
Applying Mobile Agents to
Intrusion Detection and Response

Wayne Jansen, Peter Mell, Tom Karygiannis, Don Marks
National Institute of Standards and Technology

Computer Security Division

NIST Interim Report (IR) - 6416
October 1999

ii

Table of Contents

1. Introduction... 1
1.1. Background ... 1
1.2. Mobile Agent Technology ... 2
1.3. Related Work .. 3

1.3.1. Autonomous Agents for Intrusion Detection .. 4
1.3.2. Hummingbird... 4
1.3.3. Java Agents for Meta-Learning .. 4
1.3.4. Intelligent Agents for Intrusion Detection .. 4
1.3.5. Advanced Telecommunications/Information Distribution Program 5
1.3.6. Intrusion Detection Agent System.. 5

2. IDS Requirements ... 7
2.1. Functional Requirements ... 7
2.2. Performance Requirements .. 9

3. Mobile Agents for Intrusion Detection... 10
3.1. Advantages.. 10

3.1.1. Overcoming Network Latency ... 10
3.1.2. Reducing Network Load .. 11
3.1.3. Asynchronous Execution and Autonomy.. 11
3.1.4. Structure and Composition... 12
3.1.5. Adapting Dynamically ... 12
3.1.6. Operating in Heterogeneous Environments .. 13
3.1.7. Robust and Fault-tolerant Behavior .. 13
3.1.8. Scalability.. 14

3.2. Disadvantages.. 14
3.2.1. Security ... 14
3.2.2. Performance... 16
3.2.3. Code Size... 16
3.2.4. Lack of A Priori Knowledge .. 16
3.2.5. Limited Exposure... 16
3.2.6. Coding and Deployment Difficulties .. 17

4. Innovations in Intrusion Detection Systems ... 18
4.1. Useful Characteristics of MAs ... 18
4.2. Research Areas .. 19

4.2.1. Multi-point Detection... 20
4.2.2. Attack Resistant Architectures ... 20
4.2.3. Abstract Interfaces ... 21
4.2.4. Knowledge Sharing.. 21
4.2.5. Roaming Agents .. 22
4.2.6. Unpredictability ... 23
4.2.7. Genetic Diversity ... 24

iii

5. Innovations in Intrusion Response ... 25
5.1. Existing Response Mechanisms ... 25
5.2. Ideal Response Mechanisms .. 26
5.3. An MA Automated Response Solution .. 27
5.4. Research Areas .. 27

5.4.1. Automated Tracing of Attackers .. 28
5.4.2. Automated Evidence Gathering.. 29
5.4.3. MA Operations on an Attacker’s Host.. 29
5.4.4. MA Operations on a Target Host ... 30
5.4.5. Isolating the Attacker/Isolating the Target.. 30
5.4.6. MA Operations on Attacker and Target Subnet .. 31

6. Summary... 32

7. References... 35

Appendix A - IDS Operational Environments.. 39

Appendix B - Architectural Issues ... 42
Hierarchical Organization.. 42
Network Organization ... 43
Framework for Intrusion Detection.. 44
Design Tradeoffs ... 46

1

1. Introduction

This report is an initial foray into the relatively unexplored terrain of using Mobile
Agents (MAs) for Intrusion Detection Systems (IDSs). It is a research guide that helps
identify the most promising areas of mobile agent IDS research. After providing some
background information, we enumerate the problems found in current IDSs and propose
potential solutions offered by MAs. The report suggests innovative ways to apply agent
mobility to address shortcomings of current IDS designs and implementations. We then
discuss performance advantages and disadvantages that occur when using MAs for IDSs.
The practical discussion of performance leads into proposals for several new intrusion
detection paradigms enabled by MAs. While the report focuses mostly on the benefits
derived from mobility, we also take into consideration the features gained from agent
technology, such as autonomous components, which offer significant benefits. We
explore these benefits in some detail and propose specific research topics in both the
intrusion detection and intrusion response areas.

1.1. Background

Intrusion Detection Systems (IDSs) are proliferating throughout corporate, government,
and academic computer networks. It is estimated that sales of IDS tools reached $100
million in 1998 [BACE99]. Intrusion detection is not an emerging research field. It is a
well-established commercial area with several large competitors like Cisco and Network
Associates1. Admittedly, the IDS products themselves produce many false positives and
do not detect all known attacks. However, the development of IDS products is likely to
parallel the past development of anti-virus software. Original anti-virus software created
an alarm every time users created new files. However, over several years the anti-virus
software has progressed to the point that few users even notice that the anti-virus
software is running and they have confidence that it detects all known viruses.

The concept of creating an intrusion detection system was first proposed in 1980 by
James Anderson [ANDE80]. However, the field did not take off until 1987 when Dorothy
Denning published an intrusion detection model [DENN87]. In 1988, at least three IDS
prototypes were created [BAUE88] [SEBR88] [SMAH88]. In the following years, an
ever-increasing number of research prototypes were explored. The US government,
realizing that its computer systems were insecure, provided significant funding for
research in IDSs. Hundreds of millions of dollars have probably been spent on IDS
research within the last ten years.

Because intrusion detection has become a mature industry and a proven technology,
nearly all of the easy problems have been solved. No major breakthroughs in intrusion
detection research have recently been made. Instead, commercial companies are mostly
perfecting existing intrusion detection techniques. With the maturation of the intrusion

1 Certain computer manufacturers' products and standards are discussed in this paper. The discussion is not
intended to imply recommendation or endorsement by the National Institute of Standards and Technology,
nor is it intended to imply that the products and standards identified are necessarily the best available.

2

detection field, traditional lines of intrusion detection research are having diminishing
returns. Therefore, future intrusion detection research is expected to focus on relatively
unexplored areas such as:

• Attack response mechanisms,
• Architectures for highly distributed intrusion detection systems,
• Intrusion detection inter-operability standards, and
• New paradigms for performing intrusion detection.

1.2. Mobile Agent Technology

IDSs implemented using MAs is one of the new paradigms for intrusion detection. MAs
are a particular type of software agent, having the capability to move from one host to
another. A software agent can be defined as [BRAD97]:

“… a software entity which functions continuously and autonomously in a
particular environment … able to carry out activities in a flexible and intelligent
manner that is responsive to changes in the environment … Ideally, an agent that
functions continuously … would be able to learn from its experience. In addition,
we expect an agent that inhabits an environment with other agents and processes
to be able to communicate and cooperate with them, and perhaps move from place
to place in doing so.”

Mobile agents have been a research topic of interest for several years, yet this research
has for the most part remained within laboratories and has not experienced a wide-scale
adoption by industry. The development of the World Wide Web application, however,
has dramatically stimulated interest in this area of research by offering the possibility of a
widely deployed application that could use mobile agent technology. The research
community visualizes mobile agents launched via web browsers to gather information
and interact with any node in the network. IBM and General Magic were early pioneers
of this vision, [CHES95, HARR95]. Concurrent with this effort, ARPA sponsored a
Knowledge Sharing program. The KQML language [FINI94] was developed under this
program and remains one of the viable Agent Communication Languages (ACLs).

This research area was reformulated in the '95-'96 time frame when Java was released by
Sun Microsystems. Although Java is simply a new interpreted computer language, it is
designed for network interactions and is a powerful enabling technology for mobile code.
Web browsers were quickly “Java-enabled” and the IT community seemed convinced
that mobile code would quickly become a reality.

The Java language provided some system independence and considerable security
features were included in the language and implementations. These are not unique
features, of course, they simply were implemented better in Java than other languages
and so Java became extremely popular. During this same period, numerous proposals for
mobile agent implementations were fielded. For example, the Lava system [WU96,
HANS97] was developed at North Carolina State University. This system focused on

3

security problems and developed a simple security policy for applets. Mitre Corporation
[FARM96, FARM97] also pursued work in this area, developing authentication
mechanisms and defining a taxonomy of security related problems.

An important observation to make about most of the early work in this field is the
assumption made by most researchers about a totally open system. That is, the security
problems being addressed are those found in a system with open connectivity and with
the maximum possible threats. Several researchers reached conclusions indicating that
the paradigm was not useful since there were always certain threats that could not be
adequately countered while maintaining a totally open system.

Partly because of these conclusions, as well as well publicized attacks against early Java-
enabled systems, security related problems have hindered the widespread adoption of MA
technology. Security architectures have been defined, but they contain too much residual
risk for most applications. Recent work at the University of Tulsa, for example, proposes
using mobile agents for data mining purposes. Such an application requires providers of
information to keep their systems "open" to a multitude of users, most of whom are
unknown to the host. A good overview of current mobile agent projects and technology is
provided in [MARR98].

However, relatively little work has been done on using a mobile agent architecture for the
purpose of providing a security capability, such as intrusion detection. If a mobile agent
architecture is designed for a specific purpose such as system administration or security
function maintenance, then strong authentication may be enforced and the residual risk
decreases significantly.

While MAs are an extraordinarily powerful tool, their implementation has been hindered
by security considerations. These security considerations are especially critical for
intrusion detection systems, with the result that most security research in this field has
concentrated upon the architecture necessary to provide security for mobile agents. We
claim that such negative results are not fatal to the proposed study since these security
issues are likely to be addressed by the research community and there will be few
authorized users of the MA-based IDSs within an organization.

1.3. Related Work

Current work in applying agents to intrusion detection is being conducted at a number of
research labs, including the University of Idaho, the University of New Mexico, the
Army Research Laboratory, Iowa State University, Purdue University, and the
Information-technology Promotion Agency in Japan. The existence of other work in this
field is encouraging, however, existing research lacks the scope necessary for successful
integration of the two fields. In many cases, these projects are in preliminary stages, don’t
directly involve intrusion detection, or don’t use the mobility aspect of agents. Thus, the
current work is exciting, but not complete, and supports a more thorough investigation of
Mobile Agent Intrusion Detection Systems (MAIDS).

4

1.3.1. Autonomous Agents for Intrusion Detection

The Autonomous Agents for Intrusion Detection (AAFID) effort at Purdue [BALA98] is
in many ways a classical IDS with agents used mainly as a means for structuring the
intrusion detection collection component into a set of lightweight software components
which can be easily reconfigured. AAFID employs a hierarchy of agents. At the root of
the hierarchy are monitors, which provide global command and control and perform
analysis of information flowing from lower level nodes. At the leaves are agents that
collect event information. The agents reside on special purpose agent platforms, called
transceivers. Transceivers perform command and control of locally running agents and
the analysis or reduction processing of the information received from the agents.
Transceivers feed processed information onto monitors. Agents appear to be static once
they are deployed to a transceiver, but are also replaceable through reconfiguration.

1.3.2. Hummingbird

The University of Idaho has developed the Hummingbird project [FRIN98]. This is one
of the more ambitious distributed intrusion detection prototypes available. The
Hummingbird system is a distributed system for managing misuse data. While the system
uses some agent technology, the agents are not autonomous, nor are they mobile. Only
the data collection is distributed and control remains centralized. Emphasis is placed on
sharing security relevant data among sites having different security domains. The tools,
algorithms, data reduction and visualization techniques offer considerable promise for
use in a mobile agent system. Hummingbird does not implement new security features to
protect itself. Instead, it relies on the Kerberos [NEUM94] system.

1.3.3. Java Agents for Meta-Learning

The Java Agents for Meta-Learning (JAM) project [LEE99] at Columbia University, NY,
applies meta-learning to distributed data mining, using intelligent agents. Intelligent
agents employ artificial intelligence techniques to model knowledge and reasoning, as
well as behavior, in multi-agent societies or domains. The design has two key
components: local fraud detection agents that learn how to detect fraud and provide
intrusion detection services within a single corporate information system, and a secure,
integrated meta-learning system that combines the collective knowledge acquired by
individual local agents. Data mining, like neural networks and other single-point learning
applications, does not enable knowledge sharing among agents. The meta-learning
approach attempts to overcome this limitation by integrating a number of separately
learned classifiers embodied as remote agents.

1.3.4. Intelligent Agents for Intrusion Detection

This project at Iowa State University [HELM98] involves an IDS based upon intelligent
agent technology, in a manner somewhat similar to JAM. Agent mobility allows various
types of intelligent agents that employ classifier algorithms to travel among collection
points, referred to as “data cleaners,” and uncover suspicious activities. The agent

5

algorithms are standard sequence identification methods and feature vector identification
detection mechanisms. The architecture is hierarchical, with a data warehouse at the root,
data cleaners at the leaves, and classifier agents in between. A classifier agent specializes
on a specific category of intrusion and is capable of collaborating with agents of another
category to determine the severity level of an activity deemed suspicious. Moving the
computational analysis (i.e., the classifier agent) to each collection point, avoids the
costly movement of information to an aggregation unit. The results provide a good basis
for follow-on work, since the approach establishes the capability to define intrusion
detection agents that target individual systems and subsystems.

1.3.5. Advanced Telecommunications/Information Distribution Program

Work being done by the Army on the Advanced Telecommunications/Information
distribution Research Program (ATIRP) [CONN99, JACO99, BARR98] addresses the
detection computer vulnerabilities using MAs, not intrusion detection. However,
intrusion detection modules could easily be substituted for vulnerability assessment
modules to create a rudimentary IDS. A central dispatcher launches agents to one or more
target nodes to test for known vulnerabilities and report back results. Agents are
composed dynamically using a genetic algorithm, which continually attempts to
maximize the likelihood of discovering existing vulnerabilities. The gene pool from
which agents evolve consists of code fragments that correspond to a detection technique
and have been designed for composition with other fragments. The architecture has
significant security capabilities and is based upon cryptographic signatures and public
key certificates. Identical or similar capabilities would be required in an IDS. The system
would have to be expanded to manage an IDS, since inter-agent communication is more
critical in intrusion detection than in vulnerability scanning.

1.3.6. Intrusion Detection Agent System

The Information-technology Promotion Agency (IPA) in Japan, is developing an IDS
called the Intrusion Detection Agent system (IDA) [ASAK99]. The IDA is a multi-host-
based IDS. Instead of analyzing all of the users' activities, IDA works by watching
specific events that may relate to intrusions, referred to as Marks Left by Suspected
Intruder (MLSI). If an MLSI is found, IDA gathers information related to the MLSI,
analyzes the information, and decides whether or not an intrusion has occurred.

The IDA system relies on mobile agents to trace intruders among the various hosts
involved in an intrusion and to gather information. The architecture is hierarchical, with a
central manager at the root and a variety of agents at the leaves. A sensor is an agent that
resides at a node in search of MLSIs. Upon discovery of such information, the sensor
notifies the manager who dispatches a tracing agent to the host. The tracing agent
initiates an information-gathering agent to collect related information at the host, before
moving onto any other site identified as a suspected point of origin. The manager collects
and integrates the results from the information-gathering agent as they return. Possible
duplication caused by multiple sensors detecting the same intrusion is resolved through a

6

message board at each monitored host. The developers indicate that the resulting multi-
agent system is an efficient and effective way for detecting intrusions.

7

2. IDS Requirements

At least one past effort has identified desirable characteristics for an IDS. In [CROS95],
the authors indicate that, regardless on what mechanisms an IDS is based, it must do the
following:

• Run continuously without human supervision,
• Be fault tolerant and survivable,
• Resist subversion,
• Impose minimal overhead,
• Observe deviations from normal behavior,
• Be easily tailored to a specific network,
• Adapt to changes over time, and
• Be difficult to fool.

We have developed a similar set of requirements along two themes: functional and
performance requirements.

2.1. Functional Requirements

As the network-computing environment increases in complexity, so do the functional
requirements of IDSs. Common functional requirements of an IDS being deployed in
current or near-term operational computing environments (see Appendix A for more
information on the operational environments envisioned) include the following:

• The IDS must continuously monitor and report intrusions.

• The IDS must supply enough information to repair the system, determine the extent
of damage, and establish responsibility for the intrusion.

• The IDS should be modular and configurable as each host and network segment will
require their own tests and these tests will need to be continuously upgraded and
eventually replaced with new tests.

• Since the IDS is assigned the critical role of monitoring the security state of the
network, the IDS itself is a primary target of attack. The IDS must be able to operate
in a hostile computing environment and exhibit a high degree of fault-tolerance and
allow for graceful degradation.

• The IDS should be adaptive to network topology and configuration changes as
computing elements are dynamically added and removed from the network.

• Anomaly detection systems should have a very low false alarm rate. Given the
projected increase in network connectivity and traffic, simply decreasing the

8

percentage of overall false alarms may not be sufficient as their absolute number may
continue to rise.

• The IDS should be able to learn from past experiences and improve its detection
capabilities over time. A self-tuning IDS will be able to learning from false alarms
with the guidance of system administrators and eventually on its own.

• The IDS should be able to be easily and frequently updated with attack signatures as
new security advisories and security patches become available and new
vulnerabilities and attacks are discovered.

• Decision support tools will be necessary to help system administrators respond to
various attacks. The IDS will be required not only to detect anomalous events, but
also to take automated corrective action.

• The IDS should be able to perform data fusion and be able to process information
from multiple and distributed data sources such as firewalls, routers, and switches. As
real-time detection demands push networked-based solutions to re-programmable
hardware devices that can download new capabilities, the IDS will need to be able to
communicate with the hardware-based devices.

• Data reduction tools will be necessary to help the IDS process the information
gathered from data fusion techniques. Data mining tools will be helpful in running
statistical analysis tools on archived data in support of anomaly detection techniques.

• The IDS should be capable of providing an automated response to suspicious activity.
Rapid changes in network conditions and limited network administration expertise
make it difficult for system administrators to diagnose problems and take corrective
action to minimize the damage that intruders can cause.

• The ability to detect and react to distributed and coordinated attacks will become
necessary. Coordinated attacks against a network will be able to marshal greater
forces and launch many more and varied attacks against a single target. These attacks
can be permutations of known attacks, be rapidly evolving, and be launched at little
cost to the attackers.

• Distributing the computational load and the diagnostic capabilities to agents scattered
throughout the network adds a level of fault-tolerance, but it is often necessary for the
system administrator to have control over the IDS from a central location.

• The IDS should be able to work with other Commercial Off-the-Shelf (COTS)
security tools, as no vendor toolset is likely to excel in or to provide complete
coverage of the detection, diagnosis, and response responsibilities. The IDS
framework should be able to integrate various data reduction, forensic, host-based,
and network-based security tools. Interoperability and conformance to standards will
further increase the value of the IDS.

9

• IDS data often requires additional analysis to assess any damage to the network after
an intrusion has been detected. Although the anomalous event was the first detected,
it may not be the first attempt to gain unauthorized access to the network. Post event
analysis will be needed to identify compromised machines before the network can be
restored to a safe condition.

• The IDS itself must also be designed with security in mind. For example, the IDS
must be able to authenticate the administrator, audit administrator actions, mutually
authenticate IDS devices, protect the IDS data, and not create additional
vulnerabilities.

2.2. Performance Requirements

An IDS that is functionally correct, but that detects attacks too slowly is of little use.
Thus we must enumerate several performance requirements for IDSs. The IDS
performance requirements include:

• To the extent possible, anomalous events or breaches in security should be detected in
real-time and reported immediately to minimize the damage to the network and the
loss or corruption of confidential information.

• The IDS must not place undue burden or interfere with the normal operations for
which the systems were bought and deployed to begin with. This requirement makes
it necessary for the agents to be cognizant of the consumption of network resources
for which they are competing. There is a tradeoff between additional levels of
security monitoring and the performance penalty to be paid by other applications.

• The IDS must be scalable. As new computing devices are added to the network, the
IDS must be able to handle the additional computational and communication load.

10

3. Mobile Agents for Intrusion Detection

For mobile agents to be useful for intrusion detection, it is necessary that many, if not all,
hosts and network devices are installed with an MA platform. This is not a far-fetched
assumption because an MA platform is general-purpose software that enables
organizations to implement many different applications. If MAs become popular, every
new host may come preinstalled with a MA platform just as today most personal
computers come bundled with a Java interpreter in the web browser. Contrast this to
many IDS schemes that assume that a host-based IDS is installed on every host. It is
generally too expensive to install a proprietary solution (like a host-based IDS) on every
host in a network, but it is not unusual to install a general-purpose interpreter (like an MA
platform and Java virtual machine) on every host.

3.1. Advantages

A number of advantages of using mobile code and mobile agent computing paradigms
have been proposed [LANG98, SMIT88]. These advantages include: overcoming
network latency, reducing network load, executing asynchronously and autonomously,
adapting dynamically, operating in heterogeneous environments, and having robust and
fault-tolerant behavior. This section examines these claims and evaluates their
applicability to the design of ID systems.

3.1.1. Overcoming Network Latency

Mobile agents are useful for applications that need to respond in real time to changes in
their environment, because they can be dispatched from a central controller to carry out
operations directly at the remote point of interest. In addition to detecting and diagnosing
potential network intrusions, an IDS needs to provide an appropriate response in order to
protect and defend the network from malicious behavior. While a central controller can
send messages to the nodes within the network and issue instructions on how to respond
to a particular condition or perceived threat, the approach is problematic. For example,
the central controller may have to respond to a number of events throughout the network
in addition to handling its normal processing load and become a bottleneck or a single
point of failure. If connections to this central server are slow or unreliable, the network
communications are susceptible to unacceptable delays. Mobile agents, since they are
distributed throughout the network, may take advantage of alternate routes around any
problem communication links.

It will always be faster to send a message to a network node to execute predetermined,
resident code, rather than send a mobile agent to the node. However, such an architecture
requires that all response and reconfiguration actions be predefined, replicated and
distributed throughout the network. The response mechanism then constitutes, in effect, a
large distributed database, raising serious administration problems concerning
configuration management, consistency and transaction control. Innovative responses, by
definition, must be transmitted at least once to each affected node, either by conventional

11

network means, a series of messages, or by a mobile agent. Of these choices, the mobile
agent technique offers the fastest response.

3.1.2. Reducing Network Load

One of the most pressing problems facing current IDSs is the processing of the enormous
amounts of data generated by the network traffic monitoring tools and host-based audit
logs. IDSs typically process most of this data locally. However, abstracted forms of the
data are often sent to other network locations where the data is further abstracted and then
eventually sent to a central processing site that evaluates abstracted results from all
location in the network. Even though the data is usually abstracted before being sent out
on the network, the amount of data can still place a considerable communication load on
the network. Mobile agents offer an opportunity to reduce the network load by
eliminating the need for this data transfer.

Mobile agents are well suited for ad hoc, flexible, search and analysis problems involving
multiple distributed resources that require specialized tasks that are not supported by the
data server. A mobile agent-based search and data analysis approach can help decrease
network traffic resulting from the transfer of large amounts of data across a network for
local processing. Instead of transferring the data across the network, mobile agents can be
dispatched to the machine on which the data resides, essentially moving the computation
to the data, instead of moving the data to the computation, thus reducing the network load
for such a scenario. Clearly, transferring an agent that is smaller in size than the data to
be transferred reduces the network load. These benefits hold when the comparison is
made between encrypted lightweight mobile agents and the relatively larger data to be
transferred.

3.1.3. Asynchronous Execution and Autonomy

IDS architectures that are coordinated by a central host require reliable communication
paths to the network sensors and intermediate processing nodes. The critical role played
by this central controller makes it a likely target of attack. Mobile agent frameworks
allow IDSs to continue operation in the event of the failure of a central controller or
communication link. Unlike message passing routines or Remote Procedure Call (RPC),
once the mobile agent is launched from a home platform it can continue to operate
autonomously even if the host platform from where it was launched is no longer available
or connected to the network. The coordination of IDS sensors and filters can be protected
from the loss of network connections since the mobile agents do not require control by
another process. A mobile agent's inability to communicate with central controller would
not prevent it from carrying out its assigned tasks.

Although disconnected operation is possible, a number of issues need to be addressed.
Distributing the functions of a central controller among the network components is a non-
trivial problem. Another problem concerns the operational methods of MAs themselves.
For example, Java-based MAs typically load their class files dynamically, as needed,
from their home platform. The ability to dynamically load classes also has security

12

implications. If the home platform is not available, these class files may be provided by
the local host or must be found and transferred from a remote trusted host. Class loading
from a remote platform or the local host platform raises a number of security issues. The
class files may have been modified in such a way as to alter the functionality of the agent
or even to allow for eavesdropping of the agents' transactions. Class versioning problems
may also yield problems from which the MAs may be able to recover.

3.1.4. Structure and Composition

MAs allow for a natural way to structure and design an IDS. For example, rather than a
monolithic static system, an IDS can be divided into data producer and data analyzer
components and represented as agents. The data producer provides an interface to the
networks it sniffs or audit trails it filters. Multiple analyzers, each responsible for
detecting a single attack or a small set of attacks, interact with the producer to look for
attacks. Under such a framework, MAs from multiple vendors can be used to create an
IDS. If a company has the best detector for attack X and another company has the best
detector for attack Y, then we can use MAs from both vendors to detect X and Y. Even
where manufacturers do not produce agent-based products, it may be possible to
reconstitute the product as an agent through wrapping or other techniques. In such an
environment, users can also write customized MAs to detect events specific to their
environment and work seamlessly with the other MA components. Although this
approach applies equally as well to an IDS composed of static components, the agent
orientation and mobility considerations provide inherent motivation for identifying and
compartmentalizing functionality.

3.1.5. Adapting Dynamically

Just as the network's configuration, topology, and traffic characteristics change over time,
so should the types of network tests performed and activities monitored. Each computing
node in the network will require different tests and these tests will change over time;
some tests will no longer be necessary, while new tests will need to be added to the test
suite as new vulnerabilities and threats evolve. MAs provide a versatile and adaptive
computing paradigm as they can be retracted, dispatched, cloned, or put to sleep as
network and host conditions change. For example, as better MAs detectors for an attack
are developed they can be sent out on the network to replace the older version, or if an
MA is producing too many false positives it can be recalled or gracefully terminated.

MAs also have the ability to sense their execution environment and autonomously react
to changes. For example, if the computational load of the host platform is too high and
the host's performance doesn't meet the agent's service expectations, the agent and its data
can move to another machine that can better satisfy its computational needs. MAs can
distribute themselves among the hosts in the network in such a way as to maintain the
optimal configuration for solving a particular problem.

13

3.1.6. Operating in Heterogeneous Environments

Large enterprise networks are typically comprised of many different computing platforms
and computing devices. One of the greatest benefits of MAs is the implementation of
interoperability at the application layer. Interoperability at the computer or transport
layer, such as solutions provided by single vendors, requires significant changes to the
host’s environment. Interoperability at the presentation layer, such as the CIDF model
[CIDF], limits flexibility in updating the system for new attacks. Conversely, while MA
frameworks must be installed on each host, MAs themselves are independently
configurable. Since mobile agents are generally computer and transport-layer
independent, and dependent only on their execution environment, they offer an attractive
approach for heterogeneous system integration. MAs' ability to operate in heterogeneous
computing environments is made possible by a virtual machine or interpreter on the host
platform. Data fusion efforts can be facilitated by having mobile agents run on switches,
routers, and other networking elements. MAs can run on any computing node that can
host an agent platform. The ability of MAs to operate in heterogeneous environments also
provides an opportunity for the easy integration of network-based and host-based tools
operating on various platforms. COTS interoperability may also be facilitated via the use
of Agent Communication Languages (ACL) designed for network security testing and
intrusion detection domains. Although the MA framework allows an IDS to operate in
heterogeneous environments, the tests performed or tasks assigned to the mobile agents
are for the most part platform-dependent. Therefore, unless a common programming
interface for intrusion detection functions is available, agents must either be restricted to
a single class of host or be designed to accommodate heterogeneity in some fashion (e.g.,
dynamically load or intrinsically convey the host dependent code).

3.1.7. Robust and Fault-tolerant Behavior

The ability of mobile agents to react dynamically to unfavorable situations and events
makes it easier to build robust distributed systems. For example, if a host is being shut
down, all agents executing on that machine are warned, whenever possible, and given
time to dispatch and continue their operation while preserving their execution state on
another host in the network. Their support for disconnected operation and distributed
design paradigms eliminate single point of failure problems and allow mobile agents to
offer fault-tolerant characteristics. While there are many features of MAs that enable
applications to be robust and fault-tolerant, we should mention a few drawbacks.

The ability of the mobile agents to move from one platform to another in a heterogeneous
environment has been made possible by the use of virtual machines and interpreters.
Virtual machines and interpreters, however, can offer only limited support for
preservation and resumption of the execution state in heterogeneous environments
because of differing representations in the underlying hardware. For example, the full
execution state of an object cannot be retrieved in Java. Information such as the status of
the program counter and frame stack is currently forbidden territory for Java programs.

14

Conventional fault-recovery techniques aren't sufficient for the mobile agent computing
paradigm. For example, checkpointing before and after arrival, and upon completion of
certain transactions or events may be necessary to ensure for acceptable fault-recovery.
With each check-pointing procedure and non-repudiation mechanism invoked, however,
more overhead is introduced. Even though an arsenal of techniques exist to provide
security and fault-tolerance, the designer must be careful in selecting which mechanisms
to use and how they impact the overall system performance and functionality.

Although mobile agents possess a great deal of autonomy and perform well in
disconnected operations, the failure of the home platform or other platforms that the
agents rely on to provide security services can seriously reduce their intended
functionality. Even though a mobile agent can become more fault-tolerant by moving to
another machine, the mobile agent's reliance on the safe operation of a safe home or
trusted platform places restrictions on its functionality. Designers of mobile agent
platforms are also faced with tradeoffs between security and fault-tolerance. For example,
in order to address the security risks involved in "multi-hop" agent mobility, some agent
architectures have been built on centralized client-server models requiring agents to
return to a central server before moving on to another host machine [JUMPIN]. Clearly,
addressing the security risks in this manner renders all the mobile agents vulnerable to a
failure of the central server.

3.1.8. Scalability

The computational load on centralized IDSs increases as more processing nodes are
added to the networks they monitor. As networking technology continues to improve,
increased bandwidth and network traffic will place greater demands on these centralized
architectures. Distributed MA IDS architectures are one of several options that allow
computational load and diagnostic responsibilities to be distributed throughout a network.
As the number of computing elements in the network increases, agents can be cloned and
dispatched to new machines in the network.

3.2. Disadvantages

The obvious disadvantage of using MAs is the concern that they will introduce
vulnerabilities into the network. However, this is not the only disadvantage to
implementing Mobile Agent Intrusion Detection System (MAIDS). MA solutions may
not perform fast enough to meet the IDS’s needs. In addition, the MAs may contain large
amounts of code thus prohibiting rapid transfers between hosts. Finally, limited industry
experience and modeling tools for formulating MA solutions to applications in general
and IDSs in particular are also factors, as is the additional complexity involved in
developing agent-based applications when compared with more traditional forms.

3.2.1. Security

The security concerns related to mobile code are one of the main obstacles to the
widespread use of this technology. The MA computing paradigm presents a number of

15

security threats that are not addressed by conventional security techniques. Standard
security techniques must be modified or new techniques invented to address these threats.
The security threats can be classified into four broad categories: agent-to-agent, agent-to-
platform, platform-to-agent, and other-to-agent platform. The agent-to-agent category
represents the set of threats in which agents exploit security weaknesses of other agents
or launch attacks against other agents. The agent-to-platform category represents the set
of threats in which agents exploit security weaknesses of or launch attacks against an
agent platform. The platform-to-agent category represents the set of threats in which
platforms compromise the security of agents. The other-to-agent platform category
represents the set of threats in which external entities, including agents and agent
platforms, threaten the security of an agent platform.

The capability of IDSs to initiate automated responses alleviates the burden placed on
system administrators to immediately diagnose suspicious activity and take corrective
action. However, this new capability raises security issues within the context of agents.
MAs may need to run with administrative or root privileges to perform responses and
other tasks. This can cause serious security risk if malicious MAs can be introduced into
the system by an attacker. Processes that run with administrative or root privileges
introduce new threats and expose the network additional security risks. Moreover, in
many instances installing patches or making administrative changes to a system can have
an unforeseen effect on existing applications and services.

While these threats exist, they can be mitigated by building upon conventional security
techniques. If a MAIDS system can restrict processing to only those agents digitally
signed by a security administrator, it greatly reduces the security vulnerabilities, since an
attacker can not change the code of an agent to cause it to be malicious. However, an
attacker may be able to alter the data of an MA and thereby cause it to perform malicious
actions. Additional techniques exist that can be applied to the security problem. Such
techniques include mechanisms to control access to computational resources,
cryptographic methods to encipher information exchanges, cryptographic methods to
identify and authenticate users, agents, and platforms, and mechanisms to audit security
relevant events occurring at the agent platform.

More recently developed techniques aimed at mobile code and mobile agent security
have for the most part evolved along traditional lines [JANS99]. Techniques devised for
protecting the agent platform include Software-Based Fault Isolation, Safe Code
Interpretation, State Appraisal, Path Histories, and Proof Carrying Code. Some general-
purpose techniques for protecting an agent, include Partial Result Encapsulation, Mutual
Itinerary Recording, Itinerary Recording with Replication and Voting, Execution Tracing,
Environmental Key Generation, Computing with Encrypted Functions, and Obfuscated
Code (Time Limited Black Box). Present day agent systems often include one or more of
these mechanisms.

16

3.2.2. Performance

One of the most challenging problems facing IDSs is improving the speed with which
they can identify malicious activity. Not only must IDSs detect attacks quickly, but they
must also process system events in real time. This task is becoming ever more difficult as
network bandwidth increases. Mobile agent software will generally hinder rather than
help an IDS’s ability to rapidly process events and detect attacks. MA runtime
environments slow down MAIDS especially if they are implemented in slow interpreted
languages. The solution is to use MAIDS for some functions, but have core IDS work
performed by statically located systems. The performance demands are so high for IDSs
that some are starting to be implemented directly in hardware. It may be useful to have
MAIDS communicate directly to the more efficient non-MAIDS components.

The performance limitations of scripting and interpreted languages when compared to
native code do not offer a promising solution to this problem, as the advantage of
heterogeneity offered by these languages come at the cost of speed. When performance
criteria are taken into consideration, it is more likely that IDSs will be built using a
combination of mobile agents, static agents, and other technologies.

3.2.3. Code Size

IDSs are complex pieces of software. Agents that perform IDS services may thus be
required to contain a large amount of code. If these agents are supposed to do operating
system specific tasks on multiple operating systems then this code base may get
extremely large. The size of MA code may limit the functionality of MAIDS because it
will take a long time to transfer an agent between hosts. In addition, such a transfer will
require greater computing and network resources. A possible solution to this problem is
to have some agents statically locate themselves and have them offer standard
Application Programming Interfaces (APIs) to agents that move between machines. Thus,
the majority of the code base for the IDS remains stationary while the minority part is
mobile.

3.2.4. Lack of A Priori Knowledge

Large enterprise networks are comprised of several different hardware platforms, running
several different operating systems, each having different configurations and running
different applications. It is not trivial for the mobile agents to have a priori knowledge
about how a system is configured, how data is arranged, and still remain lightweight.
Static and less transient agents may be more familiar with how data is locally arranged
and accessed, and able to act as intermediaries between mobile agents and other
platforms. Localized data may be more efficiently manipulated through standard APIs.

3.2.5. Limited Exposure

The client-server computing paradigm is well understood and quite mature as a
technology, but the area of distributed control of mobile agent systems is still the subject

17

of many research efforts. An agent’s envisioned autonomous behavior, involving
collaboration with other agents at various network locations, creates a dynamic
environment that requires new design methodologies and modeling tools to properly
formulate and construct agent-based systems. The lack of mature agent design
methodologies and modeling tools makes this task difficult, but the problem is likely to
be overcome as commercial demand for these product increases and is eventually
satisfied.

3.2.6. Coding and Deployment Difficulties

MAs that are developed in-house or purchased from trusted vendors are likely to undergo
the same software engineering methods as their non-mobile counterparts in order to
assure the quality of code. This standard development process historically produces code
with many faults. MAs' inherent capabilities, such as moving and cloning, add more
complexity to the design and development process. Given this added complexity, MAIDS
will be even more prone to faults than their non-MA counterparts. Further hampering
near term MAIDS deployment is a lack of MA design, development, and management
tools, needed before any large-scale deployment of agent-based applications becomes
feasible. Agent developers and administrators could also benefit from better resource
control mechanisms in MA platforms.

18

4. Innovations in Intrusion Detection Systems

Intrusion detection systems are less than perfect. [MART99] outlines a number of
shortcomings of currently deployed IDSs, which are summarized as follows:

• No generic building methodology,
• Lack of efficiency,
• Lack of portability among monitored environments,
• Limited flexibility (includes tailorability, scalability, and dynamic reconfigurablity),
• Limited upgradability of detection techniques,
• Difficult maintenance of rule sets,
• No performance and coverage benchmarks, and
• No good way to test effectiveness.

Developers continue to solve some of these shortcomings through the refinement of
existing techniques, but some shortcomings are inherent in the way IDSs are constructed.
While mobile agents can help improve IDSs in many areas, they offer no help in others.
For example, the ability of an IDS to detect attacks from a single vantage point, by
looking at information from a single host, a single application, or a single network
interface (i.e., single point detection), is the primary problem facing IDS manufacturers.
Mobile agent technology cannot enhance the ability of an IDS to perform single point
detection of attacks or reduce false positive rates. Moreover, in most cases, mobile agent
technology slows down the ability of an IDS to process events thereby actually
decreasing its detection ability. This is a severe limitation for single point IDSs
attempting to evaluate events in real time.

This does not mean that MAs are not useful to IDSs. MAs can solve several major
problems with IDSs, but more importantly, as discussed below, they can provide IDSs
with performance benefits and heretofore unseen capabilities. For example, the mobility
of agents make them ideal for detection schemes that follow a “cop on the beat,”
“immune system,” or other model.

4.1. Useful Characteristics of MAs

MAs have many characteristics that enable them to enhance intrusion detection
technology. Mobility is obviously one of the most important capabilities, and we can
certainly benefit from it. However, other agent capabilities also lend themselves to
intrusion detection technology. Agent technology and agent applications mimic
collections of autonomous and intelligent individuals. Classes of individuals have special
purposes and each can operate independently from the others. Each individual talks to
other individuals that it meets and exchanges information. This paradigm is in sharp
contrast to the traditional programming paradigm where a master logic unit controls a set
of slave units. The slaves have no autonomy and perform exactly what the master logic
unit commands. Variations of the traditional approach include multiple units with set
duties and set communication channels. There may not be a central controller and each

19

unit may rely on the other units to perform their job. If one unit ceases to function, the
other units are not intelligent enough (or don’t have the authority) to solve the problem.
This traditional distributed programming paradigm works well when components can be
relied upon to function. Even by using redundant components, an attacker can disable a
small finite number of backups. This traditional design is easy to implement and is an
efficient solution to many problems. Agent technology is a great contrast to this design
since it attempts to give each agent an understanding of its environment along with the
authority to independently make decisions.

MAs are by nature autonomous, collaborative, self-organizing, and mobile. These
features are not found in traditional distributed programs, and enable IDSs to implement
completely new approaches for doing intrusion detection, some of which are based on
analogies found in nature and in society.

Picture a collection of MAs as a colony of bees. Each bee has the ability to fly to flowers
and glean pollen just like MAs can move among hosts and process data. Bees have no
need to carry large flowers home. Similarly, MAs can avoid having to transfer intrusion
detection data located at a collection point, back to a central repository. This research is
described under Multi-Point Detection.

Another analogy is to picture a collection of MAs doing IDS work as a colony of ants.
Step on one or even hundreds of the workers, and the colony continues to function. In
addition, ants can move away when they see a foot descending. MAs can be built with
similar attack resistance since they are autonomous and mobile, and killing a few should
not harm an ideally constructed MA application. This research is described under the
section on Eliminating Single Points of Failure.

MAs can also be viewed as a collection of guards. Security companies do not want to
incur the expense of posting a guard in every hall of a building. Instead, they have a
guard walk through each hall periodically checking for intrusions. Likewise, MAs enable
one to periodically check hosts for security problems without having to install checking
software on every host. This research is described under Roaming Agents.

These are just a few examples of how colonies of autonomous mobile agents can benefit
intrusion detection technology. Mobility is an important aspect, but that alone is not
sufficient. MAs need to be able to operate autonomously and operate in consort with
other agents. These features enable new intrusion detection paradigms.

4.2. Research Areas

From the previous discussions, it should be clear that MAs do not add fundamentally new
capabilities to actually detecting (non-distributed) attacks or increasing the speed with
which one detects these attacks. There is, however, the potential to apply the advantages
that mobile agents bring with them to significantly improve the way in which IDSs are
designed, constructed, deployed, and operated.

20

4.2.1. Multi-point Detection2

IDSs perform multi-point detection by analyzing events at multiple locations in order to
detect distributed or staged attacks. The events may come from multiple hosts,
applications, or network interfaces. Multi-point detection is technically difficult even
when an IDS can process all of the distributed events. However, few IDSs can afford the
network bandwidth required to move the (usually massive) logs of the distributed events
to a centralized location for processing. A common solution used by many IDS vendors is
to perform filtering and data abstraction on each distributed log file before consolidating
the events. However, this further complicates the already difficult problem of detecting
distributed attacks because we are now using abstracted data.

Multi-point detection is especially useful in detecting attacks on a network, as opposed to
attacks on a host. That is, the objective of a coordinated attack may be to gain access to
network resources, not access to a particular host. Mobile agents may learn of this
strategy by correlating attacks on gateways, hosts, modems, servers and other points of
exposure to outside entities. Host-based systems will only realize that individual
components are under attack, and cannot speculate on the larger strategy.

MAs may benefit multi-point detection technology by allowing the massive amount of
distributed log data to stay stationary. An MA analysis engine could move among data
pools to perform multi-point detection on the original logs. This is an ideal application of
MAs, where one needs to transfer the computation to the data instead of the data to the
computation. Research is needed to determine how an agent can efficiently collect and
analyze data in a piecemeal fashion as it travels around to different information sources to
perform multi-point analysis. That is, instead of the information moving one time to a
central site and being analyzed in a collective fashion, it would now need to be reduced
and moved multiple times (i.e., with each hop) and done so efficiently.

4.2.2. Attack Resistant Architectures

IDSs often use hierarchical architectures for reasons of efficiency and centralized control
(for more information see Appendix B on architectural issues). Envision an IDS that
implements a hierarchical architecture without the capability to dynamically reconfigure
relationships to compensate for failure of key components. Single point detection occurs
at the leaves (as well as data gathering for multi-point detection). The results from the
leaf nodes are sent up the hierarchy to internal nodes that perform data abstraction (and
possibly multi-point detection). The data is continuously abstracted until it reaches a
command and control node at the root. This design has no redundant communication
lines, resulting in many single points of failure. An attacker can cut off a control branch
of the IDS by attacking an internal node or decapitate the IDS by taking out the root.

2 While many IDSs are starting to perform multi-point detection, there is little evidence that such attacks
exist except in limited forms. Scanning and worms are the most obvious kinds of attacks that are best
detected by gathering data from multiple locations in the network. However, we have not been able to
identify many attacks whose detection benefits from multi-point detection.

21

Even a small number of redundant backup hosts created for each key node is not beyond
the reach of a knowledgeable and determined attacker.

While several solutions to this problem exist, MAs readily apply since MAs are by nature
autonomous. A collaborative multi-agent system can be self organizing and thus adaptive
to attack. Some obvious areas for research and experimentation include:

• Completely distributed and decentralized IDS architectures where there exist no
single points of failure and there exist numerous redundant information pathways.

• Standard hierarchical IDSs where an MA backs each node up and restores any lost
functionality out of sight of an attacker.

• Mobile agent IDSs that relocate when any suspicious activity is detected.

4.2.3. Abstract Interfaces

MAs are autonomous and usually small in order to enhance transmission efficiency.
Thus, a single MA is unlikely to perform all event generation tasks (logging), data
abstraction tasks, and attack detection tasks. Thus, multiple autonomous MAs must
communicate with one another about events and attacks. Also, MAs may need to
communicate with statically located traditional event generators. These communication
requirements may be a great hurdle in developing MAIDS.

We need to define abstract interfaces for event generation, abstracted events, and attack
descriptions. Several alternative forms of abstraction include representation as a
management information base, a program library, or an agent dialogue. The information
must be specific enough for each MA to perform their desired computation (e.g. detect an
attack), but general enough to avoid being computationally expensive. A flexible scheme
is needed whereby MAs can subscribe for the specific information that they need. If too
many MAs request information and the system becomes overloaded, an elegant back off
algorithm is needed to strip excess requests.

4.2.4. Knowledge Sharing

Often, several completely independent IDSs are deployed in an organization. Ideally
these IDSs would share information about recent attacks in a way that would enhance
their ability to detect future attacks. This is not specifically a MAIDS research field, but
MAs enable new paradigms of knowledge sharing by easily implementing mobile and
autonomous components. While we can build distributed and decentralized IDSs using
MAs, it is unclear how the MAs can ideally share knowledge about events in the
network. Knowledge sharing architectures need to be developed that take advantage of
the autonomous and distributed nature of MAs.

A more short-term view of research with knowledge sharing and MAs is to attempt to
overcome the shortcomings of network based IDSs using MAs. Network-based IDSs are
typically located next to an organization’s firewall and sniff the traffic of possibly
thousands of hosts. In this situation, it is impractical for an IDS to emulate the protocol

22

stack of each host that it is protecting. In most cases, the IDS does not know what
operating systems are running on each host. Thus, IDSs are forced to filter network
packets using a generic network protocol stack. Attackers take advantage of this by
sending a target host packets that are interpreted differently by the IDS and by the target.
This is done using various fragmentation, sequence number, and packet flag tricks
[PTAC98]. The attacker then penetrates the target while the IDS is blind to the attack.

MAs can assist IDSs with this problem by coordinating between network sniffing IDSs
and target hosts. If the network-based IDS is able to emulate multiple protocol stacks,
then MAs may probe hosts to find out what operating system and applications are
running. Alternatively, MAs can be deployed to hosts to detect attacks that utilize
protocol stack differences. Thus, the MAs can work as host-based IDSs in conjunction
with a network-based IDS in order to catch attackers trying to deceive the network-based
IDS. It is possible that deploying the host-based MAIDS may be computationally costly
and so this may only be done when somewhat suspicious traffic patterns are seen that are
not themselves identifiable as an attack. There are many variations, but in all MAs can
work with statically placed network based IDSs to prevent/detect an attacker’s attempts
to disguise himself.

4.2.5. Roaming Agents

Each agent may perform specific tests (much like a mobile sensor) and randomly roam
the network. When the test indicates some possibility of an intrusion, the agent may ask
for additional tests at the site. Only after the suspicion level has been raised high enough
is the actual alarm given. Notice that the attack is confirmed by executing only relevant
tests, and the entire suite of tests does not have to remain resident at every node.

Random sampling has been successfully used for many years for quality control in
manufacturing. Fundamentally, if a random sample detects a problem, then a more
comprehensive series of tests needs to be run. The mathematics is well understood and
the parameters may be calculated. For example, it is possible to calculate the average
length of time before an attack is discovered, the average number of systems likely to be
infected before discovery, the bandwidth consumed, and the average computation at each
node. The mobile agents themselves can also have statistical properties such as the rate at
which they test nodes, their size, the diversity of nodes visited, etc. Changes to these
statistical features may indicate an attack on the agent itself.

Since mobile agents roam throughout the network, they may not be constantly resident at
every node. Consequently, those nodes without a resident agent are vulnerable until an
appropriate agent arrives. This situation, however, is not as deleterious as it first appears.
Very high "false positive" alarm rates plague conventional IDSs. Consequently,
administrators ignore most alarms and rarely detect intrusions during their first
appearance. Rather, clues gradually accumulate until the administrator makes a
determined effort to explain some anomaly. It is therefore not necessarily true that an MA
random sampling structure will significantly degrade the detection process; the results

23

depend upon the attacks and the criticality of the system. In addition, such a system may
work well in conjunction with a traditional IDS.

Roaming MAs can be used as detectors in an anomaly based IDS. Roving MA detectors
can generate events from locations in the network previously inaccessible to statically
installed anomaly detectors. Agents collect statistics about the performance of the
network or hosts, which is not meaningful at individual nodes, but may be meaningful in
aggregate. The data should exhibit some regularity, and significant changes would be
cause for concern. By correlating events from across the network, we may be able to
detect new attacks and with a lower false-alarm rate.

4.2.6. Unpredictability

An attacker may successfully break in to a host with a conventional host based IDS and
not be detected immediately. This could happen either because the attack was too clever
for the IDSs or because the IDSs only scans the host for attacks periodically due to
performance considerations. In this event, the attacker now has free reign to inspect and
alter the IDS, install backdoors, and remove evidence of the attack from the audit log.

A MAIDS solution is also vulnerable to the same kind of attack. However, MAs offer
some benefits for detecting such tampering. As each new mobile agent arrives at the host,
it embodies a fresh copy of the intrusion detection procedures. Some of these checks may
make sure that the agent platform is unaltered. For example, an agent could calculate a
checksum of a static system file or perform a similar integrity check on some aspect of
the platform, and report the result upon return to a point where validity can be
determined. An unexpected result would warrant remedial action.

The inter-arrival times of agents, their reporting mechanism, and the exact nature of their
detection algorithm may also be made unpredictable. Depending on the goal of the attack,
the attacker may not be willing to kill the agent platform, as it would be suspicious for a
host to suddenly not accept MAIDS. Instead, the attacker can modify the MA platform to
blind incoming agents. The degree of difficulty in modifying the agent platform to blind,
but not otherwise hamper agents could vary widely. However, if standard IDS interfaces
exist the effort could be as simple as replacing the appropriate system library. One way of
dealing with the problem of platform subversion is to incorporate the agent platform into
the kernel. Even though the kernel can be subverted, the difficulty of modifying the
kernel raises the level of difficulty of disabling the IDS. Hardware solutions exist for
preventing tampering with the host platforms, but they tend to be prohibitively expensive
for general use.

The areas for research revolve mainly around applying unpredictability as a complement
to other mechanisms. While unpredictability does not apply to denial of service or other
short lived attacks, it does address those attacks that attempt to use the penetrated host as
a base of operation for further exploits and leave potentially incriminating evidence. The
goal is to increase the likelihood that such a successful penetration attack does not elude
detection indefinitely.

24

4.2.7. Genetic Diversity

IDSs created with MAs can be viewed as a collection of autonomous entities. However,
usually each MA will not be unique in the sense of having a distinct set of instructions
from which it runs. Typically, one will create classes of agents and members of the same
class will have different data, but the same instructions. For example, one class of agents
may run around the network looking for a particular vulnerability.

The problem with this approach, and with standard IDSs, is that the tests that are run are
predictable. With standard IDSs, an attacker can buy a copy of the IDS and figure out the
exact signature used to detect the attack. This knowledge gives the attacker an advantage
when penetrating a network.

What if agents that detected a particular attack each had a slightly different detection
signature. The attacker then could not predict exactly what detection algorithm is going to
be used to detect his attack. The drawback is that by using different detection signatures,
each will have a different false positive and false negative rate. We are forcing ourselves
to use non-optimal signatures. However, these rates can be bound to a reasonable range
and then we can still take advantage of using MAs that detect particular attack
differently.

One way to teach agents different ways to detect attacks is to give agent base knowledge
about an attack and have them automatically learn their own technique for detecting it.
Have a human describe, in some standard language, every aspect of an attack. Create
agents that can read the description language. Using a variety of machine learning
algorithms, agents can use different aspects of an attack and formulate an attack
signature. If one puts these agents in an isolated network and launches the attack, through
a feedback loop the agents can calculate their detection rates and false positive rates.
Agents with low detection rates can make small modifications to their randomly
generated attack signature in an attempt to improve. The result will be a large set of
agents each of whom detects an attack with a different signature. The better agents can be
deployed throughout a network. Thus, MAs can automatically learn attack signatures and
learn different signatures. This will prevent the attacker from predicting the exact
signatures used and thus enhance the distributed IDS.

25

5. Innovations in Intrusion Response

As their name implies, IDSs have traditionally focused on detecting attacks. While
detection serves a useful purpose, oftentimes a human does not analyze the reports from
an IDS for some time. This gives an attacker a window of opportunity in which to freely
operate before being countered by a systems administrator. During this time, the attacker
may steal critical data, install invisible back doors, use the penetrated host to attack other
sites, or subtly corrupt information. Ideally, an attacker should not be given any time to
extend their grasp on a network.

Because of this, many IDSs are beginning to implement automated response capabilities.
The IDS detects an attack and immediately responds in order to kick the attacker out of
the network. This sounds simple, but in practice it is very difficult to accomplish. For
safety and technical concerns (i.e., the response could be used to an attackers benefit),
IDSs initiate only very weak responses. We present ways in which MAs can help solve
this problem, however, first we explore existing automated response mechanisms and the
challenges facing them.

5.1. Existing Response Mechanisms

Existing response mechanisms in commercial IDSs are somewhat weak when compared
to the goal of automatically ousting an attacker from the network. The automated
response mechanisms currently implemented fall into two categories: enhanced
notification and attacker filtering.

Enhanced notification mechanisms are designed to inform systems administrators of
important attacks as soon as possible. They thus decrease the time window an attacker
has before being countered by a human. In the event of an important attack, IDSs e-mail
system administrators, pop up notification windows on their monitors, or even page them.

Attack filtering methods actively stop an attacker. One popular technique is to interrupt a
TCP connection between an attacker and a target. IDSs do this by sniffing the malicious
connection to determine packet sequence numbers and then by inserting reset packets to
kill the connection. Another popular attack filtering technique is to dynamically change
the routing permissions table in routers and firewalls. Typically, an IDS disallows packets
from an attacker’s IP address or subnet from traversing the network’s routers or firewall.
The target can also be cut off using this technique in order to prevent the attacker from
launching attacks from the target host. Using these attack filtering methods, an IDS
attempts to disrupt the attacker’s access to the target and stop the attacker from sending
more malicious packets into the network.

While IDSs are making great strides in the realm of automated responses, the current
functionality is not sufficient. The existing response mechanisms are too weak to stop
sophisticated attackers. Currently implemented response mechanisms are not sufficient
because they assume that attacks take time to launch and that attackers are limited to

26

using a single IP address or subnet. However, modern computer attacks are usually
launched using automated attack programs. These programs break into computers very
quickly using only a few packets and can penetrate a host before an IDS detects and
responds to the attack. The attack program can quickly install a back door. Then the
attacker approaches the compromised machine from a new IP address, uses the back
door, and the IDS does not detect the apparent normal entry into the host. Another
problem occurs when the attacker is launching denial of service attacks. In this case each
packet may be spoofed with a different IP address thus making filtering of the attack
packets impossible.

5.2. Ideal Response Mechanisms

Assume an attacker has penetrated a network and corrupted some hosts. The ideal
response gathers evidence of the attacker’s activity, removes the attacker’s access to the
network, undoes the damage, and reconfigures the network to resist the attacker’s
penetration technique. It is impossible in today’s environment to automate this ideal
response since humans themselves have great difficulty enacting it. We can not automate
what we ourselves can not do. However, we can automate an approximation of this ideal
response. Our approximation should have the following capabilities not found in current
automated response software:

• The ability to dynamically modify or shut down the target. This capability enables the
IDS to automatically remove the intruder from the target, protect it from further
damage by shutting it down, or perform an enhanced audit of the attacker’s actions.

• The ability to dynamically modify or shut down the attacking host. With insider
attacks, this enables the IDS to automatically stop the generation of the attack as well
as record evidence of the attacker’s actions.

• The ability to determine the host which is launching the attack. When attack packets
are being spoofed, they can only be traced to an Ethernet wire by querying each
router as to the source of the packets. Once the correct Ethernet is found, each host on
the Ethernet must be analyzed in order to determine which is responsible for
launching the attack. Thus an IDS must provide the capability to trace the path of an
attacker.

• The ability to monitor all network traffic to and from the target. It is necessary to
record for evidence the packets that the attacker sends to the target. In addition, it is
necessary to record packets leaving the target since it may be used as a jump point to
penetrate other hosts

• The ability to modify the routing and firewall permission tables on every firewall and
router. We often want to isolate the attacker or target in order to prevent further
damage. Such isolation can limit legitimate traffic and so we want to optimally place
the filters such that the attacker is constrained the most while allowing the most
legitimate traffic.

27

This list of required capabilities needed to approximate an ideal response implies that
security services are installed on every host and network device. This does not mean,
however, that every network component needs to have an IDS installed that is aware of
the rest of the network. Nor does it imply that these security services need to be
proprietary solutions. Each network component could have a security server installed that
performs some detect and response functions. The security servers may have a standard
API that would allow them to be used by a distributed IDS scheme. Thus, every network
device needs detect and respond capability but no single proprietary scheme needs to be
installed everywhere. This vision is being realized in the router market where one can
now dynamically change routing filters from remote locations.

It is unlikely that all network devices will soon be installed with security servers that can
be controlled with a common API. It would be very difficult to get the security
community to agree on such a standard and splintering standards promote proprietary
solutions. However, we also think it is also unlikely that companies will want to install a
proprietary security solution on every host and network device. The cost of installation
and maintenance of such a scheme would be overwhelming. Therefore, it seems unlikely
that, without MAs, the security infrastructure that is needed to approximate the ideal
response can be cost effectively implemented.

5.3. An MA Automated Response Solution

Mobile agent technology can solve the problem of installing and maintaining the security
infrastructure needed to approximate an ideal response. Using MAs, it is not necessary to
install a security server on every device as the MAs can automatically travel through the
network and install the appropriate software on the appropriate types of network devices.
This way, companies are not locked into using a single proprietary solution and
uninstalling one solution and installing another can be almost automatic. MAs can
provide the security servers that are required at each network device and also implement
the distributed IDS that detects attacks and issues responses.

MAs enhance a system’s ability to automatically respond because MAs make it possible
to make all network components part of the same security scheme. Responses can be
initiated at any place in the network, which gives systems the capability to optimize the
locations at which they initiate responses. Furthermore, MAs enhance an IDS’s ability to
trace an attacker through the attacked network, to respond on the target, respond on the
attacker, and to collect network/host evidence about the attack.

5.4. Research Areas

Like many other areas, MAs do not add fundamentally new capabilities to automated
response. However, MAs may help transition some automated response ideas from an
impractical and costly scheme into a solution that can be implemented in a cost-effective
manner. Thus, many of these research areas are not specifically about MAs, but they are

28

areas that need MAs to be practical and they are areas that have been ignored previously
because of their seeming impracticality.

5.4.1. Automated Tracing of Attackers

We envision future IDSs tracing attacker’s paths within IDS enabled networks. This
feature is useful for two reasons. First, attackers often log into a chain of many hosts
before attacking a target. Thus, to find the attacker one must trace back along the chain.
Second, attackers sometimes can spoof their source address. It is necessary to determine
the actual source of these packets and the way to do this is to trace the packets from LAN
to LAN until the source LAN is found. Finding the actual host launching the packets
requires visiting the hosts within a LAN since attackers can spoof MAC addresses as well
as IP addresses. Many attacks originate from outside of a network and thus could not
ultimately be traced, however insider attacks are a large concern. Whether an attack is
from an insider or an outsider, IDSs need to determine this and locate the location of the
attacker as best as possible.

Effectively tracing an attacker from LAN to LAN requires the ability to sniff on every
Ethernet segment in the network. Finding the host on an Ethernet segment that is lying
about its identity requires analyzing each host on an Ethernet segment. Thus, to
adequately trace an attacker through a network an IDS needs the capability to sniff on
every Ethernet segment and to analyze every host. Ordinarily, the infrastructure required
to support this kind of tracing would be prohibitively expensive. However, MAs provide
a very cheap way to do this provided that MA platforms are widely installed.

There are several issues that a tracing system should address. If an attacker has
compromised a host, then the MA platform may not function. Thus, any tracing system
must gather data from many locations and compare the results. In addition, not all hosts
may support MAs and thus the system will need to understand the topology of the
network and sniff traffic at the optimal locations in order to pick up the attacker’s trail.
Finally, what the attacker sends along each link in his attack chain may be completely
different data. For example, the attacker could use link encryption. In this scenario, to
trace the attacker the system may need to apply sophisticated artificial intelligence
techniques or decision-making algorithms.

Assuming the existence of MA platforms, the tracing system can automatically deploy
across the network with very little installation time needed. The main research problem in
building these systems is to anticipate a clever attacker. An automated tracing system
needs to:

• Intelligently collect evidence of an attackers trail,
• Adaptively operate when some hosts are not participating in the tracing scheme (e.g.

not running an MA platform), and
• Have the ability to search many paths simultaneously while not overwhelming the

network with agents.

29

5.4.2. Automated Evidence Gathering

Currently, it is impractical to automatically gather evidence for an attack from many
different sources. The problem is having the right software running at the right place at
the right time. MAs offer the ability to run anything, anywhere, at any time. It is therefore
conceivable that evidence may be gathered from different hardware platforms, different
operating systems, and even different applications such as web servers.

It is very easy to audit so much information on a host that the capacity to store the logs
fills up quickly. It is even easier to run up against this barrier when saving the audit logs
of every host on the network and trying to record the network traffic on each Ethernet
wire. Thus, systems administrators can not record all evidence in a network.

MAs may determine what types of evidence are most needed for that network, for the
type of attack being investigated, and at what locations in the network. This is likely to be
different if the evidence is for internal use as compared to legal use. The MAs may then
move to the appropriate locations and start up relevant audit services (if they are not
already enabled). MAs can thus intelligently audit the network by dynamically
reconfiguring the audit capabilities of every host. The MAs can strongly audit suspicious
or important network locations while lightly auditing other areas. Thus, MAs can reduce
the amount of wasted evidence that must be stored.

Evidence gathering MAs should be in constant contact with IDSs that provide it with
suspicious locations in the network. With this collaborative technique, evidence gathering
MAs will often be able to fully audit host and network traffic generated by attackers.

5.4.3. MA Operations on an Attacker’s Host

In the event of an attack, automated responses normally occur in the network at routers or
firewalls. These elements typically try to separate the attacker from the target. However,
if possible it would also be beneficial to launch automated responses on the attacker's
host. Such a counter-attack may not succeed as the attacker has control of his own host
and so this technique would not replace router or firewall based responses. However,
responding on the attacker’s host gives an IDS a much greater power to restrict the
attacker’s actions. Without MAs, it is unlikely that an IDS could get enough access to an
attacker’s host in order to initiate responses. Because of this, the field of responding to an
attacker on his own host has not been researched. Having MA platforms installed
throughout a network will enable IDSs to initiate these kinds of responses and thereby
necessitate this type of research.

There are not many responses that can be taken by routers and firewalls to stop attacks.
The responses consist of filtering out certain types of traffic or killing connections.
Alternatively, there are an enormous number of useful responses that could be
implemented on an attacker’s host. We need to research what types of responses are most
useful. We need to research what types of responses work best against an attacker using
particular types of attack tools.

30

5.4.4. MA Operations on a Target Host

When attacked, it is obviously vital to automatically respond on the target host. Such a
response can prevent the attacker from using the penetrated host to further compromise
one’s network and to recover damage done by the attacker.

Much of the research defined for MA operations on the attacking host carry over to this
area. However, the attacker will not typically be as firmly entrenched on the target host as
he is on the attacking host. The attacker may only have user access, not administrator
access to the host, and the attacker probably has not subverted many of the standard host
services. Thus, if an IDS acts quickly, the target host will be a correctly functioning
system that has an attacker as one of its users.

An MA can be sent by an IDS to the target to engage the attacker. Since the MA is
automated it may often move faster than an attacker’s manual actions. However, an
attacker may use automated tools that can act faster than the MA. Despite the fact that the
MA may lose the battle for the target, an IDS should dispatch an MA in the hopes of its
success.

The MA needs to determine how the attacker is controlling the system. As the attacker
attempts to gain privilege on the system, the MA should counter these attempts and
attempt to remove the attacker. The MA will probably need to make use of the attack
detected by the IDS in order to figure out how the attacker is controlling the system.
Depending upon the type of host penetrated, the MA may simply take the host down or
may try and keep vital services operational while delaying the attacker until a systems
administrator can evaluate the situation.

5.4.5. Isolating the Attacker/Isolating the Target

As appealing as they may sound, actions to automatically respond on the target and
attacking host may fail. It is vital that uncompromised machines respond at the network
level to limit an attacker’s actions. Three strategies exist to deter an attacker: isolating the
target, isolating the attacker, and creating a cut set between the target and attacker. The
fact that MAs can travel to all network elements to implement responses is what enables
them to perform these strategies.

Isolating the target involves encircling the target with a barrier such that the target can
not launch attacks on the rest of the network. A simple way to erect such a barrier is to
cut off all network traffic along the edge of the circle. More sophisticated filters can be
researched that allow “safe” services through the circle. The research problem is that the
barrier will probably cut off some legitimate communication. We must take the network
topology into account and encircle the target such that as much vital communication as
possible is allowed to continue while still encircling the target. Furthermore, some
systems that we can not allow to be compromised must be placed outside of the circle
while other systems that must communicate with the target must be placed inside of the

31

circle. This is an optimization problem that will also require research to properly
implement.

Isolating the attacker involves the same logic as isolating the target. One wants to draw a
circle around the attacker, as tight as possible, such that the attacker can not launch
attacks through the circle. Again, some hosts may need to communicate with the attacker
and thus must reside within the circle.

A third option is to create a cut set between the target and the attacker. This merely
separates the two protagonists with an impenetrable boundary. It does not attempt to stop
that attacker or the target from attacking other hosts in the network. Creating a cut set is
useful when one is primarily concerned about the attacker reaching the target. The cut set
technique always can be set up to eliminate no more legitimate communication than the
isolating attacker or isolating target techniques.

5.4.6. MA Operations on Attacker and Target Subnet

We advocated using MAs to respond on attacker and target hosts because of the
flexibility the MAs would have in initiating responses. However, the drawback was that
these MAs would sometimes fail in the face of sophisticated attackers. We advocated
isolating attackers and targets at routers and firewalls so that the attacker could not thwart
the response, but this means that sometimes legitimate traffic can be cut off. A third
response alternative that can be implemented using MAs is for an MA to travel to an
uncompromised host on the attacker’s or target’s subnet. From this position, the MA can
launch attacks against the attacking or target host to stop it from functioning. MAs may
utilize well-known vulnerabilities or may simply flood the attacker and target hosts with
packets. Since MAs can travel to multiple hosts, they can muster sufficient network
resources needed to flood any attacked machine. The MAs can then keep the target and
attacker from doing further damage until a systems administrator evaluates the situation.

32

6. Summary

At first glance, mobile agent technology offers much to the field of intrusion detection.
The idea of mobile and autonomous components intuitively seems useful in intrusion
detection and many other applications. However, it is difficult to realize the benefits of
mobile agent technology in practice. Despite these difficulties, the technology appears to
provide valuable extensions to current capabilities. Although the barriers to creating
practical mobile agent systems are high, the ability to move a running program from one
hardware platform to another is a useful feature. Ultimately, as the security, performance,
emerging technology, and standards barriers that inhibit this technology fall, mobile
agents will enter mainstream use.

Not only do mobile agents appear to be useful in general, but they appear useful to IDSs.
Mobile agents may enhance the performance of IDSs and even offer them new
capabilities. However, obtaining these benefits is not easy and will require a substantial
commitment of resources to research.

There are three main research areas for using MAs to do intrusion detection: performance
enhancements, IDS design improvements, and response improvements. Within IDS
design improvements there are three categories of research: new detection paradigms,
new architecture paradigms, and improvements over existing designs. We outline the
three areas below and rate the importance of each research area. Each specific research
area maps to a research section discussed above. Importance is rated for each area as
high, medium, or low. Importance is a subjective3 measure combining the chance of
successful research with the possible impact on the intrusion detection field. It is our
hope that these ratings will help guide future research toward the more fruitful areas in
using mobile agents to perform intrusion detection.

Performance Enhancements

Research Objective: Design MAIDS that take advantage of mobility and autonomy to
obtain better performance than equivalent non-mobile IDSs. Performance can be
measured as event analysis speed as well as system up time.

Research Area Rating
Overcoming network latency Medium
Reducing network load Low
Scalability Medium

Table 1: Performance Enhancement Research Area Ratings

3 These ratings are extremely subjective. They are merely the best guess of the authors. Our rationale for
these ratings is incomplete at best and thus we forgo attempting any justification.

33

IDS Design Improvements

Research Objective 1: Use MA technology to enable novel paradigms for detecting
attacks.

Research Area Rating
Multi-point detection High
Roaming agents High
Genetic diversity Low

Table 2: Attack Detection Research Area Ratings

Research Objective 2: Use MA technology to enable novel paradigms for IDS
architectures.

Research Area Rating
Attack resistant architectures High
Abstract interfaces Low
Unpredictability Medium
Knowledge sharing Medium

Table 3: Architecture Research Area Ratings

Research Objective 3: Use MA technology to overcome shortcomings of current IDS
architectures.

Research Area Rating
Asynchronous execution and autonomy Medium
Structure and composition High
Adapting dynamically Medium
Operating in a heterogeneous environments Low
Robust and fault-tolerant behavior High

Table 4: Architecture Research Area Ratings

34

Response Improvements

Research Objective 4: Use MA technology to enable novel and efficient automated
responses to attacks.

Research Area Rating
Responding with MAs:
• Operations on the attacker’s host Medium
• Operations on the target host Medium
• Operations on attacker/target networks High
• Methods of isolating the attacker/ target High
Automated tracing with MAs High
Automated evidence gathering with MAs Medium

Table 5: Response Improvement Research Area Ratings

35

7. References

[ANDE80] Anderson, James P., “Computer Security Threat Monitoring and
Surveillance,” Technical Report, James P. Anderson Co., Fort Washington, PA, April
1980.

[AMOR99] Amoroso, Edward, Intrusion Detection, Intrusion.net Books, Sparta, New
Jersey, 1999.

[ASAK99] M.Asaka, S.Okazawa, A.Taguchi, and S.Goto, "A Method of Tracing
Intruders by Use of Mobile Agents," INET'99, June 1999.

[BALA98] Jai Balasubramaniyan, Jose Omar Garcia-Fernandez, David Isacoff, E. H.
Spafford, and Diego Zamboni, “An Architecture for Intrusion Detection using
Autonomous Agents,” Department of Computer Sciences, Purdue University; Coast TR
98-05, 1998. <URL: http://www.cs.purdue.edu/coast/coast-library.html>

[BARR98] Barrett, Michael, W. Booth, M. Conner, D. Dumas, M. Gaughan, S, Jacobs,
M. Little, “Intelligent Agents System Requirements and Architecture,” Report to ATIRP,
p. 5, October 1998.

[BAUE88] Bauer, David S. and Koblentz, Michael E., “NIDX: An Expert System for
Real-Time Network Intrusion Detection,” Proceedings of the Computer Networking
Symposium, pp. 90-106, April 1988, Washington, DC.

[BRAD97] Jeffrey M. Bradshaw, “An Introduction to Software Agents,” In Jeffrey M.
Bradshaw, editor, Software Agents, chapter 1. AAAI Press/The MIT Press, 1997.

[CHES95] Chess, D., B. Grosof, C. Harrison, D. Levine, C. Parris, G. Tsudik, “Itinerant
Agents for Mobile Computing,” IBM Research Report, RC 20010, March 1995. <URL:
http://www.research.ibm.com/massdist>

[CIDF] “Common Intrusion Detection Framework Specification,” Version 0.6, CIDF
working group. <URL: http://seclab.cs.ucdavis.edu/cidf/ >

[CONN99] Michael Conner, Chirag Patel, Mike Little, “Genetic Algorithm/Artificial
Life Evolution of Security Vulnerability Agents,” Army Research Laboratory Federal
Laboratory 3rd Annual Symposium on Advanced Telecommunications & Information
Distribution Research Program (ATIRP), February 1999.

[CROS95] Mark Crosbie and E. H. Spafford, “Active Defense of a Computer System
Using Autonomous Agents,” Department of Computer Sciences, Purdue University,
CSD-TR-95-008, 1995.

36

[DENN87] Denning, Dorothy E., “An Intrusion Detection Model,” IEEE Transactions on
Software Engineering, Vol. SE-13, No. 2, pp. 222-232, February 1987.

[FARM96a] Farmer, W.M., J.D. Guttman, and V. Swarup, “Security for Mobile Agents:
Authentication and State Appraisal,” Proceedings of the 4th European Symposium on
Research in Computer Security (ESORICS ’96), pp. 118-130, September1996.

[FARM96b] Farmer, W.M., J.D. Guttman, and V. Swarup, “Security for Mobile Agents:
Issues and Requirements,” Proceedings: National Information Systems Security
Conference, pp. 591-597, October 1996.
<URL: http://csrc.nist.gov/nissc/1996/papers/NISSC96/paper033/>

[FINI94] Finin, T., R. Fritzson, D. McKay, and R. McEntire. “KQML as an Agent
Communication Language,” Proceedings of the Third International Conference on
Information and Knowledge Management (CIKM ’94), ACM Press, Nov. 1994.

[FRIN98] Frincke, D., Don Tobin, Jesse McConnell, Jamie Marconi, Dean Polla, “A
Framework for Cooperative Intrusion Detection,” Proceedings of the 21st National
Information Systems Security Conference, pp. 361-373, October 1998. <URL:
http://csrc.nist.gov/nissc/1998/papers.html>

[HANS97] Hansoty, Jatin N., “LAVA: Secure Delegation of Mobile Applets,” Master’s
Thesis North Carolina State Univ., 1997. <URL: http://shang.csc.ncsu.edu:80/lava.html >

[HARR95] Harrison, C.G., D.M. Chess, A. Kershenbaum, “Mobile Agents: Are they a
good idea?,” IBM Research Report, March 1995.

[HEBE90] L.Todd Heberlein, G.V. Dias, K. N. Levitt, B. Mukherjee, J. Wood, D.
Wolber., "A Network Security Monitor," Proceedings of the Symposium on Research in
Security and Privacy, pp.296-304, May 1990.

[HELM98] Guy Helmer, Johnny S. K. Wong, Vasant Honavar, and Les Miller.
“Intelligent Agents for Intrusion Detection.” Proceedings, IEEE Information Technology
Conference, Syracuse, NY, pp. 121-124, September 1998.
<URL: http://www.cs.iastate.edu/~ghelmer/ieee-1998.ps>

[BACE99] Bace, Becky, “An Introduction to Intrusion Detection and Assessment for
System and Network Security Management,” ICSA, Inc.
<URL: http://www.icsa.net/services/consortia/intrusion/educational_material.shtml>

[JACO99] Jacobs, S., D. Dumas, W. Booth, M. Little, “Security Architecture for
Intelligent Agent Based Vulnerability Analysis,” Proceedings: 3rd Annual Fedlab
Symposium on Advanced Telecommunications/Information Distribution Research
Program, pp. 447-451, February 1999, College Park, MD.

37

[JANS99] Wayne Jansen and Tom Karygiannis, “Mobile Agent Security,” National
Institutes of Standards and Technology, NIST SP 800-19, August 1999.

[JUMPIN] “Jumping Beans Security,” Ad Astra Engineering.
<URL: http://www.jumpingbeans.com/Security.html>

[LANG98] Danny Lange and Mitsuru Oshima, Programming and Deploying Java
Mobile Agents with Aglets, Addison-Wesley, 1998.

[LEE99] W. Lee, S.J. Stolfo, and K. Mok, “A Data Mining Framework for Building
Intrusion Detection Models,” Proceedings of the IEEE Symposium on Security and
Privacy, 1999. <URL: http://www.cs.columbia.edu/~sal/JAM/PROJECT/>

[LUNT88] Teresa F. Lunt and R. Jagannathan, “A Prototype Real-Time Intrusion-
Detection Expert System,” IEEE Symposium on Security and Privacy, April 1988.

[MARR98] Marreale, P., “Agents on the Move,” IEEE Spectrum, April 1998, pp. 34-41.

[MART99] Stefano Martino, “A Mobile Agent Approach to Intrusion Detection,” Joint
Research Centre-Institute for Systems, Informatics and Safety, Italy, June 1999.

[MILL99] Kevin Mills et al., “Wireless Information Technology for the 21st Century,”
Draft White Paper, February 1999.

[NEUM94] B. Clifford Neuman and Theodore Ts'o. “Kerberos: An Authentication
Service for Computer Networks, ” IEEE Communications, 32 (9), pp. 33-38, September
1994. <URL http://nii.isi.edu/publications/kerberos-neuman-tso.html >

[PTAC98] Thomas H. Ptacek and Timothy N. Newsham., “Insertion, Evasion, And
Denial Of Service: Eluding Network Intrusion Detection,” Technical Report, Secure
Networks, Inc., January 1998.
<URL: http://www.nai.com/services/support/whitepapers/security/IDSpaper.pdf >

[SEBR88] Michael M. Sebring et al., “Expert Systems in Intrusion Detection: A Case
Study,” Proceedings, 11th National Computer Security Conference, pp. 74-81, October
1988.

[SMAH88] Stephen E. Smaha, “Haystack: An Intrusion Detection System,” Fourth
Aerospace Computer Security Applications Conference, Orlando Florida, pp. 37-44,
December 1988.

[SMIT88] Jonathan Smith, “A Survey of Process Migration Mechanisms,” Operating
Systems Review, 22(3), ACM Special Interest Group on Operating Systems, pp. 28-40,
July 1988.

38

[TENN97] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David
J. Wetherall, and Gary J. Minden, “A Survey of Active Network Research,” IEEE
Communications Magazine, Vol. 35, No. 1, pp.80-86, January 1997.

[WHIT96] Gregory B. White, Eric A. Fisch, and Udo W. Pooch, “Cooperating Security
Managers: A peer-based intrusion detection system,” IEEE Network, 10(1), pp.20-23,
January/February 1996.

[WU96] Wu, S.F., M. S. Davis, J. N. Hansoty, J. J. Yuill, S. Farthing, J. S. Webster, X.
Hu. “LAVA: Secure Delegation of Mobile Applets,” Technical Report 96/42, Center for
Advanced Computing and Communication, North Carolina State Univ., Raleigh, NC,
October 1996.

39

Appendix A - IDS Operational Environments

This appendix provides a brief overview of the operational environment in which we
foresee the IDS being deployed. An effort is made to take new and emerging
technologies, such as Active Networks and Virtual Private Networks (VPN), into
consideration in order to forecast what networks in the next 5-10 years might look like
and what new challenges may arise. The operational environments for IDSs will have the
following characteristics:

• Network users will continue using combinations of Intranets, the Internet, LANs, and
WANs, to meet their computing needs and these networks will feature much higher
bandwidths, support more applications, rely on intermediate nodes that use more open
source code, and have more diverse network entry points such as cable modems and
wireless devices.

• The use of Virtual Private Networks (VPN) will increase as enterprises begin using
both public and private network segments for their networking needs. VPNs will
make it more difficult for network-based IDSs to gather enough information from the
encrypted network traffic and the IDSs will need to cooperate with host-based
techniques to detect and diagnose suspicious activity.

• Networks will be increasingly segmented within the enterprise, with firewalls or other
technologies limiting access to these network segments, with each segment having
different security policies, and being under different administration domains. MAs
operating within this environment will have different privileges within each domain
and they must be able to negotiate several security policy management issues.

• In order to keep up with the increasing bandwidth of networks, parts of IDSs will be
placed on routers and also be implemented in hardware [AMOR99]. Some attack
signatures are stateless while others require state. The stateful attack signatures
consume the majority of computing resources. Firewall vendors have begun including
stateless IDSs on firewalls and IDSs can now communicate with routers using the
MIB interface so that the IDS can initiate packet filtering responses.

• More and more people around the world will be accessing public networks. This will
result in more sources of attack in which a number of individuals and organizations
can pool distributed resources to attack individual targets. Moreover, automated
network attack toolkits will become easier to use and require less sophistication to
launch.

• System administrators will need to rely on more COTS host-based, network-based,
forensic, and data reduction tools from various vendors. These tools will need to be
interoperable.

40

• Mobile users will be accessing public and private network more often and through a
variety of devices, including notebook computers and Personal Digital Assistants
(PDAs). Wireless devices will allow users and devices to more easily access public
and private networks. The desktop PC will be replaced, or augmented, with clusters
of wireless devices. The simplest such clusters will simply replace all the wires
connecting PCs, monitors, mice, keyboards, speakers, and printers. While these
devices need not be connected directly to the Internet, devices such as speakers may
be able to directly tune in radio broadcasts from the Internet while monitors directly
access video streams without the involvement of the PC [MILL99].

• IDS will have to take into consideration the adoption of security technologies such as
Public Key Certificate Management, Smart Cards, and IPsec.

There are also a number of technologies on the horizon that will probably not be part of
critical computing resources in the near future, but are worth considering in order to get a
feel for how networking technology is emerging and for the direction of current research.
Whether these technologies become successful or are replaced by other technologies
remains to be seen, but they certainly will present an interesting challenge for network
security.

• Wearable computing may be just around the corner. As people move through the
world, the devices they wear or carry can provide their access portal to networked
information, no matter where they roam. Similar visions exist for multi-device
communications in the home and in the automobile. The interaction between such
groups of embedded devices, which might be called "Smart Spaces," and the devices
worn or carried into those spaces by people, could indeed produce a revolution in
networking and computing as we conceive of it today. If "Smart Highways" ever
become real, then the interaction between "Smart Highways", "Smart Cars", and
"Smart Body LANs" could provide useful information, grounded in a relevant context
at our fingertips on a continuous basis [MILL99].

• Pico-cellular wireless systems also offer some new and intriguing possibilities.
Among the nearly 4.5 billion computer chips sold each year in the world,
approximately 4 billion reside within embedded devices, such as microwave ovens,
washing machines, and video cassette players. This trend is expected to accelerate, as
computer chips find their way into more embedded devices, sensors, and actuators,
and also into a growing number of portable and wearable devices expected to appear
on the market over the next decade. To date, these chips, hidden within devices, have
been largely inaccessible because no network capabilities have been included. With
the advent of pico-cellular wireless technologies, such as Bluetooth and HomeRF,
this situation is likely to change. Over the course of time, embedded devices will be
able to communicate with each other, with their users, and with other computers and
services connected to the Internet. These new capabilities should open astounding
opportunities for improved automation in the home, office, and factory, as well as
among mobile professionals [MILL99].

41

• Increasingly people work and live on the move. To support this mobile lifestyle,
especially as work becomes more intensely information-based, companies are
producing various portable and embedded information devices. Consider for example,
PDAs will include embedded devices with high bandwidth, localized wireless
communication capabilities that can also reach the globally wired Internet. A scenario
of small, specialized devices roaming among pockets of wireless connectivity within
a global wired networks is envisaged. Each wireless pocket becomes a "Smart
Space", where available services and embedded devices can be discovered, accessed,
interconnected with portable devices carried onto the island, and then the combination
of imported and native devices can be exploited to support the information needs of
the current network users [MILL99].

• Increasing computer density will allow mobile users to form ad hoc public networks.
A "mobile ad hoc network" is an autonomous system of mobile routers (and
associated hosts) connected by wireless links--the union of which form an arbitrary
graph. The routers are free to move randomly and organize themselves arbitrarily;
thus, the network's wireless topology may change rapidly and unpredictably. Such a
network may operate in a standalone fashion, or may be connected to the larger
Internet. [http://www.ietf.org/html.charters/manet-charter.html]

• Active networks are a novel approach to network architecture in which the switches
of the network perform customized computations on the messages flowing through
them. Active networks make use of intelligent packets that are no longer just data
bits, but contain mobile code that allows for the active participation in routing, fault-
tolerance, and quality of service decisions. This approach is motivated by both user
applications, which perform user-driven computation at nodes within the network
today, and the emergence of mobile code technologies that make dynamic network
service innovation attainable. Active networks permit a significant improvement in
the sophistication of the computation that is performed within the network. They will
enable new applications, especially those based on application-specific multicast,
information fusion, and other services that leverage network-based computation and
storage. Furthermore, they will accelerate the pace of innovation by decoupling
network services from the underlying hardware and allowing new services to be
loaded into the infrastructure on demand [TENN97].

42

Appendix B - Architectural Issues

The first generation of intrusion detection systems followed a simple two component
architecture: collection component and analyzer component. The collection component
gleans information either from audit logs and internal interfaces at the host [SMAH88,
LUNT88, SEBR88] or from monitoring packets on attached networks [HEBE90]. That
information then feeds into a centralized analysis component, which employs one or
more different detection techniques. The two logical components are either collocated at
a single host or physically distributed. While this architecture is effective for small
collections of monitored hosts, centralized analysis limits the ability to scale up to handle
larger collections. Subsequent generations of IDSs address scalability mainly by
introducing intermediate components between the collection and analysis components to
form a hierarchy. This appendix provides a brief overview of the architectural and design
issues associated with hierarchically structured IDSs when compared with network
architectures, and how mobile agent technology applies to both.

Hierarchical Organization

A hierarchical architecture follows a tree structure with command and control
components at the top, information aggregation units at the internal nodes, and
operational units at the leaf nodes. The operational units can be network-based IDSs,
host-based IDSs, virus checkers, and attack response systems. Figure 1 illustrates this
architecture, which is followed by nearly all present day commercial IDSs. The circles
denote individual nodes within a network and the arrows indicate information flow
between different types of nodes.

Command and Control Nodes

Aggregation Nodes

Collection Nodes

Figure 1: Hierarchical Intrusion Detection Architecture

Information gathering occurs at the leaf nodes. That information is passed to an internal
node that aggregates information from multiple leaf nodes. Further aggregation,
abstraction, and data reduction occurs at higher internal nodes until the root is reached.
The root is a command and control system that evaluates attack situations and often
issues responses. The root usually reports to human user consoles that can manually issue
responses and evaluate the network.

43

Hierarchical structures result in efficient communications, whereby refined information
filters upward in the hierarchy and control downward. The architecture is excellent for
creating scalable distributed IDSs with central points of administration. These structures
are, however, somewhat rigid in nature because of the precise function and lines of
communication that tend to become associated with their components.

Network Organization

In contrast to a hierarchical architecture, a network architecture permits information flow
from any node to any other node. Therefore, networked structures tend to suffer from
inefficiency in communications, because of the unconstrained communication flow (i.e.,
everyone trying to communicate with everyone else). They do, however, compensate for
communications inefficiency with flexibility in function. At least one IDS, Cooperating
Security Managers [WHIT96], uses this architecture by consolidating the collection,
aggregation, and command and control functions into a single component residing on
every monitored system. Any significant events occurring at one system that stem from a
connection originating at another are reported back to the system manager of the
originating system by the security manager at the system where the event occurred. In
situations where the originating system of the connection is an intermediate node in a
communication chain, the system manager is obliged to report onward to the next system
manager in the chain.

Implicitly IDS components tend toward a hierarchy, however, the tendency is not strict,
since communications can occur, in general, between any type of components and not
strictly on a one-to-one or master/slave basis. For example a collection unit may directly
communicate a critical event to command and control unit, rather than through an
aggregation node. Moreover, peer relationships among command and control nodes are
appropriate where different administrations manage portions of an enterprise network or
distinct and separate networks [FRIN98].

As a way of incorporating the best characteristics of hierarchical and network
architectures, a hybrid model can be used. A hybrid model follows a network
architecture. It has no distinct root, yet retains an overall hierarchical structure, and
allows the flexibility for components to communicate outside the strict hierarchy, where
useful. Figure 2 gives an example of this architecture, which illustrates peer relationship
among command and control components, direct communication between collection units
and a command and control unit (e.g., an event trigger), and redundant communication
between an aggregation unit and command and control unit (e.g., for fault tolerance).

With mobile agents, the collection nodes, aggregation nodes, and command and control
nodes do not have to be continuously resident on a physical machine. That is, a mobile
agent may function as an aggregation node and move to whatever physical location in the
network is best for its purposes. In fact, a mobile agent architecture offers an additional
refinement on this idea. - the agents may be different for different functions. For
example, there may be a hierarchy of mobile agents dedicated to detecting and
responding to viruses. The aggregation and command and control nodes required for

44

virus detection might be totally different mobile agents than those required for, say,
insider auditing. Thus, many hierarchies of agents may exist, each looking for different
attacks and each processing data differently.

Command and Control Nodes

Aggregation Nodes

Collection Nodes

Figure 2: Hybrid Intrusion Detection Architecture

Framework for Intrusion Detection

The Common Intrusion Detection Framework [CIDF] provides a useful perspective for
understanding and discussing the features and components found in any IDS. The CIDF
defines the following generic types of components:

• Event Generators - audit data filters, burglar alarms, or other sensors used to obtain
events from the computational environment.

• Analyzers - components such as an event filter, an attack signature detector, a
statistical event profiler, or an event correlator, used to obtain intrusion detection
information (IDI) from other components, analyze them, and return new IDI. IDI
includes events that occurred in the system, analysis of those events, prescriptions to
be carried out, or queries about events.

• Databases - components that perform no processing of or changes to the information
they retain, but simply represent persistent storage of IDI.

• Response Units - components that carry out prescriptions from other components.
Prescriptions are requests, such as killing processes or resetting connections,
instructing response units to act on behalf of other components.

• Matchmaker Units – components that provides the configuration and directory
services which link other components together. A matchmaker allows components to
locate collaborating components either by name or by service.

Components may be organized in either hierarchical, network, or hybrid structures.
Components may also support either a push or pull style of interface. The former refers to
the production of IDI spontaneously by the component, while the latter refers to IDI
produced in response to a request or query. Some components may also be further

45

decomposed. For example, an analyzer may be realized by two distinct components: an
inference agent, which deduces intrusions, and a decision or planning agent, which
formulates responses. Similarly, one or more components may be combined together and
collocated at the same node. However, the initial types of components defined are
adequate to capture the essential features of an IDS.

Any of the CIDF components can be represented as a mobile agent. However, some
components are better suited if they remain stationary and may be designated as static
agents. For example, an agent wrapper applied to a database management system could
implement the CIDF database component. This pragmatic approach allows both the
software agent paradigm to be maintained and the design to apply mobility where
appropriate. It is also unlikely that, in practice, full mobility of all components would
ever be effective. The following paragraphs describe some of the benefits and drawbacks
of using mobile agents for common IDS components.

• Network Traffic Sensors: Keeping up with increasing network traffic seems to be
becoming the job of the kernel or special purpose hardware. A mobile network traffic
sensor, if it ever could keep up with network traffic, would lose information when it
packs up and goes to another machine. The mobile agent wouldn’t be well suited to
directly monitor network traffic, but only data provided by the network sensor to the
data analyzers.

• Host Based Sensors: Mobile agents could go to hosts (e.g., workstations, firewalls,
routers, etc.) to collect information that is not available on the wire. Where they go
can be in response to the analysis of audit data filters or the triggering of network trip
wires.

• Analyzers: Analyzer agents process audit logs, correlate data from distributed
network traffic monitors and process data gathered by network sensors. As new
attacks are recognized or new patterns of suspicious activity are recognized, the
analyzers must be upgraded while others removed as they are no longer useful.
Analyzer agents can perform specialized data searches that aren’t supported by the
host platform on which the data resides.

• Responders: Mobile agents are well-suited to serve in the capacity of responder
agents. These agents can travel through the network to reconfigure the network
especially useful for thin clients that do not possess the functionality required to make
decisions and carry out the administrative changes.

• Coordinators: Agents with the ability to decompose and solve problems in a
collaborative fashion have been developed successfully by the intelligent agent
community for a number of domains. Agents observe, reason, interact with other
agents, and execute actions concurrently with other agents. Interactions may convey
facts or beliefs via an agent communication language and may depend on ontologies
to reach a common understanding.

46

The various scenarios raise the question, how these various characteristics can be
integrated under a single MAIDS framework or design? This question will need to be
addressed, either implicitly or explicitly, because of the value such a perspective has in
constructing any MAIDS implementation.

Design Tradeoffs

In principle, mobile agent technology allows a node to taken on any of the various
functions of an IDS. While mobility is an important focus of our project, when
developing a design or performing a reification of the model for a specific network
configuration, some components may be bound to a specific device as a static agent or
restricted to a set of devices, when and where appropriate. Such engineering tradeoffs are
common in the design of any IDS, and motivated by a number of factors including:

• Trust relationships among platforms,
• Platform performance considerations, and
• Physical location of a platform

For example, it might be reasonable to relegate a few platforms with dedicated
communications among them, exclusively for use by the IDS. This action would ensure
that critical communications and processing of IDSs is not affected by the overall
workload on the system, and similarly that the IDS processing has a negligible impact on
the system workload. Moreover, these platforms could implement a high standard of
security and be hardened against penetrations to ensure a stable baseline for critical
processes. In this example, confining critical or high consumption processes to a set of
dedicated platforms is a tradeoff of mobility for performance and assurance.

An important aspect is to ensure that the introduction of mobility maintains a comparable
or improved level of assurance and performance in the design. For example, [FRIN98]
points out that within classical hierarchical IDSs, trust relationships are strong in the
downward directions (i.e., subordinates trust superiors), but weaker in the reverse (i.e.,
superiors don’t trust subordinates). This is due to the fact that critical components, high
up in the hierarchy reside on hardened systems, which are resistant to attacks. The notion
of making every IDS node a mobile agent platform to which any agent component could
visit would obviously weaken the original trust relationships, unless all of the platforms
were hardened to the highest level. However, as long as the agents move among hosts
within the same security domain and each security domain places the agent under the
same security policy, granting or denying the same privileges it had on its previous
platform, security concerns do not adversely affect mobile agents' ability to dynamically
adapt to the execution environment.

