of the
GAs islisted under columns GA;, GA, and GA;.  Also
for each of these results, a letter (af) follows
representing which of the six assignments (a)-(f) that
was used in the eval uation of the solution chromosome.

The dynamic programming technique produces
optimal solutions. These results are shown (column



Table 1. Computational results comparing our genetic algorithm{GA1, GA2, GA3)
to Others [12], which includes N,,: (optimal results obtained with Dynamic
Programming)and N,,: (best known results to date using heuristic algorithms).

Problem Ideal Pthers GA:; | GA: | GAs
Merten | cycle] N Nor INrew| N N | N Problem Ideal Others GA; GA, GA;
7 6 4.8 6 6 | 6a| 6¢c | 6c Sawyer | Cycle| N Npp Nieyr N N N
7 41 5 5 | 5a | 5a | 5a 30 25 13 15 | 14d| 14e | 14e
8 3.6 5 5 5a 5a 5a 27 12 14 | 13d| 13d 13d
10 | 29 3 3 | 3] 3]z 30 | 108 12 | 12a| 12d | 12f
15 19 2 2 2b 2b 2a 36 9 10 | 10b] 10a 10b
18 1.6 2 2 2a 2a 2a 41 7.9 9 8c 8d 8c
Bowman 54 6 7 7a 7d 7c
9 20 | 37 4 5 | 4d| 4d | ad 7w | 43 5 | 5a| 5f 5b
Jaeschke Kilbridge&
9 6 6.2 8 3 sa sa | aa Webster 57 9.7 10 | 10c| 10b | 10d
7 5.3 7 7| 7a] 7a | 7a 45 €] 7 g8 [ 8a] 8 | s
8 46 6 6 | ee | 6a | 6a 92 6 7 [ 7a| 6d | 7¢
10 37 4 4 | 44| 4 4a 110 | 51 6 | 6a| 6b 6¢c
18 21 3 3 ]3] 3 | 3 138 4 5 | 4c | 4c Ac
Jackson 184 4 | 3a]| 3a 3a
u 7 6.6 7 8 7a | 7a | 7a Tongue
9 5.1 6 6 6a 6¢ 6¢c 70 176 | 199 21 | 21f| 21e | 21e
10 | 46 5 5 | sa| 5a | 52 364 | 9.6 10 [ 10c| 10e | 10b
13 | 35 4 4 | 4a | 4c | 4c 410 | 86 9 oo | 9 | oc
14 | 33 4 4 | 4al 4] 4 468 | 75 8 | sa| 8a af
21 2.2 3 3 3a 3d 3d 527 6.7 7 7a 7c 7c
Dar-N Arcus-83 | 5048 | 15 16 |16b| 16a | 16a
1 28 | 38 2 72 1 2l 20 [ 2 83 5853 | 12.9 14 J1ap | 12e | 14a
62 3 3 4 3] a3 | 30 6842 | 111 12 [12a] 12f | 12f
94 2 2 3 2d 2d 2d 7571 10 11 | 11a] 11c 11c
Mitchell 8412 9 10 | 10a] 1o0d 10d
21 14 75 3 3b 8c | 8 8898 | 85 9 | % | % 9c
5 | 7 8 |8 | 8 | e 10816 7 8 |8a| 8 | 8
21 5 6 5a | 5a | 5a Arcus - 111
Ueskiaoff 111 5755 | 26.1 27 | 28c| 28d | 2sd
28 38 | 74 s T8 80 & 8847 | 17 18 | 18a| 18d | 18c
25 | 5 T 6 6o 10027 15 16 [16d| 160 | 16d
516 | 27 T | % |3 10743 14 15 | 15a| 15d | 15d
6 | 2 T 50 5 11378 132 14 |14b| 14d | 14d
324 | 32 7 T2 (2 17067| 8.8 9 [od| 9a | 9
342 3 3 3c 3a 3a

100



Npp) for the smaller sized problems Merten through References

Dar-El in Table 1 (first 21 test problems). In each of

these problems all three of our GA agorithms also [1] I. Baybars. A Survey of Inexact Algorithms for the Simple

obtained the optimal solution. For the larger problems,
Mitchell through Arcus the dynamic programming
technique was too costly and was not attempted [ 12].
Next consider our GAs as a group versus Nyeur, Which
represents the best known results to date using various
heuristic algorithms. In the 61 test problems our GA
obtained the same result as the heuristic algorithms in
49 cases, obtained superior resultsin 11 cases, and did
worse in only one case. GAs solutions that are better
than those provided by the heuristic procedure are
shown in bold and italics.

In Table 1 notice all of the assignment
algorithms (a)-(f) were used as the algorithm that
represented the best solution. In fact among the 11 test
cases in which our GA outperformed all other
heuristics, each of the assignment algorithms (a)-(f
was used at least once lending merit to each of our six

assignment algorithms. Furthermore, the GAs proved 7}

to be competitive in terms of computational costs. For
example, a solution to the largest of the datasets,

(Arcus 111 tasks) was found in less than 10 minutes [8]

running on a Sun Sparcstation 10.

5. Conclusions

A GA solution for the Type | U-shaped
assembly line balancing problem was developed. To the
authors' knowledge this is the first time a genetic
algorithm solution has been developed for the U-shaped
problem. One of the main assets of this research is that
it provides a global framework which can be used to
deal with the two possible variations of this problem,
minimizing total idle time, and balance of the workload

among stations, or a combination of both. As part of [13]

this research we devel oped assignment algorithms (a)
through (f) as a means for interpreting a chromosome
and assigning tasks to workstations. In our results each
of these assignment algorithms proved to have merit.
The results show our GA to be an excellent technique
for this problem. In the 61 standard test cases, our GA
obtained the same results as previous researchers in 49
cases, superior results in 11 cases, and in only one case
did worse. Moreover, the GA proved to be
computationally efficient.

6
)[]

Assembly Line Balancing Problem. GSIA WP-64-82-83,
Carnegie-Mellon University, Pittsburgh, PA, July 1983
(revised October 1984).

|. Baybars. An Efficient Heuristic Method for the Simple
Assembly Line Balancing Problem. Int. Journal of
Production Research, vol. 24, No. 1, 1986.

[3]1 JM. Charlton, C.C. Death. A general method for machine

scheduling. Int. Journal of Production Research No. 7,

1969.

A.L. Corcoran,, R.L. Wainwright. Using LibGA to
develop Genetic Algorithms for Solving Combinatorial
Optimization Problems. Lance Chambers, Editor, Practical
Handbook of Genetic Algorithms, Applications Volume I,
pages 143-172, CRC Press, 1995.

L. Davis, editor, Handbook of Genetic Algorithms, Van
Nostrand Reinhold, 1991

D. Goldberg. Genetic Algorithms in Search,

Optimization, and Machine Learning, Addison Wedey,

1989.

M. Held, RM. Karp, R. Sharesian. Assembly line
balancing-Dynamic programming with precedence
constraint. Operations Research, No. 11, 1963.

JR. Jackson. A computing procedure for a line
balancing problem. Management Science, No. 2, 1956.
[9] R.M. Karp. Reducibility among combinatorial problems.

Complexity of Computer Applications, New York:

Plenum, 1972.

[10] Y. Leu, L. Matheson, L. Rees. Assembly Line Balancing
Using Genetic Algorithms with  Heuristic-Generated
Initial Populations and Multiple Evaluation Criteria.
Decision Sciences, vol. 25, No. 4.

[11] P. Mertens. Assembly line balancing by partial
enumeration. Ablauf- und Planung-forschung  Vol. 8,
1967.

[12] G.J. Miltenburg, J. Wijngaard. The U-line Line
Balancing Problem. Management Science, vol. 40, No.

10, October 1994.

Melaline Mitchell, An Introduction to Genetic

Algorithms, The MIT Press, 1996.

[14] F.B. Tabot, J. H. Patterson. A comparative evaluation of
heuristic line balancing techniques. GBS, University of
Michigan, Ann Arbor, Michigan, Working Paper 125,
1981.

[15] F. Van Assche, W.S. Herroelen. An optimal procedure
for the single-model deterministic assembly line balancing
problem. European Journa of Operational Research, Vol.
3, 1979.

[16] T.S. Wee, M.J. Magazine. An efficient branch and bound
algorithm for assembly line balancing- Part 1: minimize
number of workstations. University of Waterloo, Waterloo,
Ontario, Working Paper 151, 1981.

(2]

[4]

(5]

101



