From: AAAI Technical Report FS-95-01. Compilation copyright © 1995, AAAI (www.aaai.org). All rights reserved.

Applying Genetic Programming to Intrusion Detection

Mark Crosbie, Eugene H. Spafford
{mcrosbie,spaf}@cs.purdue.edu
COAST Laboratory
Department of Computer Sciences
Purdue University
West Lafayette
IN 47907-1398

Abstract

This paper presents a potential solution to the intru-
sion detection problem in computer security. It uses
a combination of work in the fields of Artificial Life
and computer security. It shows how an intrusion de-
tection system can be implemented using autonomous
agents, and how these agents can be built using Ge-
netic Programming. It also shows how Automatically
Defined Functions (ADFs) can be used to evolve ge-
netic programs that contain multiple data types and
yet retain type-safety. Future work arising from this
is also discussed.

Introduction

Genetic Programming (GP) has been used to solve
many problems that occur in the real world. Koza’s
book (Koza 1992) has numerous examples of using GP
techniques to solve problems in a variety of fields. This
paper presents a new application of genetic program-
ming to solve a problem in the field of computer secu-
rity. This application will exploit the learning power of
GP. In the course of designing a solution to the prob-
lem, a novel use for Automatically Defined Functions
(ADFs) (Koza 1994) was also discovered.

Background and Motivation

To understand the security problem being solved, this
section provides a brief introduction and motivation.
A computer system is secure if (Garfinkel and Spafford
1991)

it can be depended upon to behave as it is ex-

pected to.
This is an intuitive definition — we generally will have
confidence in a system if it behaves according to our ex-
pectations. Nore formally, security is often described
in terms of confidentialily, inilegrity and availabilily
(Russell and Gangemi Sr. 1991). Confidentiality is the
property that private or secure information will not be
accessed by unauthorized users, integrity is the prop-
erty that the system and its data will remain intact and
unviolated throughout the system lifetime, and avail-
ability is the property that the system will be available
for use in the face of attempted attacks.

The security properties of a system are usually de-
fined by the security policy. A policy is (Longley and
Shain 1987)

the set of laws, rules, and practices that regulate
how an organization manages, protects and dis-
tributes sensitive information.

A security policy is necessary before any security sys-
tem can be implemented or put in place on a system.
Any potential attempt to attack a system can only be
evaluated relative to the policy — if the policy pro-
hibits some action, then executing that action is po-
tentially an attack.

A security officer needs tools to enforce a level of
security on a system. There are two main types of
security tools on a system:

1. Pro-active — actively enforce the security policy
of the system for every action executed by users. If
the attempted action violates the policy, prohibit it
from occurring.

2. Reactive — monitor the actions of users after they

are complete and see if they violated the security
policy. If a violation occurred, report this to a sys-
tem operator.

In this context, a detection and reporting system would
be a reactive tool. It would not actively stop an attack
on a system, but would be able to detect it after the
fact and report it to a system security officer. In our
case, the detection system is called an Intrusion De-
tection System.

Intrusions and Intrusion Detection
An intrusion can be defined as (Heady et al. 1990)

any set of actions that attempt to compromise
the integrity, confidentiality or availability of a re-
source.

Sometimes, these are also defined as instances of mis-
use. An intrusion is an attempt to subvert the security
policy in force on a system to gain access to informa-
tion, to alter the system’s operation, or to deny the
system to other users. Intrusions are enacted by users
— a user runs a program which executes actions in

excess of that user’s authorization, for example. This
would be classified as an intrusion. Similarly, a user
who attempted to overload a system and prevent other
users from working would also have initiated misuse (a
denial of service). Note that this must be interpreted
relative to a security policy — on some systems, this
might be allowed (and expected) behavior.

To detect and report intrusions, a system must
have some form of intrusion detection system (IDS)
installed. An IDS must (Mukherjee, Heberline and
Levitt 1994)

identify, preferably in real time, unauthorized use,
misuse, and abuse of computer systems.

As this is a reactive form of defense, it will not stop
an intrusion from occurring. But without an IDS in
place, the only evidence that an intrusion has occurred
may be the disappearance of valuable files, or when the
system halts. A human operator cannot reasonably
be expected to filter megabytes of audit logs daily to
detect potential intruders.

Components in an IDS

An anomaly is a deviation from an expected norm —
some significant change in system behavior that may
indicate a potential intrusion. Not all anomalies result
from intrusions, so it is necessary to have some classi-
fication system to separate anomalous actions from in-
trusive actions. Typically this is done using an expert-
system approach. A large ruleset specifies the security
policy — this rule set forms a model with which the
running system can be compared. System profile met-
rics are continually matched against this rule base, and
if an intrusion is detected, an alert is raised. Examples
of this are the IDES system (Lunt 1992) and Wisdom
& Sense (Vaccaro and Liepins 1989). Both these sys-
tems derive metrics about the system’s activity and
then use an expert-system to decide if the calculated
values indicate an intrusion.

To detect anomalies, some abstraction of system op-
eration must be computed. Generally, this takes the
form of a set of metrics which are computed from sys-
tem parameters. These metrics can be as simple as
average CPU utilization, or as complex as a command
profile per user. By analyzing the metrics, 1t is possi-
ble to detect deviations from normal system behavior
— anomalies. A metric is (Denning 1987)

a random variable z representing a quantitative
measure accumulated over a period.

A metric will encapsulate some pertinent information
about an important system parameter that will be use-
ful in detecting any anomalous behavior. Metrics are
often computed by analyzing audit trail information:
determining number of login attempts per unit time,
for example.

An anomaly may be a symptom of a possible intru-
sion. Given a set of metrics which can define normal
system usage, we assume that (Denning 1987)

exploitation of a system’s vulnerabilities involves
abnormal use of the system; therefore, security vi-
olations could be detected from abnormal patterns
of system usage.

This is the key idea behind an anomaly intrusion de-
tector.

Finally, an IDS needs some method for comparing
the computed metrics to the model and deciding if a
sufficient variation exists to flag an intrusion. This
may be based on statistical differences (e.g., between
observed means), or it may use more complex covari-
ance analysis (as in IDES (Lunt and Javitz 1992)).

Typically these mechanisms are built into one large
module that performs all the actions of an IDS: it has
the model encoded in it, it computes metrics from the
audit data and it compares metrics with the model.
The designers of the system have prespecified the na-
ture and content of the model, they have decided on
which metrics to compute and have established a mech-
anism to compare the metrics to the model.

If a new intrusion scenario arises, or if an existing
scenario changes, modifying the IDS is cumbersome
and complex. Rewriting rules in an expert-system
is not a trivial task. Ideally, the rule base could be
tailored to every end-user configuration that the IDS
would potentially run on. This is impractical however
— not all IDS users will be experts in expert-systems.

A Finer-grained Approach

Instead of one large, monolithic IDS module, we pro-
pose a finer-grained approach — a group of free-
running processes that can act independently of each
other and the system. These are termed Aufonomous
Agents.

An agent is defined as (Maes 1993)

a system that tries to fulfill a set of goals in a
complex, dynamic environment.

In our context, an agent would try to detect anoma-
lous intrusions in a computer system under continually
changing conditions: the agent would be the IDS. If
an IDS can be divided into multiple functional entities
that can operate in their own right, each of them can be
an agent. This gives multiple intrusion detection sys-
tems running simultaneously — multiple autonomous
agents. This approach is outlined in (Crosbie 1995).
Figure 1 shows the architecture of the agent based solu-
tion, with sample agents monitoring I/0O, NFS activity
and TCP network connections.

The agents run in parallel in the system; in this de-
sign they are placed in the kernel. Audit data is fed
from the kernel auditing system into the lower router.
Its purpose is to separate the audit data into multiple
audit classes and feed the audit records to the agents.
Each agent then performs computations based on the
contents of the audit records. An agent reports a suspi-
cton value which indicates whether the agent considers
the system (as viewed through the audit log records)

User level gets suspicion report

—

Upper MUX - combines suspicion reports]

T

L Lower Router - routes data to the Agents]

\ Kernel audit

data

Figure 1: Overall Agent-based IDS architecture

under the threat of an intrusion. Each agent reports
its suspicion value to the upper multiplexor (Upper
MUX) which then combines these individual values
into an overall suspicion report, which is passed up to
the user (the system security officer). The upper MUX
can compute a simple average of the suspicion values,
or more likely, a weighted average — if some agents are
monitoring essential system parameters, their reports
could be given more weight in an overall intrusion re-
port.

Each agent is a lightweight program — it observes
only one small aspect of the overall system. A single
agent alone cannot form an effective intrusion detec-
tion system because its view of the overall system is
too limited in scope. However, if many agents all op-
erate on a system, then a more complicated IDS can
be built.

Agents are independent of each other. They can be
added to and removed from the system dynamically.
There is no need to rebuild the whole IDS to add new
agents. If an agent is created to monitor the network,
it can be added to the IDS and placed into the kernel
without affecting other agents already in place.

There are a number of advantages to having many
small agents as against a single monolithic IDS. Hav-
ing many agents provides a security system that has
greater flexibility to add new monitoring capabilities,
and to dynamically change current monitoring. It
helps to reduce the single point of failure/single point
of attack of traditional IDS. And, if properly done, the
agents may be customized to each system, thus pro-
viding better coverage and reducing the effectiveness
of clandestine attacks crafted on different systems with
similar IDS.

A clear analogy can be drawn between the human
immune system and this design. The immune system
consists of many white blood cells dispersed through-
out the body. They must attack anything which they
consider to be alien before it poses a threat to the body.
Sometimes it takes more than just one white cell to ac-
tually destroy the attacker. By having a large number
of cells, the body is always able to defend itself in the
most efficient way possible. If an infection occurs in
one area, then cells will move to that area so as to
fight it.

Using Genetic Programming for
learning

One approach to building an IDS is to precode many
possible intrusion scenarios into the system before it
1s installed. Thus, it comes with a static “knowledge-
base” that it then uses to detect anomalies and intru-
sions. This has the shortcoming that a rule base has
to be built by a group of experts and put in place on
a system. Further, once it is there, it is difficult and
expensive to maintain and update.

Our view of an IDS requires that the system be able
to change over time to accommodate new information,
and new threat patterns. That is, we want to be able
to “evolve” the current agents, and train new ones.
This will allow the system operator to customize the
system and counter new threats. We can do this by
providing a mechanism to “frain” agents.

We selected Genetic Programming (GP) (Koza
1992) to implement this. This paradigm was chosen
because it allows programs to be evolved and then
executed in production emvironments. This was the

overall goal of our investigation — to see if a collection
of agents could be evolved that could be then placed
in a system and left to monitor audit data. Genetic
Programming was amenable to this goal — the final
results of an evolution run is a set of programs. These
programs are placed in a real system and are run con-
tinually to detect intrusions.

[t 1s rare that programs evolved using GP are writ-
ten in standard computing languages (such as C or
PASCAL). Instead, a simple meta-language is often
used which is tailored to solving a specific problem.
Our solution is no different — the genetic programs
are evolved in a simple language that has primitives
to access audit data fields and manipulate them. In a
stand-alone solution, these genetic programs are inter-
preted by an evaluator that supplies them with audit
information. This is all contained within an agent in
the final system. Figure 2 shows the internal architec-
ture of an agent. The agent code is obtained from the
evolution runs and is placed in the stand-alone agent
to be interpreted by the evaluator. The evaluator ob-
tains audit information from the System Abstraction
Layer (SAL).

The SAL computes various statistics about the audit
records and supplies them to the agents. It decodes the
audit records and extracts the necessary fields. This
abstracts the agents away from the format of the un-
derlying audit data — agents can be developed inde-
pendent of the audit record representation. The SAL
provides a consistent set of primitives (e.g., average
CPU utilization, average number of login attempts,
etc.) to the agents across all systems.

Learning by feedback

Our learning model uses feedback — we present a
scenario to the agents and evaluate them based on
their performance. This is a separate program from
the actual intrusion detection system. The training is
batched and the best agents are then placed into the
stand-alone IDS for use.

The scenarios were developed to present a wide range
of potential intrusions to the agents. As important,
however, is to train the agents not to flag legitimate
behavior as intrusive. Thus the training scenarios are
a mixture of both intrusive and non-intrusive activi-
ties. Each scenario has a probability associated with
it that gives the likelihood that the scenario is an in-
trusion. This is used to assign a fitness score to each
potential agent. This fitness score is then used by the
genetic programming package to guide the evolution of
the agents’ code.

The scenario data is generated by a PERL (Wall and

Schwartz 1992) script that executes commands at spec-

ified intervals. These commands correspond to what a
potential intruder would execute. For example, one
scenario attempts rapid connections to reserved ports
(mail port, HT'TPd port etc.), and has a high proba-
bility (90%) of being an intrusion.

What do agents monitor?

For our initial prototype, we decided to monitor net-
work connections. We hoped to prove the agent con-
cept viable (including the genetic programming com-
ponent) by showing that agents could detect simple
intrusions. Inter-packet timing metrics were computed
by calculating the difference in time between two au-
dit records that related to either a socket connect()
or accept() call. The average, minimum and maxi-
mum inter-connection times were then updated. The
destination port of a connect, and the source port of
an accept were also stored. This process was repeated
for every audit record that arrived. These metrics were
made available to the agents via the System Abstrac-
tion Layer.
The metrics computed in this prototype were:

. Total number of socket connections.

. Average time between socket connections.

1
2
3. Minimum time between socket connections.
4. Maximumn time between socket connections.
5

. Destination port to which the socket connection is
intended.

6. Source port from which the connection originated.

As each audit record has a timestamp, the first four
metrics could be easily computed by calculating inter-
audit record timing. The last two metrics were ob-
tained by extracting the relevant information from the
audit record.

Some potential intrusions that we hoped to detect
with these metrics were:

¢ Rapid network connections to a specific port — port
flooding.

o Searching through the port space for vulnerable ser-
vices — port-walking.

¢ Gaining information from services (finger, httpd,
NIS, DNS) — probing.

¢ Rapid remote login attempts — password cracking.

As this list shows, even with such simple metrics as
inter-connection timings, we can detect a wide range
of potential intrusions or anomalies.

GP building blocks

In Figure 2 the evaluator is shown querying the SAL for
metric values. But how does it know which metrics the
agent needs to access? The agent code is composed of
a set of operators (arithmetic, logical and conditional)
and a set of primitives that obtain the value of metrics.
As is usual with Genetic Programming, these sets can
be combined in any way to generate parse trees for
solution programs.

These programs were then evaluated against a set
of training scenarios (as outlined above) that allowed
each potential agent to be assigned a fitness score. This

Agent’s Suspicion Report

e
Suspicion Reporter }
Agent
Code

Queries metrics

L System Abstraction Layer J

;
i
i
'
1
'
1
i
i
1
1
r
T
1
1
1
1
' Evaluator
¥
1
1
1
1
'
L}
1
1
i
s
1
1
'
‘
1

Kernel Audit

Data

Figure 2: Internal agent architecture

score is based on how well the agent classifies the train-
ing scenarios. If an agent is presented with a training
scenario that results in an intrusion, but it does not
report a high suspicion after being fed the audit data
from that scenario, the agent will be given a low fitness
score. The fitness score is computed as follows:

The absolute difference between the agent’s reported
suspicion and the scenario’s outcome is computed:

& =| outcome — suspicion |

A penalty is then computed based on how this sce-
nario is ranked. Some intrusive behavior is more diffi-
cult to detect, in large part because it may be similar to
allowed behavior. Thus, we weight our penalty based
on the difficulty of detecting the intrusion. For exam-
ple, if a certain scenario is an obvious intrusion, then
agents which misclassify it should be penalized heavily.
However, if a scenario is difficult to detect, the rank-
ing is less severe and misclassification does not result
in such a heavy penalty:

6 x ranking)
100

Finally, the fitness is computed based on the dif
ference between the agent’s suspicion and the actual
suspicion:

penalty = (

fitness = ((100 — 8) — penalty)

A fitness of 0 indicates that the agent is predicting
exactly the same outcome as the scenario — 1t is cor-
rectly classifying all the scenarios. A higher fitness
score means the agent has deviated from the predeter-
mined suspicion value associated with this scenario.

To actually report their suspicion, agents use two
primitives to increase or decrease their suspicion val-
ues. Each agent has an internal variable giving its cur-
rent suspicion, and this is reported to the upper MUX
(in Figure 1).

Multiple types in a parse tree

The parse trees for the agents had to accommodate
multiple data types. Audit data is a rich source of in-
formation and it contains many different types of data.
Timing information will be of one type, whereas socket
addresses or port numbers will be another. In our pro-
totype, the following data types were used:

1. time — the interconnection timing information is in
this form. It is a long int in our implementation,
but this could change across implementations.

2. port — a port number. This is an unsigned int in
our implementation, as port addresses range from 0
to 65535 in IP.

3. boolean — this is returned by some of the functions
available to the agents.

4. suspicion— thisis the current suspicion level of an
agent. It ranges between 0 (not suspicious) to 100
(suspicious). :

During the course of evolving an agent, it is likely that
the parse tree will contain operations that attempt to
combine operands of different types: adding a time
type to a boolean for example. This leads to problems
which will be discussed in the next section.

Problems with multiple types

In Koza’s original work (KKoza 1992), the parse trees for
his genetic programs were constructed from uni-typed
functions. Every function could manipulate the result
of any other function. However, in real world situa-
tions, there is a need to handle multiple data types
within a genetic program and still ensure type safety.
This ensures that operators are passed operands that
conform to a certain type-lattice. For example, adding
a boolean type to an integer type would be prohib-
ited.

Previous work has been done in the area of strongly
typed genetic programming (Montana 1993). This ad-
dressed how to evolve parse trees that conformed to
certain typing rules. However, despite the attraction
of using this approach, we felt that it would involve
significant re-writing of our GP package!. As our pri-
mary goal was intrusion detection, we chose the path of
least resistance and implemented a different solution.

A solution using ADFs

Koza introduced the idea of an Automatically Defined
Function (ADF) in his second book (Koza 1994). An
ADF is essentially a subroutine that is evolved sepa-
rately from the parent parse tree. It is this separate
evolution that allows the generation of type-safe parse
trees.

In our solution, each ADF performs a specific func-
tion — one tree evolves subroutines to monitor network
connection timing, another evolves routines to monitor
port addresses. Each of these trees will have a differ-
ent set of primitives, and a different data type being
manipulated. By keeping the evolution of the ADFs
separated. there is no danger that unsafe parse trees
may be generated. Any combination of any primitive
within an ADF will be type-safe. This is a simple so-
lution that avoids having to enforce strict typing rules
during evolution. The type-safety is built in by design.

The ADF for a routine to monitor network timing
has the following primitives available:

e avg_interconn time — the average time between
network connections.

e min_interconn_time — minimum observed time be-
tween two successive network connections.

e max_interconn_time — maximum observed time
between two successive network connections.

These functions will return time type values. These
values can be compared and manipulated with stan-
dard arithmetic operators (e.g. + = * / < > == =),
A time value ranges from zero to some maximum time
value which is implementation dependent.

The ADF for the port monitor routine has the fol-
lowing primitives available:

e src_port — the source port of the last network con-
nection.

"We were using 1ilgp v1.0 to evolve the agents.

Table 1: Training scenarios

[Type of Scenario | Outcome |
10 connections with 1 second delay 90%
10 connections with 5 second delay T70%
10 connections with 30 second delay 40%
10 connections every minute 30%
Rapid connections, then random pauses | 80%
Intermittent connections 10%
Connections to privileged ports 90%
Connections to any port 70%

e dest_port — destination port of the last network

connection.

These primitive manipulate a port type, which is es-
sentially an integer between 0 and 65535. Again, stan-
dard arithmetic and comparison operators are avail-
able.

To monitor connections to privileged ports, an ADF
is used with the following two primitives:

e is priv_dest_port — is the destination port of the
last connection a privileged port (i.e. is it between
0 and 1023, inclusive)?

e is priv_src_port — is the source port of the last
connection a privileged port?

These functions both return a boolean value. This
data type is manipulated using boolean operators AND,
OR and NOT. Also available are some comparison oper-
ators == != and the conditional if statement.

Each of these ADFs is evolved separately from the
other — functional crossover never occurs between two
different ADFs. Thus, the type-safety is preserved by
the evolutionary process. However, this comes at the
expense of having to maintain multiple populations per
ADF — instead of having a population of individual
parse trees, there are now four populations of parse
trees; one per ADF plus a root tree. This is shown in
Figure 3.

The root parse tree only has the ability to call the
lower ADFs (similar to calling subroutines in conven-
tional programming). Each ADF deals with a specific
aspect of the audit data trail. ADF 1 handles the tim-
ing information about port connections, ADF 2 han-
dles source and destination ports of connection and
ADF 3 handles connection to privileged ports.

Results and Conclusions

To test the agents, scenarios were developed which we
hoped would encode some potentially intrusive behav-
ior related to network connections. The scenarios were
artificial, given the limited scope of the metrics being
computed. They were structured to train agents to
detect obvious anomaly patterns — repeated connec-
tion attempts, connections to privileged ports and port
walking. The training scenarios are shown in table 1.

P T I e

Root Tree

ADF 1 ADF2 ADEF 3
Connection Port Privileged
Timing Numbers Ports

- e e e e A e e e e e e e

Figure 3: Each agent has multiple ADFs

The outcome of each scenario indicates the proba-
bility that that scenario results in an intrusion. The
outcomes were decided a priori. This is an area for fu-
ture investigation — developing good training scenar-
ios involves addressing the issues of coverage and depth.
We must ensure that the training scenarios will cover
a wide variety of potential intrusions. This will ensure
that the agents are able to handle as many potential
intrusions as possible. Within each class of intrusion
(i.e. network based, user based etc), we must ensure
each agent has sufficient depth — that it has been ex-
ercised extensively within that class of intrusion. The
above table of scenarios cannot hope to address these
two issues, but it does reveal what is necessary to de-
velop good training scenarios. Once a good collection
of training scenarios are developed, they can be re-used
many times to train new agents — the effort expended
in developing good training scenarios is not wasted.

Three training runs were initiated with the above
scenarios. Each run had slightly different parameters
guiding the evolution. Once the evolution runs had
completed. the best agent from each run was selected
and placed in a test scaffold. This allowed audit data
to be supplied to the agent without the surrounding
evolution code. The idea behind the test scaffold is to
gain understanding in what is necessary to run agents
in a stand-alone environment. Once agents are evolved
in the training system, they must be stripped down so
that they can be placed in a production system and
impose a minimum overhead.

The stand-alone agents were placed on a system run-
ning HP-UX 10.0. This ran the kernel is trusted mode
which allows audit records to be generated when a
system call is executed. The system calls to be au-

dited could be configured using the standard HP-UX
sam tool. To gather metrics on socket connections, the
accept () and connect () calls were audited. Thus the
audit trail would contain minimum extraneous records.
This audit trail could then be fed to the System Ab-
straction Layer of each agent which would compute the
metrics.

To test the agents with “real” data, auditing was
temporarily enabled, and some commands were exe-
cuted. These commands mimicked the actions of a po-
tential intruder. The actions of a legitimate user were
also simulated. Three test files were then supplied to
the three best agents, and each agent reported a sus-
picion value. These values are summarized in table 2.

As can be seen, agents 2 and 3 performed better than
agent 1. Agent 1 misclassified the last test suite as in-
trusive (73% probability). This test suite was not con-
sidered intrusive. Agent 3 classified this test suite with
the least probability of being intrusive (25%). This is
more in line with what we had in mind when execut-
ing these commands — they corresponded to normal
system usage, and were not intrusive.

Agent 3 correctly classified the first test file as in-
trusive, but returns a 0% probability of intrusion for
the second test case. This indicates that agent 3 is not
yet perfect, but forms a good start point for continued
evolution of solutions.

The first steps in improving this prototype would be
to increase the variety of the training scenarios and
develop more advanced attack scenarios with which to
test the agents.

Table 2: Test cases and the agents’ reports

| Activities

| Agent 1 | Agent 2 [Agent 3]

Connections to privileged ports 83 100 98
Login then long pause, then logins | 31 26 0
Logins and ftp with long pauses 73 47 25
Conclusions of Computer Science, University of New Mexico, Al-

It is impossible to compare a prototype of a new
intrusion detector to a full-fledged system such as
NIDES, but our results are encouraging. The pro-
totype demonstrates that an intrusion detection sys-
tem can be viewed as multiple functional entities that
can be encapsulated as autonomous agents. Further-
more, we have demonstrated that Genetic Program-
ming can be used as a learning paradigm to train our
autonomous agents to detect potentially intrusive be-
haviors. We are confident that continued development
will allow us to build more complex agents that will
capture a wider variety of intrusive behaviors.

Future Work

This prototype development work has raised many
questions, chief among which is how to make state-
ments about the effectiveness of our intrusion detector.
How can we be sure it will detect a specific intrusion?
Can we compute a probability a priori of its effective-
ness? What sort of overhead would such a system im-
pose on a production system?

These questions will be investigated in future re-
search.

References
Koza, John, 1992. Genetic Programming. MIT Press.

Koza, John, 1994. Genetic Programming II. MIT
Press.

Denning, Dorothy E, 1987. An Intrusion Detection
Model. IEEE Transactions on Software Engineering
February: 222

Garfinkel S., and Spafford E. 1991. Practical UNIX
Security. O’Reilly and Associates Inc.

Russell D., and Gangemi Sr. G. 1991. Computer
Security Basics. O’Reilly and Associates Inc.

Longley D.. and Shain M. 1987 Data and Com-
puter Security: Dictionary of Standards, Concepts and
Terms. Stockton Press.

Heady R.. Luger G., Maccabe A., and Servilla M.
1990. The Architecture of a Network-level Intrusion
Detection System, Technical Report, CS90-20. Dept.

buquerque, NM 87131.

Mukherjee B., Heberline L. T., and Levitt K.
1994. Network Intrusion Detection. IEEE Network
May/June: 26

Lunt T, and Javitz H. 1992. A real-time intrusion
detection expert system (IDES), Technical Report SRI
Project 6784, SRI International.

Vaccaro H. S., and Liepins G. E. May 1989. Detec-
tion of Anomalous Computer Activity. In Proceedings
of 1989 Symposium on Research in Security and Pri-
vacy.

Maes P. 1993 Modeling adaptive autonomous agents.
Artificial Life 1(1/2).

Wall L., and Schwartz R. 1992 Programming PERL.
O’Reilly and Associates Inc.

Montana D., May 1993. Strongly Typed Genetic
Programming, Technical Report, Bolt Beranek and
Newman Inc.

Crosbie M. and E. Spafford, October 1995. Defend-
ing a Computer System using Autonomous Agents. In
Proceedings of the 18th NISSC Conference, October
1995.

