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Abstract

With all the recent attention focused on big data, it is easy to overlook that basic vital statis-

tics remain difficult to obtain in most of the world. What makes this frustrating is that private

companies hold potentially useful data, but it is not accessible by the people who can use it

to track poverty, reduce disease, or build urban infrastructure. This project set out to test

whether we can transform an openly available dataset (Twitter) into a resource for urban

planning and development. We test our hypothesis by creating road traffic crash location

data, which is scarce in most resource-poor environments but essential for addressing the

number one cause of mortality for children over five and young adults. The research project

scraped 874,588 traffic related tweets in Nairobi, Kenya, applied a machine learning model

to capture the occurrence of a crash, and developed an improved geoparsing algorithm to

identify its location. We geolocate 32,991 crash reports in Twitter for 2012–2020 and cluster

them into 22,872 unique crashes during this period. For a subset of crashes reported on

Twitter, a motorcycle delivery service was dispatched in real-time to verify the crash and its

location; the results show 92% accuracy. To our knowledge this is the first geolocated data-

set of crashes for the city and allowed us to produce the first crash map for Nairobi. Using a

spatial clustering algorithm, we are able to locate portions of the road network (<1%) where

50% of the crashes identified occurred. Even with limitations in the representativeness of

the data, the results can provide urban planners with useful information that can be used to

target road safety improvements where resources are limited. The work shows how twitter

data might be used to create other types of essential data for urban planning in resource

poor environments.

Introduction

TheWorld Bank has declared that data is the next deprivation to end; they argue that the lack

of data causes many of the world’s poorest populations to be overlooked when resources are

PLOS ONE

PLOSONE | https://doi.org/10.1371/journal.pone.0244317 February 3, 2021 1 / 12

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPEN ACCESS

Citation:Milusheva S, Marty R, Bedoya G,

Williams S, Resor E, Legovini A (2021) Applying

machine learning and geolocation techniques to

social media data (Twitter) to develop a resource

for urban planning. PLoS ONE 16(2): e0244317.

https://doi.org/10.1371/journal.pone.0244317

Editor: Feng Chen, Tongii University, CHINA

Received: September 4, 2020

Accepted:December 7, 2020

Published: February 3, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0244317

Copyright: © 2021Milusheva et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The twitter data and

crash verification data used in the study are

available via the World Bank’s microdata catalogue.

Please see here for the links to access the data:

https://microdata.worldbank.org/index.php/catalog/

https://orcid.org/0000-0002-8662-8506
https://doi.org/10.1371/journal.pone.0244317
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244317&domain=pdf&date_stamp=2021-02-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244317&domain=pdf&date_stamp=2021-02-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244317&domain=pdf&date_stamp=2021-02-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244317&domain=pdf&date_stamp=2021-02-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244317&domain=pdf&date_stamp=2021-02-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244317&domain=pdf&date_stamp=2021-02-03
https://doi.org/10.1371/journal.pone.0244317
https://doi.org/10.1371/journal.pone.0244317
http://creativecommons.org/licenses/by/4.0/
https://microdata.worldbank.org/index.php/catalog/3820


allocated to address their essential needs [1]. Data deprivation is a pressing challenge with as

many as 74% of the global and 97% of the Sub-Saharan African population living in countries

without adequate vital registration [2]; one third of countries lacking any poverty statistics [1];

and only 17% of the estimated road traffic deaths reported in official figures of low-income

countries [3]. Without data to inform national and urban policies, the gap between low- and

high-income countries will worsen [4]. However, while official statistics are poor, data in the

hands of private providers is plentiful, populated by the rapid expansion of mobile phones and

social media. Globally, phone penetration reached 67% in 2019 [5], and social media penetra-

tion is almost 50% [6]. This provides an opportunity for using crowdsourced data to study

major urban and development policies [7–11].

In this project we test the hypothesis of whether privately maintained data can be trans-

formed into a resource to better understand development challenges. Private data has been

used to characterize populations from determining poverty to understanding public emotions

[12–17]. Here, we use private data to describe the urban environment that affects those popu-

lations, specifically analyzing events reported on social media that affect people’s safety such as

road traffic crashes, crime or floods. We focus on road traffic crashes (RTCs). Despite being

the number one cause of death for children and young adults aged 5-29 years, the lack of ade-

quate data on RTCs is a recognized and unmet challenge [18]. The objective is to improve

RTC data for urban planners so they can contribute to addressing the high toll of road deaths,

estimated globally at 1.35 million a year [3]. Our case study is Kenya, a country with high road

mortality, where the official figures are said to underestimate the number of fatalities by a fac-

tor of 4.5 [3].

The United Nations’ Sustainable Development Goal (SDG) 3 sets a target to halve road

mortality by 2020; progress has been slow, and the target moved to 2030. The Stockholm

Declaration by the Third Global Ministerial Conference on Road Safety “Achieving Global

Goals 2030” reiterated the call for country investments in road safety–from legislation and

regulation, safe urban and transport design, safe modes of transport and vehicles, to modern

technologies for crash prevention, trauma care, and urban management. However, resource

constraints make it unlikely that countries will be able to meet all of these goals. Instead, coun-

tries should strategically invest for the greatest impact. This requires knowing where and when

crashes happen, so that resources can be targeted to risky locations and times.

Social media data, with all its biases, can contribute to filling some of the data gaps for

urban analysis, planning and management [19]. In this study, we create an algorithm that clas-

sifies transport-related tweets into geolocated RTCs for Nairobi. This is done by building on

existing literature to test two natural language processing algorithms to identify crash reports

[20, 21], developing an improved geoparsing algorithm to extract data on crash time and loca-

tion [22–28], and ground truthing the results. The paper also contributes to a broader litera-

ture that uses machine learning methods for road safety analysis [29–31].

This study innovates on three fronts and demonstrates the value of using social media to

expand data availability. (1) Geospatial Twitter data analysis usually uses the approximately

1% of tweets that have a geolocation tag [32–34]; we improve this by using a machine learning

geoparsing algorithm to leverage the 99% of tweets that do not contain a geotag. (2) To our

knowledge there are no other studies that physically validate the locational accuracy of tweets

in real time. 92% of verified tweets were found to be valid crashes, demonstrating the validity

of crowdsourced crash data. (3) The work created an essential resource by generating one of

the the first real-time maps of RTCs in an African city (Nairobi). We identify 52,228 crash

reports and geolocate those with enough information provided in the text (32,991 of them).

In a context where there is no systematic georeferenced data on crashes to support policy
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planning, the process outlined here could be used to capture this data for cities all over the

world that need this essential resource.

Overall, the method expands the coverage of road crashes that can be used to analyze road

safety and to prioritize policy action around the locations where crashes occur more often. This

is especially useful in country contexts where the only data available for analysis are aggregated

statistics on total fatalities in the country, with no detailed breakdown of location or time.

Crowdsourced data can help act as an additional input that can be used by policymakers in better

understanding the situation. By using a clustering algorithm to identify and rank crash locations,

we find that the top 15% of crash clusters (66 out of 435) account for half of all crashes. Knowing

that a small portion (<1%) of the road network hosts 50% of RTCs in the crowdsourced data

can help reduce an intractable problem to a more manageable one. This analysis shows the

potential for using this data to complement road safety diagnostics and to guide investments and

planning in road safety in Kenya and in other contexts, especially those with similar data defi-

ciencies and with sufficient social media density like India and the Philippines [35].

The approach can be extended to other events reported on social media, whether related to

disaster relief, crime, personal safety, urban mobility, or road maintenance. The work on disas-

ter relief and response makes prominent use of geoparsing of tweets [36–43]. Geoparsing of

tweets that lack geolocation information could enable more comprehensive crime analytics

[44–46]. Improved algorithms can lead to faster and better geolocation of events, which would

help urban planners and policy makers improve responses and better target interventions.

Method

The research for this study was approved by the Committee on the Use of Humans as Experi-

mental Subjects (COUHES; COUHES protocol #1711128913). Consent was not obtained from

participants. The research involved observation of motor vehicle crashes and recording the

observable human and property damages from these crashes; only features observable from a

distance were captured and no identifiable information was collected. Secondary data used

were not collected specifically for this research and any identifiable information was removed

prior to analysis.

The goals of this analysis are to create data on road crashes with times and locations and

understand how these incidents cluster in the city, which allows for the spatial prioritization of

urban investments in road safety. The technical challenges this study addresses are: i) improve

the protocols for geolocation, ii) apply applications of AI to classify tweets reporting crashes

and identify their location from multiple geographical references, iii) cluster the crashes geo-

graphically and identify areas with many crashes. See S1 File for detailed methodology. The

components are as follows:

1. Scrape data. We scrape 874,588 tweets posted by Ma3Route, an existing urban mobility

platform with 1.1 million followers, since its inception in May 2012 through July 2020 (see

S1 File for examples of tweets and for a figure of the daily number of tweets across time).

We scrape tweets in compliance with Twitter’s Terms of Service using the premium Search

Tweets Full Archive API.

2. Develop and augment a gazetteer. We build a gazetteer of landmarks for the five counties

that constitute the Nairobi metro area using: OpenStreetMap, Geonames and Google

Places. The gazetteer includes the landmark name, geocoordinates and type of landmark

(e.g., school, bus stop). We use consecutive combinations of 2 and 3 words (known as n-

grams) and skip-grams of landmarks in the gazetteer, alternate spellings and abbreviations,

and splitting of landmarks with select punctuation (e.g., slashes, parentheses, commas). We
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innovate by developing alternate names that exclude the landmark type from the name

(e.g., excluding “Hotel” from the name).

3. Develop a truth dataset. We develop a truth dataset to train the algorithm. Taking all

tweets for July 2017—July 2018, we restrict tweets to the ones most likely related to a crash

based on a broad list of words and their variations. Each tweet is manually coded, indicating

(1) if the tweet reported a crash and (2) the approximate latitude and longitude of any

reported crash whenever enough information is provided. 9,480 tweets were coded, of

which 69% (6,602) reported a crash and of these, 63% (4,192) identified an approximate

location of the crash. On average, users posted 10 crash reports that could be geolocated to

Twitter daily.

4. Identify RTCs and their location. We use a three-step process to convert unstructured

crowdsourced text into a dataset. The first is to identify relevant reports from hundreds of

thousands of reports. The second is to extract necessary information from the relevant

reports. The third is to consolidate unique record information from multiple reports of the

same event. In Fig 1, we illustrate how the algorithm works to classify and geolocate RTCs.

We use the tweet “Bad accident onWaiyaki Way next to Kianda heading towards ABC

Place.”

(a). Classify relevant crowdsourced reports. We restrict the analysis to tweets that contain

keywords from a broad list of English and Kiswahili road safety terms such as “accident”

or “overturn.” This approach follows previous research and allows for misspellings [20].

We use natural language processing to classify and exclude tweets that contain road

safety keywords but discuss road safety conditions rather than specific crash events (e.g.,

“terrible drivers keep causing crashes”). We test two approaches that analyze the combi-

nation of words in a tweet: Naive Bayes and support vector machines (SVM).

(b). Geolocate reports. We extract all landmarks and roads that have an exact match

between the gazetteer and the tweet. In Fig 1, “kianda” and “abc way” match several

entries in the gazetteer. We extract misspelled matches based on Levenshtein distance

varied by length of the n-gram, matches based on the word following a preposition, and

matches based on intersections between multiple roads.

Existing geoparsers extract all possible location references without identifying the unique

location that makes the data useful. We resolve two technical challenges to find the loca-

tion of the crash:

i. When multiple locations are mentioned in the tweets, we use prepositions to sort

locations into tiers, based on the probability of a location being correct after a particu-

lar preposition. For example, in Fig 1, “next to” is ranked as tier 1 while “toward” is

ranked as tier 6, resulting in the correct geolocation for the crash at “kianda” and not

“abc place”.

ii. When a name refers to multiple landmarks, we adopt a toponym resolution approach.

In Fig 1, more than 6 landmarks across Nairobi have “kianda” in the name. We

resolve the toponym in three steps: (1) we search for landmarks that are within 500 m

of a road if it is mentioned, (2) we use the centroid of the clustered location if 90% or

more of the landmarks are in a 500 m radius, or (3) we rank the landmarks by the

probability of being correct using the landmark type in the truth data (see S1 File for

statistics on location type). In the example, we use “Waiyaki Way” to narrow down

the landmarks “kianda” in a 500 m radius (from 6 to 3) and then use the centroid as

the crash location.
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Fig 1. Illustration of classification and geolocation algorithm developed for extracting data from crowdsourced

information.

https://doi.org/10.1371/journal.pone.0244317.g001
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We define a correct geoparse as one located within 500 m of the coordinates in the

truth dataset. As a benchmark, we compare our algorithm to the Location Name

Extraction tool (LNEx), which was shown to have better accuracy than other geopar-

sers [40]. As LNEx and other geoparsers are not designed to extract one unique loca-

tion from text [26, 40, 47], we first judge performance by examining whether any

location references are near the true coordinates. Next, we define the crash location as

determined by LNEx to be the centroid of all locations it finds in the tweet and com-

pare this with the unique location identified by our algorithm.

(c). Identify unique reports. To avoid over-counting, we develop a clustering algorithm

that uses time and location to identify which tweets refer to the same crash. In Fig 1, five

tweets report a crash within two hours of each other, referencing different landmarks

that are all close together. To develop reasonable parameters for clustering, we manually

identify tweets that report the same crash in the truth dataset based on the time, location

and crash characteristics. The 4,192 crash reports are clustered into 2,648 unique crashes.

For unique crash clusters, 97% of tweets reported landmarks within 500 m and within 4

hours of each other (see additional details in S1 File for how parameters were chosen).

(d). Ground truth. To ensure that the crowdsourced data is reliable and provides correct

information, we conduct a ground-truthing exercise to validate the quality of the data

and the performance of the underlying algorithm. We processed tweets in real-time and

dispatched a motorcycle delivery service (Sendy) to the site of the crash within minutes.

The Sendy driver was tasked with verifying and reporting whether a crash actually hap-

pened in that location. If a driver could not see the crash, they were instructed to ask a

bystander whether a crash had occurred but was cleared or whether a crash occurred

nearby. Drivers were able to arrive at the crash location quickly; the median time

between being alerted of a crash and arriving at the scene was 26 minutes.

Results

The methods laid out here created a georeferenced RTC dataset that was previously unattain-

able and produced one of the first real-time maps of RTCs in Nairobi. We classify 52,228

tweets as crash-related out of a universe of 874,588 tweets during 2012—2020 (Panel A of Fig

2). This is based on the SVM algorithm, which we find performs better than the Naive Bayes

algorithm according to the F1 statistic (see S4 Table in the S1 File). We geolocate 32,991 time-

stamped crash tweets from August 2012 to July 2020 and cluster them into 22,872 unique geo-

located crashes (panels B and C of Fig 2 show the unique crashes generated by Twitter daily

using the algorithm and clustering). In our truth dataset, where we manually coded each

crash-related tweet, we found that 63% of tweets contain enough information in order to be

geolocated. Assuming the same proportion of tweets contain enough information to be geolo-

cated in the full dataset, we would expect 32,903 tweets with enough location information.

This aligns almost perfectly with the number of tweets that the algorithm is able to geolocate.

The ground-truthing exercise confirms the validity of the crowdsourced data. We find that

of the 73 crash-related tweets physically verified, 92% correctly corresponded to a crash near

the estimated location; 32.8% witnessed the crash scene, 57.5% did not see the crash but were

told by a bystander that a crash occurred and was recently cleared, and 1.4% reported that the

crash did not occur at the specified location but nearby. Furthermore, using our truth dataset

to benchmark shows that our algorithm performs significantly better than the current geopar-

sing standard. Our algorithm’s recall rate of 65% is a five-fold improvement in performance

compared to the LNEx algorithm (13% recall) in identifying the unique location of a crash
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(Table 1). This is largely because LNEx is not designed to identify a unique location when mul-

tiple locations are mentioned. Our algorithm performs 25% better than LNEx even when com-

paring whether any location extracted from the tweet is near the true location.

Analyzing the crash data produced using our algorithm and focusing on the truth dataset

within the city limits of Nairobi, we find that all crashes from July 2017 to July 2018 can be

found in 435 clusters, each with a maximum diameter of 300 m. Of these clusters, 67% have

two or more crashes and there are 56 clusters with 10 or more crashes. Additionally, 66 crash

clusters represent over 50% of all the crashes. When looking at the 7.5 years of crowdsourced

data for the city of Nairobi, the number of crash clusters do not grow linearly, implying that

the locations where crashes occur and are reported in Twitter are consistent across years. Only

14% of crash locations have only a single crash, and there are 443 crash clusters with 10 or

more crashes. We see the concentration of crashes even more when we note that only 9% of

crash clusters (133 our of 1375) represent 50% of the crashes reported (Fig 3 shows crash heat-

maps for the truth dataset from July 2017 to July 2018 and for 2012-2020).

Fig 2. Crowdsourced crash reports from twitter data that our algorithm has geolocated and clustered into unique crashes for the city of Nairobi

between 2012 and 2020. Road data comes from OpenStreetMap.

https://doi.org/10.1371/journal.pone.0244317.g002
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Discussion

Cities are constantly evolving and understanding urban mobility is critical to creating urban

designs that help to manage risks for pedestrians and vehicles. Severe data limitations hinder

the development of policy interventions needed to manage risks, especially in low- and mid-

dle-income resource-constrained countries. Closing the data deprivation gap can help avert

divergence in socioeconomic conditions between data-poor and -rich countries. By focusing

on RTCs–the number one cause of death among young people—we demonstrate that social

media could be an inexpensive way to produce non-existent RTC data in resource-poor con-

texts that can support government analyses of road safety and potentially inform policy. This

tool could be especially powerful when combined with investments in building a digital

administrative dataset that would provide information on the crashes attended by police. The

answer to the seemingly simple question of where and when crashes occur has profound impli-

cations for public policy response that can save lives. And while official data deprivation can

be an impediment to economic development, data generated by private operators can be trans-

formed and placed in the hands of policy makers as a resource for policy making. By expand-

ing the amount of data, we can generate more input to help resource-constrained countries

prioritize policy action where it is most needed.

Table 1. Geolocation algorithm results.

Any Location Captured by Algorithm Close to True
Crash Location

Crash Location Determined by Algorithm Close to True
Crash Location

Recall Precision Recall Precision

LNEx 0.674 0.686 0.129 0.132

Alg., Raw Gaz 0.695 0.757 0.579 0.756

Alg., Aug Gaz 0.798 0.857 0.651 0.811

Alg., Aug Gaz [Cluster] 0.656 0.774

‘N Crashes’ refers to the number of correctly identified crashes. ‘Raw Gaz’ refers to the raw gazetteer (ie, dictionary of landmarks with original names) and ‘Aug Gaz’

refers to the augmented gazetteer. We use our raw gazetteer as an input into LNEX, which implements its own augmentation process. For LNEx, the crash location is

determined by taking the centroid of all locations captured by the algorithm. Locations are considered close if they are within 500 meters of each other.

https://doi.org/10.1371/journal.pone.0244317.t001

Fig 3. Heatmap of crashes.Data in panel a is from July 2017—July 2018, where we use the manually coded Twitter dataset. Data in panel b is for
August 2012—July 2020. Road data comes fromOpenStreetMap.

https://doi.org/10.1371/journal.pone.0244317.g003
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This example of geolocating crash data from mining twitter data can help to guide infra-

structure redesign or enforcement policies to reduce RTCs. Nairobi comprises an extensive

road network of 6200 km; with the city’s limited resources, addressing road safety across the

whole network is difficult. By using this type of geolocated data, urban planners and policy

makers can narrow down the problem to the areas with the highest number of crashes. This

has been proven to work in developed countries where targeting risky locations led to reduc-

tions in the concentration of crashes [48]. As shown in the results, crashes reported on Twitter

are highly concentrated, with the top 15% of locations spread across 20 km of road having 50%

of the crashes reported on Twitter.

It should be noted that there are some limitations to the approach. The data generated is

limited by the coverage of the crowdsourced data. Users are more active on social media at

particular times, and it is necessary to possess a smartphone and have access to internet to be

able to use the service. This can lead to bias in the reports generated via the crowdsourced

data. Only 7.5% of tweets are sent between the hours of 9 p.m. and 6 a.m., and as a result only

12% of the crash reports from Twitter are during this time. There could also be geographic

bias if there are areas of the city where people with smartphones are more likely to be present

or passing by, and therefore more likely to report. Our real-time motorcycle validation exercise

demonstrates the internal validity of the crowdsourced data and the improved algorithm.

External validity is more difficult to assess because we do not know what the universe of

crashes is. Additionally, we do not know the severity of the crashes reported on Twitter. There-

fore, we have no way of knowing if the areas where crashes happen are the most dangerous,

which is what policy makers likely would want to target. These caveats should be considered

by policy makers when using crowdsourced data to inform policies and targeting.

Despite the limitations, our improved geoparsing algorithm discussed in this paper can

begin filling some of the gaps in data in low-capacity and data-scarce settings. And while the

crash cluster areas identified by the algorithm may not be the most dangerous or may not rep-

resent all crash areas, they nevertheless highlight problem areas. All crashes, minor or severe,

have important economic consequences in terms of property damage and lost time and pro-

ductivity due to the traffic generated (which is one of the reasons the crash is likely reported

on Twitter). Therefore, this data can be used to target areas for design solutions where we are

seeing high numbers of crashes consistently over time. In settings where there are limited

or non-existent administrative records and, therefore, lack of any geolocated data, this tool

can produce information in real-time for one of the most pressing challenges in developing

countries.

Furthermore, by developing tools that generate time-stamped geolocated data and statistics

from crowdsourcing on different “events” that are reported on social media, we can hope to

expand data availability across other contexts and across issues beyond RTCs. For example,

real-time traffic applications like RIDLR in India can be used to expand data on road safety.

These improved tools can also help geolocate victims during a natural disaster or alert disaster

management teams to the location of unsafe buildings or areas needing immediate attention.

They can support law-enforcement or communities to locate and respond to crimes, cases of

violence against women, or police violence. Improved identification of time and location of

events can help to automate and accelerate policy response across a wide set of issues, poten-

tially leading to better policy outcomes.
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