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1. Introduction

In recent years, some promising approximate analytical solutions are proposed, such as exp-

function method [1], homotopy perturbation method [2–11], and variational iteration method

(VIM) [12–25]. The variational iteration method is the most effective and convenient one for

both weakly and strongly nonlinear equations. This method has been shown to effectively,

easily, and accurately solve a large class of nonlinear problems with component converging

rapidly to accurate solutions.

Differential-difference equations (DDEs) have been the focus of many nonlinear studies.

DDEs describe many important phenomena and dynamical processes in many different fields,

such as particle vibrations in lattices, currents in electrical networks, pulses in biological chains,

and so on. DDEs play important role in the study of modern physics and also play a crucial

role in numerical simulations of nonlinear partial differential equations (NLPDEs), queueing

problems, and discretization in solid state and quantum physics. At the same time, finding

exact solutions of DDEs is extremely important in mathematical physics.

On the other hand, in order to find directly exact solutions to DDEs, some methods [16–

26] for solving nonlinear differential equations are applied to DDEs. For example, Dehghan
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and Shakeri [16] have extended successfully multilinear variable separation approach to

special DDEs. Baldwin et al. [26], Wang et al. [27] have applied homotopy analysis method

(HAM) to DDEs. Dai and Zhang [28] have given a Jacobian elliptic function expansionmethod

to solve the doubly periodic traveling wave solutions and kink-type tanh solitary solutions

to some DDEs. There also have been some methods for nonlinear DDEs, such as Backlund

transformation [29, 30], Hirota method [31, 32], Darboux transformation [33], and Adomian

decomposition method [34].

2. He’s variational iteration method

Now, to illustrate the basic concept of He’s variational iteration method, we consider the

following general nonlinear differential equation given in the form

Lu(t) +Nu(t) = g(t), (2.1)

where L is a linear operator,N is a nonlinear operator, and g(t) is a known analytical function.

We can construct a correction functional according to the variational method as

un+1(t) = un(t) +

∫ t

0

λ
(
Lun(ξ) +Nũn(ξ) − g(ξ)

)
dξ, (2.2)

where λ is a general Lagrange multiplier, which can be identified optimally via variational

theory, the subscript n denotes the nth approximation, and ũn is considered as a restricted

variation, namely δũn = 0.

In the following example, we will illustrate the usefulness and effectiveness of the

proposed technique.

3. Application to Volterra equation

Consider the following Volterra equation:

dun

dt
= un

(
un+1 − un−1

)
, (3a)

with the initial condition

un(0) = n, (3b)

whose exact solution can be written as

un(t) =
n

1 − 2t
. (3.1)

We apply variational iteration method to the discussed problem. Using He’s variational

iteration method, the correction functional can be written in the form

un,m+1(t) = un,m(t) +

∫ t

0

λ(s)

{
dun,m(s)

ds
−

(
un,m(s)

)(
un+1,m(s) − un−1,m(s)

)}
ds. (3.2)
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The stationary conditions

1 + λ = 0,

λ′ = 0
(3.3)

follow immediately. This in turn gives

λ = −1. (3.4)

Substituting this value of the Lagrange multiplier λ = −1 into the functional (3.2) gives the

iteration formula

un,m+1(t) = un,m(t) −

∫ t

0

{
dun,m(s)

ds
−

(
un,m(s)

)(
un+1,m(s) − un−1,m(s)

)}
ds. (3.5)

We can start with un,0 = n, and we obtain the following successive approximations:

un,0(t) = n,

un,1(t) = n + 2nt,

un,2(t) = n + 2nt + 4nt2,

un,3(t) = n + 2nt + 4nt2 + 8nt3,

un,4(t) = n + 2nt + 4nt2 + 8nt3 + 16nt4.

(3.6)

Hence, the solution series in general gives

un(t) = n + 2nt + 4nt2 + 8nt3 + 16nt4 . . . , (3.7)

un(t) = n
(
1 + 2t + 4t2 + 8t3 + 16t4 . . .

)
. (3.8)

The closed form of the series (3.8) is un(t) = n/(1 − 2t) which gives exact solution of problem.

4. Application to mKDV lattice equation

Consider the following discretized mKDV lattice equation:

dun

dt
=
(
1 − u2

n

)(
un+1 − un−1

)
, (16a)

with the initial condition

un(0) = tanh(k) tanh(kn). (16b)

We apply variational iteration method to the discussed problem. Using He’s variational

iteration method, the correction functional can be written in the form

un,m+1(t) = un,m(t) +

∫ t

0

λ(s)

{
dun,m(s)

ds
−

(
1 − u2

n,m(s)
)(
un+1,m(s) − un−1,m(s)

)}
ds. (4.1)
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The stationary conditions

1 + λ = 0,

λ′ = 0
(4.2)

follow immediately. This in turn gives

λ = −1. (4.3)

Substituting this value of the Lagrange multiplier λ = −1 into the functional (4.1) gives the

iteration formula

un,m+1(t) = un,m(t) −

∫ t

0

{
dun,m(s)

ds
−

(
1 − u2

n,m(s)
)(
un+1,m(s) − un−1,m(s)

)}
ds. (4.4)

We can start with un,0 = tanh(k) tanh(kn), and we obtain the following successive

approximations:

un,0(t) = tanh(k) tanh(kn),

un,1(t) = tanh(k) tanh(kn)

+
[
tanh(k)

(
tanh

(
k(n + 1)

)
− tanh

(
k(n − 1)

))

− tanh2(k)tanh2(kn)
(
tanh(k)

(
tanh

(
k(n + 1)

)
− tanh

(
k(n − 1)

)))]
t,

un,2(t) = tanh(k) tanh(kn)

+
[
tanh(k)

(
tanh

(
k(n + 1)

)
− tanh

(
k(n − 1)

))

− tanh2(k)tanh2(kn)
(
tanh(k)

(
tanh

(
k(n + 1)

)
− tanh

(
k(n − 1)

)))]
t

+
[
tanh(k) tanh

(
k(n + 2)

)
− 2 tanh(k) tanh(kn)

− tanh2(k)tanh2(k(n + 1)
)(

tanh(k) tanh
(
k(n + 2)

))
− tanh(k) tanh(kn)

+ tanh(k) tanh
(
k(n − 2)

)
+ tanh2(k)tanh2(k(n − 1)

)(
tanh(k) tanh(kn)

)

− tanh(k) tanh
(
k(n − 2)

)
− 2 tanh(k) tanh(kn) tanh(k) tanh

(
k(n + 1)

)

− tanh(k) tanh
(
k(n − 1)

)
tanh(k) tanh

(
k(n + 1)

)
− tanh(k) tanh

(
k(n − 1)

)

− tanh2(k)tanh2(kn) tanh(k) tanh
(
k(n + 1)

)
− tanh(k) tanh

(
k(n − 1)

)

− tanh2(k)tanh2(kn)
(
tanh(k) tanh

(
k(n + 2)

)
− 2 tanh(k) tanh(kn)

− tanh2(k)tanh2(k(n + 1)
))

×

(
tanh(k) tanh

(
k(n + 2)

)
− tanh(k) tanh(kn)

)
+ tanh(k) tanh

(
k(n − 2)

)

+ tanh2(k)tanh2(k(n − 1)
)
tanh(k) tanh(kn) − tanh(k) tanh

(
k(n − 2)

)]
0.5t2.

(4.5)

The other components of un,m(t) can be generated in a similar way. Generally speaking,

it is possible to calculate more components via some calculation software such as Maple to

improve the accuracy of the approximate solutions.
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Table 1: For constant k = 0.1, and time t = 0.5.

n ADM-u6 VIM-u2 Absolute error

−25 −0,09804197166 −0,09804373331 0.00000176165

−15 −0,08824837298 −0,08825728153 0,00000890855

−5 −0,03789706610 −0,03788612415 0,00001094195

0 0,009900946992 0,009933709149 0,000032762157

5 0,05350310282 0,05351081023 0,00000770741

15 0,091855587327 0,09184745591 0,00000813142

25 0,09857365542 0,09857205219 0,00000160323

Table 2: For constant k = 0.1, and time t = 1.5.

n ADM-u6 VIM-u2 Absolute error

−25 −0,09725516662 −0,09730760788 0,00005244126

−15 −0,083118934180 −0,08337156677 0,00025263259

−5 −0,01977150813 −0,01938285277 0,00038865536

0 0,02894478018 0,02890112744 0,00004365274

5 0,06613063122 0,06625691101 0,00012627979

15 0,09435553904 0,09414208992 0,00021344912

25 0,09893218337 0,09889256453 0,00003961884

In order to verify numerically whether the proposed methodology leads to high

accuracy, we evaluate the numerical solutions using only second-order approximation and

compared it with Adomian decomposition solution (ADM) using six-term approximation [34].

Tables 1 and 2 show the absolute errors between ADM-u6 and numerical solution (VIM-u2) of

(16a)with initial condition (16b).

Tables 1 and 2 show that the numerical approximate solution has a high degree of

accuracy. As we know, the more terms added to the approximate solution, the more accurate it

will be. Although we only considered second-order approximation, it achieves a high level of

accuracy.

5. Conclusion

In this paper, by the variational iteration method, firstly, we obtain the exact solution of

Volterra equation. Secondly, we obtain the approximate solution of mKDV lattice equation.

The method is extremely simple, easy to use, and is very accurate for solving nonlinear

differential-difference equation. Also, the method is a powerful tool to search for solutions

of various linear/nonlinear problems. This variational iteration method will become a much

more interesting method to solve nonlinear DDEs in science and engineering.
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