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 In this paper a mixed-integer linear programming (MILP) model is developed to be used as a 
decision support tool for the chemical company Perstorp Oxo AB. The intention with the 
mathematical model is to maximize the profit and the model can be used in the process of 
planning the supply chain for the company. Perstorp Oxo is classified as a global company in 
the process industry and is has production sites in Gent, Castellanza, Stenungsund and Perstorp. 
The site in Stenungsund is in focus in this paper. The company produces chemicals that later are 
used for example in textiles, plastic and glass production. Perstorp Oxo also uses inventories in 
other countries for enabling the selling abroad. It has two larger inventories in Antwerp and in 
Tees and two smaller in Philadelphia and in Aveiro. The larger facilities store five different 
products and the smaller take care of one type each. To be able to find feasible and profitable 
production plans for the company we have developed and implemented rolling horizon 
techniques for a time horizon of one year and used real sales data. The outcomes from the model 
show the transportation of products between different production sites, the different production 
rates, the levels of inventory, setups and purchases from external suppliers. The numerical results 
are promising and we conclude that a decision support tool based on an optimization model could 
improve the situation for the planners at Perstorp Oxo AB. 
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1. Introduction 
 

 
The process industry is often both capital intensive and energy intensive, see for example Taylor, Seward 
and Bolander (1981) and Thollander and Ottosson (2010). The processing requires expensive 
investments and that in turn leads to demands for high utilization of the machines considered for 
production. The products coming from the process industry are categorised by the fact that they can easily 
be measured in weight or volume, not in numbers. Typical processing actions concerning the production 
can be mixing, smelting, boiling, separating or other similar actions (Finch & Cox, 1987). In process 
industries, as well as in other types of industries, the need to involve profit margins in the planning 
process is crucial to make the supply chain more efficient. According to Shah (2005), the supply chain 
benchmarks for the process industries do not measure up to other sectors. The author gives examples of 
such: high inventory levels throughout the whole supply chain, high supply chain cycle times and low 
material efficiencies, meaning that in some branches, only a small proportion of material entering the 
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supply chain ends up as end products. The companies within the process industry are therefore striving 
to improve their efficiency and responsiveness in order to be more competitive. The need for optimization 
and more efficient use of available resources through a supply chain perspective is therefore necessary.  

There are many examples of supply chain optimization in the literature. For a broad overview see 
Grossman (2004). A comprehensive and more recent review regarding supply chain optimization can be 
found in Garcia and You (2015) where the question of how to design a supply chain also is illuminated. 
One of the areas of increasing importance pointed out in Garcia and You (2015) is the energy perspective 
and sustainability issues overall. A reflection of the state-of- the-art regarding sustainable supply chain 
management can be found in Ansari and Kant (2017). By presenting a structured literature review they 
find that the qualitative studies dominate the area and linear programming is the most common tool in 
the area of quantitative models. Further, Ansari and Kant (2017) identify a research gap and suggest 
therefore further research in the field of developing advance techniques and efficient algorithms for 
solving quantitative models. Another review regarding sustainable supply chain network design is 
presented in Eskandarpour, Dejax, Miemczyk and Péton (2015) where the focus is on mathematical 
models including environmental objectives. Zhao, LiU, Zhang and Huang (2017) present a green supply 
chain mathematical model taken the big data analytic approach into account. They further use multi-
objective optimization to minimize both risks and carbon emissions.  

A comprehensive review of supply chain network design under uncertainty is presented by Govindan, 
Fattahi and Keyvanshokooh (2017). Existing techniques to deal with uncertainty such as different kinds 
of stochastic programming are explored and some directions for future research are presented based on 
the gaps identified in the study (Govindan et al., 2017). One category of uncertainties is disruptions of 
supply chain. Snyder et al. (2016) present a review of operation research and management science 
models for supply chain disruptions. The authors organized the papers included in the review into six 
categories; evaluating supply disruptions, strategic decisions, sourcing decisions, contracts and 
incentives, inventory, and finally, facility locations (Snyder et al., 2016). In the end the readers are also 
provided with several topics for future research concerning risk aspects (Snyder et al., 2016). An 
industrial case study regarding supply chain network design under uncertainties can be found in Pham 
and Yenradee (2017). The context in the study is the toothbrush industry where a deterministic model 
and a fuzzy model are presented and compared. Focusing on cost effectiveness it can be shown that the 
fuzzy model is superior to the deterministic model (Pham and Yenradee, 2017).  

Supply chain optimization has been used in many industries as a valuable quantitative method to solve 
problems in different kinds of industries. Examples of industrial cases can be found in Stadtler (2005). 
An overview of supply chain management in forestry can be found in Carlsson and Rönnqvist (2005). 
Examples of how optimization can be used for supply chain problems are given, for example, in 
Bredström, Lundgren, Rönnqvist, Carlsson and Mason (2004), Gunnarsson, Rönnqvist and Lundgren 
(2004), Gunnarsson, Rönnqvist and Carlsson (2007) and Ouhimmou, D’Amours, Beauregard, Ait-Kadi 
and Chauhan (2008). Bredström et al. (2004) present a mathematical model for the supply chain of pulp 
mill using column generation and novel constraint branches to be able to solve the problem within 
reasonable time limits, and Gunnarsson et al. (2007) developed a supply chain model also including 
transport issues at the same pulp company and used greedy heuristics to solve the problem. Gunnarsson 
et al. (2004) developed a mathematical model for the supply chain of forest fuel using rolling horizon as 
a heuristic for solving the model. Ouhimmou et al. (2008) present a supply chain tactical planning 
optimization model using a time decomposition approach in order to obtain good solution within time 
limits. All examples above related to forestry used real data from companies in Sweden and Canada 
respectively. Optimization has also been used to solve supply chain problems in the food industry. Banasik, Kanellopoulos, Claassen, Bloemhof-Ruwaard and van der Vorst (2017) studied the 
mushroom supply chain and used multi-objective optimization. Validi, Bhattacharya and Byrne (2014) 
also used a multi-objective approach in order to get a sustainable food supply chain distribution system 
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focusing on the dairy industry. Another example of how to use optimization models in the food industry 
can be found in Khadem, Shamsuzzoha and Piya (2017), where the poultry industry is studied. A 
deterministic linear programming model has been used for the poultry industry in Oman (Khadem et al., 
2017). A review of supply chain optimization in the process industry can be found in Barbosa-Póvoa 
(2012). The scheduling problem of an ethylene plant is described in Tjoa, Ota, Matsuo and Natori (1997). 
In his doctoral thesis (Persson, 2002), Persson deals with the production scheduling and shipment 
planning of oil refineries, in co-operation with the Nynas refinery located in Nynäshamn, Sweden. A 
complex mixed integer nonlinear programming model (MILNP) is developed including scheduling 
vessel arrivals, storage tank assignments and blending aspects resulting in more than 1000 binary 
variables. Earlier studies concerning hierarchical scheduling and disturbance management issues in the 
process industry can be found in Lindholm and Johnsson (2013) and Lindholm and Nytzén (2014).  

In this paper a global chemical process industry, Perstorp Oxo AB, and its supply chain planning has 
been studied. The company produces oxo products such as aldehydes, alcohols, esters and acids mainly 
for use in the water-based paint and lacquer industries. It is not an easy task to plan the production, 
inventory levels and transportation of all the products in the supply chain with regard to variation in 
demand, selling price and the limitations of the production sites. Today, Perstorp Oxo AB does not use 
any advanced planning tools or optimization algorithms when planning the supply chain. It is believed 
that by having an optimization tool for the supply chain planning, one could improve the efficiency of 
the supply chain and be more profitable. This paper is a continuation and extension of a previous study 
(Quttineh, Lidestam, Ahlstedt & Olsson, 2017). The coarse aggregation in previous work (2017) did not 
allow for certain production technical details to be captured in the mathematical model. Therefore, in this 
paper, we use a finer time discretization which allows us to capture more details. A refined time 
discretization causes the model to become harder to solve to optimality, though, and hence we have 
developed a heuristic to handle this. The purpose of this paper is to develop heuristics based on a 
mathematical model for the supply chain planning problem of Perstorp Oxo AB.  

The paper is organized as follows. The company Perstorp Oxo AB and their planning problem are 
presented in more detail in Section 2. In Section 3 we present the mathematical model which the 
heuristics is based on. In Section 4 we describe the rolling horizon technique and how it is applied to the 
problem at hand. Computational results are presented in Section 5, and finally conclusions and directions 
for future work are found in Section 6.  

2 Problem Description  

The supply chain planning problem at hand involves several production sites and inventory locations, 
different modes of transportation, and multiple products that are either sold to contracted customers or 
sold on the spot market. Perstorp Oxo AB has a number of contracted customers; they constitute the 
company’s customer base. According to planners at Perstorp Oxo AB, the demands from contracted 
customers are known more or less three weeks in advance. (Orders are fixed one week ahead, but 
predictable for the upcoming three weeks.) The demand from contracted customers should be met at all 
times, and the sales price is regulated by the contract. Further, certain products are used as reactants in 
the production process of other products. Products need to be transported between production sites and 
inventories, something which requires the planning of trucks and boats. The objective is to find a 
production plan for the upcoming weeks, stating daily production rates for all products, itineraries for 
trucks and boats between the production sites, inventory levels at all locations, and sales on the spot 
market, such that the total net profits are maximized. Before we can give a mathematical model, more 
information on the company and its supply chain is presented. In total the Perstorp group has 13 
production sites located around the world while the majority of the employees live in the EU. In this 
paper, we focus on the main supply chain of Perstorp group that starts at the site in Stenungsund in 
Sweden where production of chemical intermediates is carried out. These products are delivered to 
customers, for industrial use, all over the world, where they are added to other products used in daily life, 
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for example protective glass and windscreens in cars. The supply chain studied here includes eight 
locations whereof four are sites and four are inventories. Two sites are located in Sweden; Perstorp and 
Stenungsund, and two sites are located outside Sweden; Gent and Castellanza. One inventory can be 
found in Philadelpia, another is located in Tees, the third is located in Antwerp and the final inventory 
can be found in Aveiro. The sites, marked with a triangle, and the inventories marked with a circle are 
shown in the map in Fig. 1.  

 

Fig. 1. The world-wide Perstorp sites and locations considered in this paper. 

Stenungsund is the petrochemical centre of Sweden, and hence Perstorp Oxo AB’s site here is close to 
many of its suppliers. The site is divided into ten areas and produces eleven different products. Each area 
has the capability of producing one or more products. Fig. 2 shows the area structures and production 
schemes for the sites in Stenungsund, Perstorp, Gent and Castellanza. The production site in Stenungsund 
is shaded to indicate it as the hub of the supply chain. The production of P1, P2, and P3 is closely 
connected by the earlier steps in the production, and these products constitute the basis for other products 
produced in Stenungsund and at the other sites within the Perstorp group. Product P1 is used in the 
production of the product P18 at the site in Perstorp, and product P14 at the site in Gent. Product P2 is 
used at Sten 3, Sten 4 and Sten 5 where products P4, P5 and P6 are produced respectively. The product 
P2 is also used in the production of product P17 at the site in Perstorp. The chemicals produced in Sten 
3 are further processed within the Perstorp group; product P4 is used at Sten 7 to produce product P8, 
and at the site in Gent for the production of P15. Product P3 is produced at Sten 2, which in turn is used 
at Sten 6 to produce P7, and also sent to Castellanza to produce P12. Product P7 is transported both to 
Perstorp and Castellanza for producing products P16 and P13 respectively. There are also three 
independent areas in Stenungsund, Sten 8, Sten 9 and Sten 10, where products P9, P10, and P11 are 
produced. Further, products P5, P6, P7, P8 and P9 are transported to the regional inventory facilities in 
Tees and Antwerp, who only stock the products that are to be delivered to customers on their respective 
markets. The supply chain is presented in Fig. 3. The planning must also be carried out with respect to 
transportation costs, especially shipments by boat from Stenungsund to Tees and Antwerp which 
constraints the planning. The boats are managed by a third party and are normally booked by Perstorp 
with a 14 days planning horizon, based on actual sales orders and on the forecasts of production and 
demand. Different boats are used for different routes, all with different capacities ranging from 2,500 to 
3,500 tons. To simplify the model, we set boat capacity to the most common size 2,700 tons. Boats on 
these routes arrive within two and three days, respectively, to their destination.  

Philadelphia

Aveiro

Tees

  Antwerp 
Gent

Castellanza

Perstorp

Stenungsund

 = production site,    = Inventory



N.-H. Quttineh and H. Lidestam / International Journal of Industrial Engineering Computations 11 (2020) 589

The product P9 is sent from Stenungsund to Aveiro by a container ship. Any number of containers can 
be sent on the ship, each with a capacity of 24 tons, but the ship departs only once a week. Furthermore, 
product P8 is shipped from Antwerp to Philadelphia, using boats with capacities in the range of 800 – 
1200 tons. Again, to simplify the model, we only consider boats with the most frequently used capacity 
of 800 tons for this route. These longer routes take 14 days before the boats arrive at their destination. It 
is obviously desirable to use a boats’ full capacity, but one must also regard the cost of tied up capital in 
inventories on board on the boats and how production of other products is affected.  

 

Fig. 2. The production schemes and area structures for the production sites in Stenungsund,  
Perstorp, Gent and Castellanza. The cylinder shapes indicate inventory tanks 

 

The planning of ground transports does not have an equally great impact on the planning of the 
production, although also carried out by a third party. The available truck capacities to Castellanza, Gent 
and Perstorp, respectively, are 26, 26 and 40 tons. The cost of a truck depends on the distance. The 
transportation costs of products to Castellanza and Gent are approximately 2.1 and 1.7 times greater than 
the cost of transporting products to Perstorp, respectively. It takes between 1 and 4 days for the trucks to 
reach their destinations. Some of the products can be bought from external suppliers and sent directly to 
inventories. This option is only used occasionally to prevent losing orders on products P5 and P6 from 
contracted customers in Antwerp, or to prevent production stops at Gent and Perstorp due to the lack of 
product P1 as an input reactant. The different transport modes and transportation possibilities are viewed 
in Fig. 3.  
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The demand for the different products varies over time, some due to seasonal fluctuations while there is 
a worldwide demand that exceeds the global supply for others. The supply does not meet the demand for 
the latter products and there are several reasons why. One reason is that there are only a handful of 
producers, and Perstorp Oxo AB and its competitors produce less than demanded in order to keep the 
prices high and steady. The products are sold on a spot market where the prices generally are higher than 
the prices to the contract customers.  

 

Fig. 3. The product inventories and transportation flows. Here each box indicates a product inventory, 
and outward arcs indicate transports to other sites (arcs to the left by trucks, arcs to the right by boat). 
 

Selling products on the spot market is associated with risks. The contract customers are committed to 
fixed prices and quantities and are also preferred by suppliers such as Perstorp Oxo AB since this type 
of customers decrease the risk and make the forecasting and planning easier. Hence the important aspect 
of the spot market is that margin profits are higher for every sold unit compared to sales to contract 
customers. Spot market sales are only possible when the committed quantities to contract customers have 
been fulfilled, and only up to a certain limit. To handle products with seasonal fluctuations and product 
campaigns, it is sometimes possible to build up inventories. However, small tank sizes limit the 
possibility of carrying large inventories (which also means high costs of tied up capital in inventories). 
At the Perstorp group, the direct costs are aggregated to the direct variable cost (DVC), which includes 
the production costs and the cost of raw material. The DVC is constantly measured and it varies over 
time. It is also dependent of the production rate, since there are fixed costs included. The main reason for 
large variations depends on the cost of raw material. However, since the sales price also depends on the 
cost of raw materials, the marginal profit is unchanged. In this paper, we make use of real sales margins 
for all products. 

3. Mathematical Model  

The supply chain planning problem at Perstorp Oxo AB can be described mathematically by a linear 
mixed integer programming (MIP) model. All parameters are assumed to be known for the relevant 
number of time steps, hence we use a deterministic model approach.  
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The model presented here is an extension of the work in Quttineh et al. (2017), and includes several new 
modelling aspects. To start with, the supply chain itself has been extended to incorporate more production 
sites. In the previous model, production sites outside Stenungsund were simply included as a customer 
with fixed demand on the product needed for their respective production processes. Further, the former 
model used weeks as the smallest time steps, where data for demands, production capacities and 
inventory levels had been aggregated. With such coarse time discretization the model was not able to 
capture accurate transportation flows and several other production restrictions, for example constraints 
related to production shutdowns (see constraints (11) and (12) described below). Therefore, this model 
is based on time steps of days. Furthermore, the production at the sites in Gent and Castellanza is 
performed in so called campaigns, which means that only one product can be produced at a time, and 
when production is changed there is a setup-time of three days before production quality is satisfactory 
again. We start the description of the mathematical model by introducing notation, defining necessary 
sets, parameters and variables to be used. In the following subsections, the constraints and the objective 
function are described. We will use indices p and q for products, indices k, l and m will all be used for 
locations in the supply chain (areas and destinations), and index t for time periods. In constraints that 
couple or extend over more than one time period, index d is also used.  

Sets 
P Products P1, P2, … , P18 
A Areas Sten1, Sten2, … , Sten10, Cast1, Cast2, Gent1, Gent2, Pers1, Pers2, Pers3 
DT Truck destinations Castellanza, Gent, Perstorp 
DB Boat destinations Antwerp, Tees, Aveiro, Philadelphia 
L Locations L  =  Stenungsund  DT  DB  
T Time periods Day 1, Day 2, … , Day 366 
PU Set of products p that are sold on the unlimited spot market (P5 and P6) 
PA[k] Set of products p that are produced at area k  
PQ[p] Set of products q that require products p as input  
 Transportation flow: triplets (p,l,k) for possible transports of product p from location l to 
destination k  
 Purchase from external supplier: tuples (p,k) of product p bought to location k 𝛶 Spot market sales: tuples (p,k) of possible sales for product p at location k 
 

Parameters 𝐷 ,𝐷  demand of product p at location k in time period t from contract customers (C) and on the 
spot market (S) respectively 𝐼 , 𝐼  minimum and maximum inventory levels for product p in area k 𝑋 ,𝑋  minimum and maximum production rate capacities for product p 𝛿 𝛿  allowed production rate decrease and increase of product p from one time period to the 
next 𝛾 , 𝛾  minimal and maximal allowed proportions regarding product P1 𝑅 ,𝑅  sales margins for product p at area k for contract customer (C) and on the spot market (S) 
respectively 𝑆  sales price from external suppliers of product p to inventory k 𝑎  the amount of product p needed for the production of product q 𝜌 inventory carrying interest 𝜏  transportation time to destination k (number of time periods) 𝛤 ,𝛤  loading capacity of trucks (T) and boats (B), respectively, for each product p sent from 
location l to destination k 



 

 

592 𝑐  cost for transportation by trucks (T) for product p from location l to destination k 𝑐  cost for transportation by boat (B) to destination k 𝑛  start-up time for product p 𝜋  penalty cost for shutdowns (SD) of product p 
 

Continuous variables 𝑥  production rate (volume/day) of produced product p in time period t 𝑦  volume of sold product p to spot market customer k in time period t 𝐼  inventory level (volume) of product p at location k at the end of time period t 𝑇  volume of transported product p from location l to inventory k in time period t 𝑄  volume of product p purchased from external suppliers and delivered to customer k in time period 
t 
 
Integer variables 𝑁  number of trucks needed to deliver product p from location l to destination k in time period t 𝑁  number of boats needed to deliver products to destination k in time period t 
 
Binary variables 𝑤  1 if production of product p occurs in time period t, 0 otherwise 𝑠  1 if production of product p is shut down in time period t, 0 otherwise 
 

Production rate variables, 𝑥 , are related to the sites in Fig. 2. Variables related to the transportation of 
the products, 𝑇  , 𝑁  , and 𝑁 , as well as the variables for purchases from external suppliers, 𝑄 , 
can be seen as the flows on the arcs in Figure 3. Also, inventory variables 𝐼  are related to the boxes. 

3.1 Constraints 𝐼  +  𝑥  + 𝑄, ∈  =   𝐼  + 𝑇, , ∈ + 𝐷  +  𝑦  + 𝑎 𝑥∈  ,  
𝑘 ∈ 𝐴,𝑝 ∈ 𝑃 𝑘 , 𝑡 ∈ 𝑇 

(1) 
𝐼 ( ) + 𝑇 ( ) + 𝑄( , )∈  =   𝐼 + 𝑇( , , )∈ + 𝐷 + 𝑦  ,  

 (𝑝, 𝑙, 𝑘) ∈ 𝛺, 𝑡 ∈ 𝑇 
(2) 

𝐼  ≤  𝐼  ≤  𝐼 ,     𝑝 ∈ 𝑃, 𝑘 ∈ 𝐿, 𝑡 ∈ 𝑇 (3) 
 

𝑦  ≤   𝐷  ,𝑝 ∈ 𝑃  , (𝑝, 𝑘) ∈ 𝛶, 𝑡 ∈ 𝑇 
(4) 

 

 



N.-H. Quttineh and H. Lidestam / International Journal of Industrial Engineering Computations 11 (2020) 593𝑦  ≤  𝐷 , 𝑝 ∈ 𝑃 ∖ 𝑃  , (𝑝, 𝑘) ∈ 𝛶, 𝑡 ∈ 𝑇 (5) 𝑇  ≤  Γ ⋅ 𝑁  , 𝑘 ∈ 𝐷  , (𝑝, 𝑙, 𝑘) ∈ 𝛺 , 𝑡 ∈ 𝑇 (6) 

𝑇( , , )∈  ≤  Γ ⋅ 𝑁  , 𝑘 ∈ 𝐷  , 𝑡 ∈ 𝑇 (6) 

𝑇( , , )∈  ≤  Γ ⋅ 𝑁  , 𝑘 ∈ 𝐷  , 𝑡 ∈ 𝑇 (7) 

𝑤  ⋅ 𝑋 ≤  𝑥  ≤  𝑋 ⋅ 𝑤  , 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇 (8) 𝑥 −  𝑋 ⋅ 1 − 𝑤 , ≤  𝛿 ⋅ 𝑥 ,  , 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇 (9) 𝑥 + 𝑋 ⋅ 1 − 𝑤 ≥  𝛿 ⋅ 𝑥 ,  , 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇 (10) 𝑠  ≥  𝑤 ,  −  𝑤  , 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇 (11) 𝑤 ,  ≤  1 −  𝑠  , 𝑝 ∈ 𝑃,𝑑 = 0, … ,𝑛 , 𝑡 ∈ 𝑇 (12) 𝛾  𝑥 , + 𝑥 ,  ≤  𝑥 ,   , 𝑡 ∈ 𝑇 (13) 𝛾  𝑥 , + 𝑥 ,  ≥  𝑥 ,  , 𝑡 ∈ 𝑇 (14) 𝑤 , + 𝑤 ,  ≤  1 , 𝑡 ∈ 𝑇 (15) 𝑤 ,  ≤  1 −  𝑠 ,  , 𝑑 = 0, … ,3 , 𝑡 ∈ 𝑇 (16) 𝑤 ,  ≤  1 −  𝑠 ,  , 𝑑 = 0, … ,3 , 𝑡 ∈ 𝑇 (17) 𝑤 , + 𝑤 ,  ≤  1 , 𝑡 ∈ 𝑇 (18) 𝑤 ,  ≤  1 −  𝑠 ,  , 𝑑 = 0, … ,3 , 𝑡 ∈ 𝑇 (19) 𝑤 ,  ≤  1 −  𝑠 ,  , 𝑑 = 0, … ,3 , 𝑡 ∈ 𝑇 (20) 𝑥 ,𝑦 , 𝐼 ,𝑄  ≥  0 , 𝑝 ∈ 𝑃, 𝑘 ∈ 𝐿, 𝑡 ∈ 𝑇 (21) 𝑁 ,𝑁  ∈  ℕ  , 𝑝 ∈ 𝑃, 𝑘, 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (22) 𝑠  ,𝑤  ∈ 0,1  , 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇 (23) 

The inventory balance at each production area, for all production sites, is controlled by constraint (1), 
and the inventory balance for each product p and transportation destination k, such that (𝑝, 𝑙,𝑘) ∈ 𝛺 are 
found in constraint (2). The inflow of products is either by truck, by boat, or bought from external 
suppliers. Trucks and boats arrive to an inventory k at time period t when being sent from location l at 
time period 𝑡 − 𝜏  . The outflow constitutes of the amount of products to be transported to other 
inventories, the demands of contract customers, and the amount sold to spot market customers. Constraint 
(3) assures that the inventory level for all products are within the capacity limits. Both the lower and 
upper bounds are related to physical limitations. It is possible though to specify certain safety stock levels. 
Later on, we will also introduce so called preference intervals for each inventory, which specify desirable 
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inventory levels. The demand from spot market customers is limited in constraints (4) and (5). Some 
products have an “unlimited” spot market, which means that if the demand from the spot market is not 
met within one time period, it can instead be fulfilled in the next time period. This is achieved by limiting 
the accumulated sales by the accumulated demands up to the current time period. The rest of the products 
have a “limited” spot market. If the demand of products on the limited spot market is not met in period 
t, it is not possible to compensate in later time periods. 

Constraints (6) and (7) are used to calculate the number of trucks and boats needed to transport all 
products between production sites and offshore inventories. A truck has a capacity of 𝛤  tons and can 
only transport one type of product at a time, which is regulated in constraint (6). The boats, however, can 
carry different types of products and the only limitation is the weight of the cargo, which must satisfy the 
boats’ capacity of 𝛤  tons, regulated in constraint (7). Constraint (8) states that the production does not 
exceed the maximum capacity, nor violates the minimum capacity. Here the binary variables 𝑤  come 
into use, set equal to 1 if production occurs in time period t and zero otherwise. Large changes in 
production rate are not desirable and wear down the equipment. To prevent this unwanted effect, 
constraint (9) specify limits (in percentage) on the allowed production rate increase from one period to 
the next. Likewise, in constraint (10), parameter 𝛿  is a lower bound on how many percentages the p 
production rate can decrease from one period to another, assuming that the production is not shut down. 
If constraints (9) and (10) did not take production shutdowns into account, variables 𝑤 , they would 
cause infeasibility. Therefore, in order to encourage a continuous production for consecutive days, we 
introduce auxiliary binary variables 𝑠  used in constraint (11), forced to become 1 if production shuts 
down in time period t, and further used in the objective function (24) to penalize shutdowns. Variables 𝑠  are also used in constraint (12) to model that when the production is shut down, there is a certain 
start-up time (in days) before the quality of the product in question is good enough. It is modelled here 
by forcing the corresponding 𝑤  to be zero during this time. In Area 1, where both product P1 and 
product P2 are produced, there are limitations on how big the proportion of P1 can constitute of the areas 
total production. Constraints (13) and (14) limits the production of P1 between the minimum and 
maximum allowed proportions. The production of P12 and P13 in Castellanza cannot be performed 
simultaneously, which is enforced by constraint (15). Also, there is a setup-time of three days for the site 
to change the production between the two products. This is captured by constraints (16) and (17). The 
same rules apply for the production of P14 and P15 in Gent and are given by constraints (18) – (20). 
Constraint (21) defines all continuous variables and restricts them to be greater than or equal to zero. 
Similarly, all integer and binary variables are defined by constraints (22) and (23) respectively.  

3.2 Objective  

The objective function (24) maximizes the difference between earnings from sold products, both to 
contract customers and on the spot market, and costs for purchasing products from external suppliers, 
carrying inventory, shipment inventory, transportation (trucks and boats), and finally shutdown penalties.  

max 𝑧 = 𝑅∈  𝐷∈∈ + 𝑅 𝑦 −( , )∈∈ 𝑆 𝑄( , )∈∈+  𝜌52 𝐼 ( ) + 𝐼2∈∈∈ +  𝜌52 𝜏( , , )∈ ∶ 𝑇∈+ 𝑐 𝑁( , , )∈ ∶ ∈∈ + 𝑐 𝑁∈∈ + 𝜋 𝑠∈∈  

(24) 
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That concludes the optimization model, which is characterized as a linear MIP-model.  

4 Methodology  

The resulted supply chain models often become very large and hard to solve by just applying commercial 
software. Different heuristics are often used in order to solve the models within reasonable time limits. 
A heuristic method often used in these circumstances is the rolling horizon technique; see for example 
Gunnarsson and Rönnqvist (2008) where the heuristic is applied in the pulp mill industry. Other examples 
applying the rolling horizon approach for the sugar cane industry in Argentina, for the industrial gases, 
and for the energy can be found in Kostin et al. (2011), Zamarripa et al. (2016), and Silvente, Kopanos, Pistikopoulos and Espuña (2015), respectively. Rolling horizon methods are also commonly used to 
model real life situations where data for the whole horizon is not known beforehand. This is exactly the 
case for the supply chain planning problem at Perstorp Oxo AB where the demands from customers are 
known only a few weeks ahead.  

4.1 Rolling Horizon  

The basic idea of this rolling horizon approach is to temporarily consider only a small part of future time 
periods, called the planning horizon, and find an optimal solution for this restricted planning problem. 
All data for the restricted planning horizon is assumed to be known, that is, we consider full demand 
information for each restricted planning problem to be solved. With the solution from the restricted 
problem at hand, a specified number of the first time periods are fixed, and then the planning horizon is 
shifted equally much and a new optimal solution for the new planning horizon can be found. The process 
continues with new data in order to find solutions for coming time periods.  

We introduce some useful notation. The full time horizon is denoted T, the subset of subsequent time 
steps part of the planning horizon (PH) is denoted TPH and the last time step in PH is denoted E, and 
lastly, the number of days to fix is denoted F. It is neccessary that F ≤ | TPH |, and typically | TPH | ≪ | T 
|.  An illustration of this technique can be found in Figure 4, where the solution for the first five days are 
fixed (F = 5). The planning horizon is indicated with a dark frame in the illustration, together with the 
days to be fixed. The second row shows the solution after one iteration, where the fixed days from the 
previous iteration are shaded.  

 

Fig. 4. An illustration of the rolling horizon technique. The planning horizons for the two iterations are 𝑇 = 1, … ,21  and 𝑇 = 6, … ,26 , respectively, and the number of days to fix is F = 5. 
 
The design of the rolling horizon can be done in different ways. The use of a longer planning horizon 
will most probably increase the quality of the overall solution since it allows for the model to detect and 
prevent bottlenecks and inventory shortages in advance. The backside is of course that the optimization 
problem to be solved for each planning horizon, the restricted planning problem, becomes harder to solve. 
The number of time periods to be fixed is also possible to adjust, and fixing a higher number allows for 
the restricted planning problem to be solved less frequent, but on the other hand, by fixing a lower number 
of time periods each iteration allows for more flexibility as the planning horizon is shifted.  

 

t
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4.2 Rolling Horizon Adaptions  

It is important to verify that the solutions from the restricted planning problems actually are feasible 
solutions, and that they stay feasible as the planning horizon moves forward. Since multiple variables are 
fixed after each time-limited planning horizon, it is not obvious that feasible solutions exist for the 
forthcoming planning horizons. Let us analyse the mathematical model. The only part of the model that 
might cause infeasibility is the fact that orders from contracted customers must be satisfied, all other 
constraints and variables can be adjusted at the price of increased penalties and increased costs for 
transportation and inventory. To make sure that the rolling horizon scheme does not crash due to such 
infeasibility, we have added continuous variables 𝑦 ∈  [0, 1] which correspond to the level of 
deviation from complete fulfilment of each contract customer order. This allows the model to deviate 
from the contracted orders, and hence feasible solutions always exist, but at the price of a huge penalty 
cost (which is later added to the objective function, see (26)). Also, constraints (1) and (2) are modified 
somewhat (the term 𝐷  is replaced with 𝐷  (1 − 𝑦 )) and renamed (1’) and (2’). The mathematical 
model given in Section 3 refers to the problem of optimizing the full time horizon of 366 days. When 
solving for a much shorter planning horizon, the inventories tend to be depleted since nothing is known 
about the demand beyond the limited planning horizon. In order to encourage the model to take the 
uncertain future into consideration, we specify a so-called preference interval for the inventory level of 
each product and location, and add constraint (25) to our model. Parameters 𝐼  and 𝐼  define a lower 
and upper bound for the preference interval, and the new variable 𝑧  measures the deviation from this 
interval. (Suitable parameter values were provided by the planners at Perstorp Oxo AB.) 𝐼 −  𝑧 ≤   𝐼 ≤   𝐼 +  𝑧      𝑝 ∈ 𝑃, 𝑘 ∈ 𝐿, 𝑡 ∈ 𝑇 (25) 
By penalizing variables 𝑧  at the end of each planning horizon (denoted time step E), we are able to 
prevent the restricted planning problem solutions from depleting the inventories, and instead try to save 
up for the uncertain future needs. Without this modification, the rolling horizon solutions had great 
difficulties satisfying all demand from the contracted customers. It might seem easier to simply specify 
a safety buffer for each inventory, thus increasing the 𝐼  parameter by some certain amount, instead of 
introducing more variables and constraints. This is possible, but we do not want to add the safety buffer 
levels as hard constraints, since this would inhibit the model in its purpose to find optimal inventory 
levels. Penalty parameters 𝜋  and 𝜋  are introduced for the order fulfillment and inventory preference 
levels, respectively, and the complete objective function for the rolling horizon heuristic scheme, 𝑧 , is 
given by (26).  

max   𝑧 =   𝑅∈ 𝐷 1 −   𝑦∈ + 𝑅 𝑦( , )∈∈− 𝑐 𝑁( , , )∈ : ∈ + 𝑐 𝑁∈∈+ 𝑆 𝑄 +  𝜋  𝑦∈∈( , )∈ +  𝜋  s∈ − 𝜋 𝑧 ,∈∈

(26) 

 

We can now define the Rolling Horizon subproblem, 𝑃  , as maximize 𝑧  subject to (1’), (2’), (3)–
(23), (25) for a given planning horizon 𝑇 . Note that all the original constraints are defined for 𝑡 ∈ 𝑇, 
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but now we only consider 𝑡 ∈ 𝑇PH . The Rolling Horizon heuristic used in the upcoming section is 
presented in Algorithm 1. 

Algorithm 1 :  Rolling Horizon heuristic 
1. Let T = |T| denote the total number of time steps. 
2. Let H denote the number of time steps in each planning horizon. 
3. Let F denote the number of time steps to fix in each planning horizon 
4. Let  ITER = { k = 0,…,T : (kF+1) < T   &   (k-1)F + H  T }. 
5. for k  ITER do 

                Let TPH := { (k-1)F, … , min( kF + H , T ) } 
                          Solve problem PRH for t TPH 
                          Fix all variables for t  { (kF+1), … , (k+1)F } 
               end 

6. Calculate the true objective valus, that is, evaluate (24). 
 

5. Computational Results  

The order quantities from contract customers, as well as the spot market demand, are based on actual 
sales data for one whole year during the time period July 1st 2011 to June 30th 2012. All orders sold 
during a single day have been aggregated into a daily demand, for each product and location. In order to 
create parameters. 𝐷  and 𝐷  , the orders to contract customers were separated from the spot market 
sales. All other parameters, such as inventory limitations and production capacities, were defined as the 
result of discussions with Perstorp personnel. Although parameters 𝐷  and 𝐷  are known to us for 
the whole year in advance, we cannot assume to have perfect information regarding future order demands 
and spot market demands during the experiments. Hence, in order to mimic the real planning problem 
situation, we apply the rolling horizon heuristic described in Algorithm 1 with planning horizons of two 
to four weeks. Demand parameters are assumed to be known within each planning horizon. This is close 
to the planning situation within the Perstorp group, where contracted orders are fixed one week ahead 
but predictable approximately three weeks in advance. The heuristic generates solutions for the full time 
horizon, and in the numerical experiments we explore different parameter settings such as the number of 
days to fix. The model was implemented using AMPL, see Fourer et al. The heuristic generates solutions for the full time horizon, and in the numerical experiments we explore different parameter settings such as the number of days to fix. The model was implemented using AMPL, see Fourer, Gay and Kernighan (1990), and all problems were solved on a HP DL160 server with two 
6-core Intel Xeon CPUs and 72 GB of RAM memory, running Linux. We have used the commercial 
MIP-solver cplex/12.5 for 64-bit environment, see ILOG (2012).  

5.1 Full Time Horizon  

In order to get a reference value, it is interesting to attempt to solve the supply chain planning problem 
for the horizon of all 366 days. This gives rise to a problem with 70,253 linear constraints, and contains 
38,158 continuous, 12,464 binary, and 3712 integer variables. After AMPL and cplex pre-processing 
(default settings), the problem consists of 61,864 rows and 45,513 columns, and contains 12,409 binary 
variables and 3,712 integer variables. Feasible solutions to the MIP-model are found within one minute, 
but it takes several hours before the solution is within a 10% MIP-gap. After 48 hours, the search was 
aborted and the best-found integer solution still had a MIP-gap of 2.98%. The best-found objective value 
for the full problem is 47,651,965. This objective value by itself is not of any real interest, but it is very 
useful to compare it with the ones we find using the rolling horizon approach. Hence all forthcoming 
objective values will be stated as a proportion of this objective value, and we will see that the results are 
very promising. The linear programming relaxation of the full problem is solved within 6 seconds, and 
provides an optimistic bound of 1.015 for the optimal solution.  
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Objective function breakdown  

The objective function consists of several posts. Profits come from sales to contracted customers and 
sales on the spot market, and the expenses consist of different transportation modes together with 
inventory holding costs and purchases from external suppliers. As can be seen in Fig. 5, the majority of 
all sales are to contracted customers, and transportation costs (trucks and boats) are the main expenses, 
followed by inventory holding costs. Container transports (boats to Aveiro) are limited and the purchases 
from external suppliers are marginal.  

 
 

Fig. 5. Breakdown of the objective function. The majority of all sales is to contract customers, and the 
major expenses are related to transportation costs (trucks and boats). 

 

Average transportation and inventory levels  

In total, the supply chain contains 36 different inventories (buffer tanks), and some products are stored 
at several locations. Most of the inventories are tanks, which means they are limited in size. Some of the 
products are not liquid though, and can therefore be stored in other ways such that the only limitation is 
space, and in practice this means no limitations. An overview of the average inventory levels, given in 
percentage of their respective upper limits, is given in Fig. 6. We note that the possibility of purchasing 
products from an external supplier is never used. All inventories reach their lower limit at some point 
during the full time period. Further, most inventories never get close to their upper limit, but 13 of them 
do reach the maximum level at least once. On average, though, all inventories are far away from their 
upper limit. An analysis of the transports performed over the full time period shows that both trucks and 
boats have a high average capacity usage. For example, in total 62 trucks are used to transport product 
P7 from Stenungsund to Castellanza, and on average 97% of the maximum loading capacity is used. The 
boats sent from Stenungsund to Tees and Antwerp, 24 and 30 boats respectively, have on average 89% 
and 97% utilization of capacity, respectively.  

Production and inventory 

In Fig. 7 we present the production rate level and the corresponding inventory level for product P4 at 
Stenungsund, throughout the full time horizon. The red lines indicate minimum and maximum production 
rates. For the inventory, the red lines indicate the physical upper and lower bounds, while the green lines 
indicate the given preference interval. Although we need to remember that more variables are included, 
it is possible to see the interaction between production level and inventory level throughout the full time 
horizon.  

23% 1%30%45%
2%

Inventory 23% External supply 1%Trucks 30% Boats 46%Containers 2%
81%

19%

Contract 81% Spot 19%
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Fig. 6. Average Transportation and Inventory Levels. All inventory levels are given in percentage of 
their respective maximum capacities. No products are bought from the External Supplier. The total 
number of Trucks / Boats / Containers sent during the 366 days are given, followed by the average 
capacity usage (given in %). 
 

 

Fig. 7. Production plan and inventory levels for product P4 at Stenungsund, provided by the solution of 
the full horizon problem. 
 

Average production and sales  

In Figure 8 below, we present the average production rate level over all time steps for each product, and 
the values are scaled using the maximum production capacity for each product, respectively. Most 
production levels are around 50% of their respective maximum production levels, while some products 
are produced far less. Product P11 is actually no longer produced and the average production level for 
P16 is very low (< 1%). The numbers above each bar indicate the number of shutdowns throughout the 
time horizon. Most of them are very low, considering the time horizon covers a full year, but product 
P10 clearly deviates from the rest. This can be explained by a limited storage capacity for P10 in 
combination with its substantial lower bound on the production rate and a fluctuating demand over the 
time period.  
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Fig. 8. The average production rate levels, in percentage of the maximum production capacity for each 
product. The total number of shutdowns for each area over the full time period is also given above each 
bar. In total 79 shutdowns occur 
 

Further, Fig. 9 presents information on how the produced amounts of each product are used, categorized 
as i) inputs to other products, ii) sales to contracted customers, and iii) sales on the spot market. From 
this picture, it is clear that the main purpose of products P1 – P4 is to be used as intermediate products, 
that is, as input to further production. We can also see that the majority of all sales is to contracted 
customers. Products P11 and P16 are not sold at all.  

 

Fig. 9. This graph shows how the total produced volumes of each product are distributed over ”Input to 
other production”, ”Contract customer sales” and ”Spot market sales”. Whenever the bar does not sum 
up to 1, it means that some is stored in the final inventory. Likewise, for product P9, where the bar is 
larger than 1, the initial inventory has been utilized 
 
5.2 Restricted Time Horizon  

In the numerical tests, Algorithm 1 is applied for different lengths of the planning horizon. We have used 
two, three and four weeks, that is, |TPH|= 14, 21 and 28 days (time periods) respectively. The number of 
days to fix (F) is set to three, five and seven days, respectively, reasonable time frames for a real-life 
planner.  

The results for the different settings are found in Table 1, where the objective value is given as a 
proportion of the best-found solution for the full problem and solution times are given in seconds. Each 
restricted planning problem (one for each planning horizon) was solved to optimality within a MIP-gap 
of 0.5%, but a time limit of 5 minutes was used in order to keep the overall solution times within practical 
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time limits. The restricted planning problems, one for each planning horizon, vary in size depending on 
the length of the horizon. For a 14 day planning horizon, each restricted problem consists of 500 binary 
variables, 145 integer variables, and approximately 3300 constraints. The corresponding values for 21 
days are 740 binary and 215 integer variables, and 5100 constraints. For 28 days, the restricted planning 
problem consists of 980 binaries, 290 integers and almost 7000 constraints.  

Table 1  
Results for the different settings of horizon lengths and number of days to fix. The objective value is given as a 
proportion of the best-found solution for the full problem, and solution times are given in seconds 

Planning 
horizon 

Fix = 3 days Fix = 5 days Fix = 7 days 
Obj. value Time (s) Obj. value Time (s) Obj. value Time (s) 

14 0.9539 197 0.9582 122 0.9527 106 
21 0.9806 1077 0.9838 793 0.9814 969 
28 0.9829 7244 0.9876 3445 0.9837 3291 

 

In order to reach the final time period, t = 366, approximately 115 restricted planning problems need to 
be solved when fixing three time periods before shifting the planning horizon. When five and seven time 
periods are fixed, approximately 70 and 50 restricted planning problems, respectively, are solved. The 
solution times stated in Table 1 are the accumulated solution times for all the restricted planning 
problems. The differences in objective value between the settings might seem insignificant, but we 
remind the reader that a difference of 0.01 corresponds to approximately 476,000. As expected, a longer 
planning horizon results in a better overall solution. It should be mentioned here that all problem instances 
with a planning horizon of 14 days resulted in solutions where approximately 50 orders were only 
partially delivered, or not at all (𝑦  > 0). This is not very surprising since the longest routes by boat 
coincide with the length of the planning horizon, 14 days, and hence it is impossible to foresee the need 
at the inventories in Aveiro and Philadelphia. Towards the end of the numerical tests, we tried to utilize 
some of the more advanced settings of cplex when solving the restricted planning problems. It is possible 
to specify whether the branch-and-bound procedure should focus on finding feasible integer solutions or 
attempt to actually prove optimality (focus on a depth-first or breadth-first strategy, simply put). It turns 
out that emphasising feasible integer solutions improve the solution times significantly, allowing cplex 
to prune more quickly and hence reach the specified MIP-gap of 0.5% in shorter time. For some instances, 
the time reduction was as great as 50%. The new solutions did not always become better though, with 
respect to the objective value, but these differences were always small.  

Production and sales  

To illustrate the quality of the rolling horizon solutions, we analyse the results for a planning horizon of 
28 days and fixing 7 days. Similar to Figure 8, we present the average production rate level over all time 
steps for each product, and the values are scaled using the maximum production capacity for each 
product, respectively. Compared to the solution found when solving the full time horizon, we notice only 
marginally changes (all within 4%) indicated in Figure 10 by green and red bars. Like before, the numbers 
above each bar indicate the number of shutdowns throughout the time horizon. Here we notice bigger 
changes; surprisingly the total number of shutdowns has decreased from 79 to 40, a decrease by 39 
shutdowns. Further, we find similar results for the distribution of the produced volumes; again the major 
part is sold to contracted customers, and the rest is either used for production or sales on the spot market. 
The rolling horizon solution illustrated in Fig. 11, available when all planning horizons have been solved, 
differs quite a lot from the full problem solution illustrated in Fig. 7. This is not very surprising 
considering the huge difference in available information for the two problems. Although, the latter 
solution seems equally good, or even better, since the production of P4 is only shut down once compared 
to four times. Once again we need to remember that many other conditions have to be considered, after 
all, the full problem solution does generate a better overall solution. 
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Fig. 10. The average production rate levels, in percentage of the maximum production capacity for each 
product. The green parts indicate an increase in production compared to the solution for the full time 
horizon, and the red part indicates the decrease. The total number of shutdowns for each area is also given 
above each bar. In total 40 shutdowns occur 
Production and inventory  

 

Fig. 11. Production plan and inventory levels for product P4 at Stenungsund, provided by the solution of 
the 28 days planning horizon and 7 days fix. 
 
We notice that the inventory level for product P4 in Figure 11 is rarely within the stated preference 
interval. This does not, though, neccessarily reflect the values of variables 𝑧  throughout the rolling 
horizon iterations. (The value of 𝑧 , ,  after the first iteration is not fixed, its value will be updated in the 
following iteration.)  

Transports and inventory levels  

The number of trucks, boats and containers used by the rolling horizon solution, as well as their average 
capacity usage, are very similar to the full time horizon solution presented in Figure 6. The average usage 
capacities are actually even better; the lowest is 95.5%, an increase from 89.1%. This can be explained 
by the fact that when solving for a shorter time horizon, we are able to optimize the restricted problem, 
and it is reasonable that we find solutions where the capacity usages are almost perfect. (This specific 
aspect is not captured when solving the problem for the full time horizon.) We also notice that average 
inventory levels are similar to the full horizon solution.  

5.3 Sensitivity Analysis  

An essential issue for the Perstorp group planners is to deal with shut downs, either planned or unplanned. 
Hence, to put the model and the rolling horizon algorithm at test, and to illustrate its use as a decision 
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support tool, we have conducted simulation runs where a production area suddenly needs to shut down. 
In the following experiment, we introduce (simulate) an unexpected shutdown of the production of P2. 
We choose P2 since this product is used as input to the production of products P4, P5, P6 in Stenungsund, 
as well as P17 in Perstorp, and should cause some visible changes in the production plan. In Figure 12 
we display the production and inventory levels for the products of interest when no unexpected shutdown 
occurs. Production rates are given in percentage of the maximum capacity for each product. An empty 
circle indicates zero level production, a black circle maximum level production, and gray circles anything 
in between. Inventory levels are given in percentage of their respective maximum inventory levels. The 
green circles indicate an inventory level within the preference interval.  

 

Fig. 12. Production rates and inventory levels for products P2, P4, P5, P6 and P17 when no unexpected 
shutdowns occur. 
 
We now simulate a shutdown of P2 at time step 36, and the information is given to the rolling horizon 
heuristic only 1 day in advance (after fixing time step 35), and the results are presented in Figure 13. We 
notice how all production drops as P2 is shut down, and how inventory levels drop somewhat in order to 
compensate for this. Here we can see clearly that a shutdown implies that production is down for several 
days. Approximately one week after the shutdown, production is back to normal, after a few days of 
increased production levels compared to the baseline case. If the information of a shutdown is given to 
the rolling horizon heuristic 5 days in advance (after fixing time step 35), the situation can be handled in 
a better way as seen in Figure 14. When production of P2 is shut down, in time step 40, only P5 has to 
shut down. We can see how production of P2 is ramped up the days before the shut down, while the 
production rates for the other products decrease somewhat. The inventory level for P2 increases before 
the shut down.  

 

Fig. 13. Production rates and inventory levels for products P2, P4, P5, P6 and P17 when an unexpected 
shutdown occurs just 1 day ahead 
 
Further simulations have been performed, with similar results, where the demand of one or more products 
changes unexpectedly instead of production shutdowns. We conclude that the model and the rolling 
horizon approach is able to adapt to unexpected situations in a satisfactory manner.  
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Fig. 14. Production rates and inventory levels for products P2, P4, P5, P6 and P17 when an unexpected 
shutdown occurs 5 days ahead 
 
6. Conclusions and Future Work  

In this paper a large-scale model for the supply chain planning problems arising at a chemical company, 
Perstorp Oxo AB, is developed. We present a deterministic mathematical model, classified as a mixed 
integer linear model, together with an adapted version used in a rolling horizon framework. The model 
is detailed and specific for the company in question since it is intended for direct usage at the site in 
Stenungsund. However, it is general enough to be applicable also for similar large-scale supply chain 
applications within the chemical process industry. The model is implemented in AMPL, and we make 
use of the commercial solver cplex. In order to find good solutions within reasonable time, and also to 
model real life situations where data for the whole horizon are not known beforehand, rolling horizon 
techniques have been used to solve the developed model. The results presented here are from a single 
case study, based on actual sales data from July 1st 2011 to June 30th 2012, to motivate the possible 
gains from an optimization based planning system for the planners at Perstorp Oxo AB. The model allows 
for easy testing of different scenarios, for example planned and unplanned shutdowns, and can probably 
produce better solutions compared to manual planning. The current production planning at Perstorp Oxo 
AB is very time consuming and the suggested decision support tool can therefore make the planning 
more efficient. Moreover, all data needed for the model is available from company databases. Hence, 
this makes the model and solver usable as a practical decision support tool in the planning process at the 
company. As a reference value for the rolling horizon experiments, we solve the supply chain planning 
problem using a planning horizon of one year (that is 366 time periods). This is a very optimistic situation 
where we both assume full knowledge of customer orders one year in advance and have the possibility 
to optimize production, inventories and transportations for the whole planning horizon at once. Still the 
rolling horizon solutions, that are limited to peek at most four weeks in advance, differ only a few 
percentages compared to the reference value. Also, we found that solutions produced by the rolling 
horizon heuristic are in many ways comparable to the ideal full time horizon solution; this supports the 
use of rolling horizon as an appropriate solution method.  

From the computational results, we find that the length of the planning horizon must not be too short. 
When using a planning horizon of only two weeks the model is not able to accommodate inventory 
demands in a satisfactory manner; this is not very surprising since the longest transports take two weeks. 
Hence, in order for the heuristic to operate under reasonable conditions, a planning horizon of at least 
three weeks is recommended. Preferable four weeks.  

At the moment, regarding the input data, no consideration is taken to forecasts. Assuming that Perstorp 
has historical numbers on demand and sales, one could possibly improve the results from the rolling 
horizon heuristic by extending the planning horizon beyond four weeks, where the demand for the extra 
weeks is based on forecasts (derived from demand and sales previous years).  
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As for the mathematical model itself, there are many possible extensions. At the moment, the demand 
from contract customers must be fulfilled. This is obviously something that all companies strive for, but 
is not always possible to achieve due to unplanned shutdowns and issues connected to transportation. 
Hence we would like to add the possibility of backlog on orders and at the same time introduce a quality 
of service measure, for example the amount of orders delivered on time, and penalize if this measure gets 
too low. Idealy, the model should also be expanded to include DVC:s that could vary with the production 
rate. Finally, more advanced heuristic techniques, like Lagrangian methods, could prove efficient and 
generate better results in less time.  
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