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Applying Multigroup Confirmatory
Factor Models for Continuous Outcomes

to Likert Scale Data Complicates
Meaningful Group Comparisons

Gitta H. Lubke
Virginia Commonwealth University

Bengt O. Muthén
University of California, Los Angeles

Treating Likert rating scale data as continuous outcomes in confirmatory factor anal-
ysis violates the assumption of multivariate normality. Given certain requirements
pertaining to the number of categories, skewness, size of the factor loadings, and so
forth, it seems nevertheless possible to recover true parameter values if the data stem
from a single homogeneous population. It is shown that, in a multigroup context, an
analysis of Likert data under the assumption of multivariate normality may distort the
factor structure differently across groups. In that case, investigations of measurement
invariance (MI), which are necessary for meaningful group comparisons, are prob-
lematic. Analyzing subscale scores computed from Likert items does not seem to
solve the problem.

Questionnaires designed to measure latent variables such as personality factors or
attitudes typically use Likert scales as a response format for the individual items.
In response to statements such as “Does the student yell at others?” participants are
asked to choose one of a given number of ordered response categories running for
instance from almost never to almost always. Data arising from Likert-type items
are often analyzed as multivariate normal outcomes, although the data are ordered
categorical (Muthén & Kaplan, 1985). This article focuses on multigroup confir-
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matory factor analysis of ordered categorical outcomes while incorrectly assuming
multivariate normality of the data. Results from robustness studies in a single ho-
mogenous population concerning the analysis of Likert data while violating the
normality assumption do not necessarily carry over to the multiple group situation,
and group comparisons may have problems in addition to those encountered in sin-
gle populations.

The multigroup confirmatory factor model is suitable to compare groups with
respect to the latent variables underlying the individual items (Sörbom, 1974). In
the analysis of longitudinal data a special type of factor model called growth curve
model can be used to compare groups with respect to average latent growth trajec-
tories (McArdle & Epstein, 1987; Muthén, 2001b). Although multigroup confir-
matory factor models exist both for continuous outcomes and for ordered categori-
cal outcomes, in practice the model for continuous outcomes is often applied to
categorical outcomes. The commonly used maximum likelihood estimation of the
model for continuous outcomes is based on the assumption of multivariate normal-
ity of the observed data, which is violated in case the outcomes are Likert scale
data. The violation of the multivariate normality assumption may have especially
serious consequences if groups are to be compared with respect to the factors a
given test or questionnaire is designed to measure. To render these group compari-
sons meaningful, it is necessary to investigate MI (Meredith, 1993).

A test is measurement invariant if test takers belonging to different groups, who
have the same score on the factor underlying the test, have on average the same
score on an observed item. In other words, the distribution of observed scores con-
ditional on the factor scores is the same for all groups (Mellenbergh, 1989). In the
context of the factor model, this implies that the regression relations between ob-
served items and underlying factors as specified by a given multigroup factor
model have to be the same across groups (Meredith, 1993). In case of multivariate
normal data, the parameters of interest are regression intercepts, factor loadings,
and residual variances. If these parameters are known to be invariant across
groups, the distribution of observed scores conditional on the factor scores is the
same across groups, and groups may differ only with respect to the means and
covariances of the factors. In case of ordered categorical data, the set of parameters
required to be group invariant is different.

There are two approaches to model ordered categorical outcomes. One ap-
proach is an extension of the factor model for continuous data. The continuous out-
comes are now assumed to be unobserved (e.g., latent response variables). A re-
sponse category is chosen above a lower category if the latent response variable
exceeds a certain threshold (Agresti, 1990; Jöreskog & Moustaki, 2001; Muthén,
1984). The thresholds are usually not known, that is, they are latent. In the other
approach, the probability of choosing a certain response category conditional on
the factor score is modeled directly (Agresti, 1990; Jöreskog & Moustaki, 2001;
Muthén & Asparouhov, 2002). Independent of which of the two approaches is used
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to model the relation of observed ordered categorical data to the underlying fac-
tors, the set of parameters that has to be group invariant for MI to hold includes the
latent thresholds. Hence, the requirements for MI are different for multivariate
normal data and ordered categorical outcomes.

In this study, it is investigated by means of simulated data whether tests of MI
across groups (Dolan, 2000; Lubke, Dolan, Kelderman, & Mellenbergh, 2002)
lead to meaningful results if the ordinal character of the data is ignored. When ana-
lyzing categorical data with models for continuous outcomes, the thresholds be-
tween categories are not estimated. Threshold differences between groups indicate
that groups use a given Likert scale in a group-specific way and are a violation of
MI (Millsap & Tein, 2003), whereas threshold differences between the observed
indicators of a factor do not violate MI. A multigroup factor model for continuous
outcomes restricted to represent MI may be rejected because of several different
causes. First, the MI model may not fit adequately because threshold differences
between groups are mistaken as structural differences between groups. This would
lead to the correct conclusion that MI is violated. Second, the MI model may be re-
jected because threshold differences between observed indicators can lead to a dis-
torted factor structure or because indexes of goodness of fit based on the assump-
tion of normally distributed data do not work properly. The latter two cases would
lead a researcher to believe that MI is violated when in fact it is not.

A substantial number of studies have focused on the robustness of factor analy-
sis models with respect to nonnormality induced by ordered categorical outcomes
(e.g., Bernstein & Teng, 1989; Dolan, 1994; Hoogland, 1999; Olsson, 1978, 1979).
On the one hand, the studies show that small numbers of response categories, dif-
ferent thresholds across items, skewness, and high reliability of the items can all
lead to distorted results. The distortion may result in the need for additional factors
(e.g., difficulty factors; Bernstein & Teng, 1989; Carroll, 1945; Gorsuch, 1983),
biased estimates of factor loadings, and inflated chi-square test statistics (Dolan,
1994). On the other hand, it has also been shown that given a sufficiently large
number of response categories (at least seven), absence of skewness, and equal
thresholds across items, it seems possible to obtain reasonable results (Dolan,
1994; Olsson, 1979). However, all these results concern data arising from a single,
homogenous population and are, therefore, limited to the analysis of covariances
of correlations. The results do not necessarily carry over to data arising from multi-
ple groups. First, when comparing groups, the model of interest usually comprises
a model for the means in addition to a model for the covariances. The two parts of
the model are estimated simultaneously. Estimating regression intercepts and fac-
tor mean differences between groups may reveal additional distortions. Second, if
data arise from a single homogenous population all possible response categories
will be observed in a reasonably large sample. However, in data arising from a
heterogenous population, not all response categories may be observable within all
groups. If the groups are well separated with respect to their means, only the lower
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categories may be observed in the group with the lower mean values. Hence, rules
of the thumb with respect to the number of response categories required to obtain
reasonable results may depend on the separation of the groups or classes. Third,
group-specific thresholds can result in item distributions that differ across groups
with respect to skewness even if the underlying factor is normally distributed in all
groups.

In sum, the question arises to what extent groups can be compared in a mean-
ingful way when assuming multivariate normality for Likert scale data. Distorted
factor structures across items, or inadequate functioning of fit indexes based on
multivariate normality of the data may lead a researcher to conclude that MI is ab-
sent when in fact it is not. Given the frequency with which Likert data are in prac-
tice analyzed with factor models for continuous outcomes, it is of interest to inves-
tigate the extent to which this practice leads to incorrect conclusions.

The multigroup models considered in this article are a single factor model
and a linear growth model. The interest is to investigate through a simulation
study whether MI is falsely rejected if the categorical character of the observed
data is ignored. The simulation mirrors an empirical situation in which a re-
searcher analyses categorical data with multigroup models for continuous out-
comes and relies on measures of goodness of fit and parameter estimates ob-
tained through normal theory maximum likelihood estimation. As mentioned
previously, there are two approaches to generate categorical data. Although basic
models corresponding to the two approaches are equivalent in terms of relating
the observed scores to the underlying factors (Agresti, 1990; Muthén &
Asparouhov, 2002), for our purpose the more convenient model is the extension
of the factor model for continuous data in which an observed categorical re-
sponse is related to the underlying factor(s) via a latent continuous response
variable. We generate multivariate normal outcomes using a measurement invari-
ant multigroup model and then categorize these data in different ways. The re-
sulting categorized data are analyzed with measurement invariant multigroup
models, and rejection rates, coverage of parameters of interest, and reliability of
the observed indicators are computed.

We focus on the following issues. First, the number of response categories is in-
vestigated. Data are categorized with 5, 7, and 10 response categories. Second, the
effect of the separation of groups is investigated. As mentioned previously, a larger
separation may have a detrimental effect. Third, we vary the reliability of observed
variables. On the one hand, high reliability is a positive quality; on the other hand,
it might result in an increased power to reject a measurement invariant model be-
cause of the violation of the normality assumption. Fourth, we investigate the ef-
fect of threshold inequality across items. Threshold equality across items may be
rather unlikely in practice. In the context of growth models, threshold differences
across indicators are in fact threshold differences across time. The fifth and final is-
sue is threshold inequality across groups.
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Considering that analyzing Likert scale data with models for continuous data
may be problematic, one might be tempted to compute sum or average scores for
small subsets of items, and one might factor analyze the resulting, more continu-
ous looking subscale scores instead of the individual item scores. Using the growth
model as a data-generating model, it is also investigated whether averaging over
different numbers of Likert items leads to improved results.

MODELS

The models used in this study have been broadly covered in the literature; there-
fore, their presentation in this article is brief. We first describe the confirmatory
factor model for continuous outcomes in a single, homogenous population. The
single population model is then extended to be applied to a heterogenous popula-
tion consisting of a finite number of groups. A factor model is specified within
each of the groups (Sörbom, 1974). Next, the linear growth model is described,
which is a special case of the confirmatory factor model (Muthén, 2001a). The pre-
sentation of the models for continuous outcomes is followed by an outline of a fac-
tor model for ordered categorical outcomes (Jöreskog & Moustaki, 2001; Muthén
& Muthén, 2001). Some attention is directed to the thresholds to illustrate their im-
portance for the distribution of observed categorical scores. The section concludes
with an explanation of the concept of MI in the context of the confirmatory factor
model (Lubke et al., 2002; Meredith, 1993).

Confirmatory Factor Model for Continuous Outcomes:
Single Population

The confirmatory factor model is a linear regression model in which a number of ob-
served indicators are regressed on a smaller number of underlying latent variables
calledfactors.Whenapplied toasinglepopulation,weassumewithout lossofgener-
ality that all factor means are zero. Say, we have I participants, J observed indicators,
and L factors, then the score of participant i on item j can be denoted as follows:

where yij is the score of participant i on indicator Yj, λjl is the regression slope of the
regression of Yj on the factor score ηl and is called factor loading, and εij is the re-
sidual score of participant i on indicator Yj. The covariance matrix of the indica-
tors, Σ, can be expressed as

Σ = ΛΨΛ′ + Θ (2)
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where Λ is the matrix of factor loadings, Ψ is the covariance matrix of factor
scores, and Θ is the covariance matrix of the residual scores. Basically, the scores
on the observed indicators are broken down into factor scores multiplied with the
factor loadings and residual scores. Factor scores and residual scores are assumed
to be uncorrelated, and the residual scores of different indicators are assumed to be
uncorrelated. The factor loadings and factor covariance matrix account for the
common content of the observed variables. The elements of the three matrices Λ,
Ψ, and Θ are the parameters of the model and are in practice estimated from the
covariance matrix of observed variables Σ. Methods to ensure that model parame-
ters are uniquely defined are discussed in Bollen (1989).

Confirmatory Factor Model for Continuous Outcomes:
Multiples Groups

The multigroup confirmatory factor model comprises a model for the means in ad-
dition to the model for the covariances described previously. For each of the
groups, these two parts of the model are specified. The two parts of the model are
then estimated simultaneously for all groups.

The observed score of participant i on item j where participant i is member of
group g, g = 1,…,G, is

The model for the means and the covariances for group g, can be represented as

µg = νg + Λgαg (4)

Σg = ΛgΨgΛg′ + Θg (5)

In the single population model, the model parameters contained in the matrices Λ,
Ψ, and Θ were used to impose a structure on the observed covariance matrix. In ad-
dition to these parameters, we now have regression intercepts ν and the factor
means αg to impose a structure on the observed means µ. The regression intercepts
have to be equal across groups (i.e., νg = ν) . Furthermore, the factor means are
fixed to zero in one of the groups. Here, we arbitrarily choose the first group such
that µ1 = ν. As a consequence, the elements of the vector αg represent factor mean
differences with respect to the first group.

The simultaneous estimation of the mean and the covariance model across
groups offers the possibility to (a) restrict parameters to be equal across groups and
(b) compare groups with respect to their factor means. Both are key issues in the
context of MI (see later).
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Linear Growth Curve Model

The linear growth curve model is a special case of a two-factor model. Consider a
model with a single continuous indicator at each time point. The linear growth
model can be specified as a single population model (G = 1), with the understand-
ing that the observed outcomes, Y in Equation 1, now correspond to one indicator
measured at different time points, and that the observed covariances, Σ in Equation
3, are the (co)variances of this indicator across time points. The linear growth
curve model can be specified as a multigroup model using Equations 3 through 5.

The idea is to determine the average linear growth over time of each of the
groups or classes to which the model is applied. Each participant within a group is
assumed to follow an individual linear growth curve with a participant-specific in-
tercept and slope. In the linear growth curve model, the intercept and the slope are
represented by two factors. The factor scores on these two factors are the partici-
pant-specific intercept and slope and the means of the factors represent the average
intercept and slope within a group. Using the linear growth model one can, there-
fore, estimate the average growth trajectories within group. In the simulation study
presented later, we use the simplest case of the linear growth model in which all
factor loadings are fixed. The loadings of the indicator on the intercept factor are
fixed to one for all time points. The loadings on the slope factor represent the dis-
tances between time points and are fixed to 0, 1,…, T – 1 for T equally spaced time
points. By fixing the loading on the slope factor to zero at the first time point, the
intercept factor represents the participants’ initial status. Let a and b indicate the
intercept and slope factor, respectively. The linear growth model with a single indi-
cator measured at four time points can be denoted for participant i in group g as

y1i = ai + ε1i (6)

y2i = ai + 1 bi+ ε2i (7)

y3i = ai + 2 bi + ε3i (8)

y4i = ai + 3 bi + ε4i (9)

The model for the covariances and the means of the linear growth curve model are
similar to Equations 4 and 5:

µg = Λαg (10)

Σg = ΛΨgΛ′ + Θ (11)

with the difference that here the regression intercepts, ν in Equation 4, are here
fixed to zero for all participants such that we can estimate the means of both factors
in all groups. We have limited our description to the case of a single continuous in-
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dicator, which is measured at each time point, although the model can be easily ex-
tended to more than one indicator. To accommodate for multiple time point indica-
tors, a factor model is specified at each time point. Denote the factors of the model
at a given time point as ξ. The difference with a single indicator per time point is
that now, the factor scores ξ are regressed on a and b instead of regressing the ob-
served single indicator on a and b. Hence, average growth curves of ξ are modeled.
For an introduction to this specification of the growth model, the reader is referred
to Muthén (2001b).

Ordered Categorical Outcomes With Underlying
Confirmatory Factor Model

There is a variety of latent variable models for ordered categorical variables
(Agresti, 1990; Jöreskog & Moustaki, 2001). Two different ways to derive latent
variable models for ordered categorical variables can be distinguished. First, the
conditional probability of choosing a response category given the score on the
latent variable is modeled directly. A variety of item response models for poly-
tomous outcomes fall into this category. The second approach is an extension of
the confirmatory factor models for continuous outcomes, which we described in
the previous section. The continuous outcomes are not observed and are called
the latent response variable. A respondent chooses a response category above a
lower category if the latent response variable exceeds a threshold. The two ap-
proaches emphasize different sets of parameters. Equivalences between parame-
ters of a simple model derived via the first approach and the latent response vari-
able model are shown in Agresti (1990) and Muthén and Asparouhov (2002).
The interest of our study is in showing the effects of fitting multigroup models
for continuous outcomes to categorical data. The latent response variable model
is the most convenient choice, because we can generate multivariate normally
distributed latent response variables with a multigroup factor model that repre-
sents MI (see later) and categorize these data in a second step. If fitting models
for continuous outcomes to categorical data is unproblematic, then fitting the
model that generated the latent response variables to the categorical outcomes
would result in an acceptable model fit, and conclusions with respect to tenabil-
ity of MI would be correct. Deviations from such results can demonstrate the
problems at hand.

We indicate the observed categorized outcome as Y and the latent response vari-
able as Y*. The model can be conceptualized as follows. Suppose test takers re-
spond to an item of an attitude test. The attitude (i.e., the factor scores) is assumed
to be measured on a continuous scale. The same holds for the unobserved re-
sponses to the item Y*. Due to the response format of the item, a test taker has to
choose one of several possible response categories. Hence, the observed outcome
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Y is ordered categorical. More formally, the model for participant i on item j can be
represented as follows:

The first part of the model is equal to Equation 1 with the only difference that the
continuous outcome variable denoted as Y* is not observed. The thresholds τ parti-
tion the range of Y* into C categories, where C = 1, …, c. The thresholds are there-
fore ordered, τ0 < τ1 < …,τc, where τ0 and τc equal –∞ and +∞, respectively. The
lowest category lies between –∞ and τ1, and the observed outcome Y falls in that
category, if Y* is smaller than τ1.

In case of a single homogenous population, the distribution of the unobserved
continuous outcome Y* may be reasonably well reproduced by the categorical Y,
if thresholds partition the range of Y* into equidistant categories and if the num-
ber of categories is adequate (e.g., ≥7; see Dolan, 1994). This situation is de-
picted in the upper panel of Figure 1. The situation may be different in case the
range of Y* is not partitioned into intervals of equal length. The situation can
also be different in case of several groups. The observed frequencies of the
higher response categories may approach zero in the group with the lowest mean
and vice versa. In other words, the number of observed response categories
within each group may be smaller than the number of possible response catego-
ries of a given item (see shaded areas in the lower two panels of Figure 1 that
represent the frequencies in the highest scoring group). The number of observed
response categories within groups tends to be smaller with increasing separation
of subpopulations (compare the middle and lower panel of Figure 1). In addi-
tion, skewness of Y within a group depends on the localization of the distribution
of Y* with respect to the thresholds.

In the lower two panels of Figure 1, the thresholds not only are equidistant but
also are identical for all three subpopulations. Suppose that thresholds are not
equidistant, that thresholds are not equal across groups or across items (i.e., time
points in case of the growth model), or both. These conditions may all lead to a dis-
tortion of the estimated factor structure that relates Y* to the factor scores η if Y is
analyzed with models for continuous outcomes that neglects the thresholds.

Such a distortion of the factor structure may be especially critical if a study aims
at comparing groups or classes with respect to the factors rather than with respect
to the observed variables. These comparisons are only valid if it can be shown that
the observed variables are measurement invariant, meaning that observed variables
measure the same factors across groups or classes. Tests of MI may indicate a vio-

522 LUBKE AND MUTHÉN

*

1

*1

(12)

if . (13)

L

jl il ijij
l

ij c cij

y

y c y

λ η ε

τ τ

�

�

� �

� � �

�

D
ow

nl
oa

de
d 

by
 [

V
ri

je
 U

ni
ve

rs
ite

it 
A

m
st

er
da

m
] 

at
 1

9:
01

 0
6 

M
ar

ch
 2

01
2 



523

FIGURE 1 Single versus multiple subpopulations and separation.
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lation of MI even if the unobserved continuous outcomes Y* are measurement in-
variant across groups because the factor structure in the observed ordered categor-
ical data Y is distorted in a subpopulation specific way.

Measurement Invariance (MI)

The theoretical foundation of MI in the context of the confirmatory factor model is
mainly due to Meredith (1964, 1993). It has been defined in a more general context
by Mellenbergh (1989) as

f (Y | η, s) = f (Y | η) (14)

Equation 14 shows that, given the factor score, the probability distribution of ob-
served scores does not depend on subpopulation membership. Suppose a factor
represents a certain attitude. MI means that, given the level of attitude, group or
class membership has no additional effect on the observed scores of the attitude
test. Groups or classes may differ only with respect to the means and (co)variances
of the attitude factor(s).

MI is a hypothesis that can be tested using the multigroup confirmatory factor
model (Meredith, 1993; for an application see Dolan, 2000). Meredith has shown
that a factor model with intercepts, factor loadings, and residual variances re-
stricted to be equal across groups or classes represents MI.1 One strategy to test MI
is to compare the fit of the fully restricted model (e.g., a model with intercepts,
loadings, and residual variances held equal across groups) to the fit of a less re-
stricted model in a likelihood ratio test. A significant increase in model fit when re-
laxing the MI restrictions is an indication that the questionnaire is not invariant
across groups. In this way, testing MI may provide useful information concerning
which of the observed questionnaire items is violating MI.

Another possibility is to fit the restricted model and evaluate measures of good-
ness of fit. In the simulation study, we use the second option.

SIMULATION STUDY

The general approach in the simulation study is to generate multivariate normal la-
tent response variables Y* under a measurement invariant multigroup confirma-
tory factor model, categorize the data, and fit the model that generated the latent re-
sponse variables to the ordinal categorical outcomes. The measurement invariant
model, although true for the continuous latent response variables, might be re-
jected when fitted to the categorical data because the factor structure may be dis-

524 LUBKE AND MUTHÉN

1For some rather far-fetched exceptions see Meredith (1993) or Lubke et al. (2002).

D
ow

nl
oa

de
d 

by
 [

V
ri

je
 U

ni
ve

rs
ite

it 
A

m
st

er
da

m
] 

at
 1

9:
01

 0
6 

M
ar

ch
 2

01
2 



torted differentially across groups or classes. We evaluate under which conditions
MI would be falsely rejected if the decision is based on commonly used measures
of goodness of fit. The measures of goodness of fit examined in this study are
based on the assumption of multivariate normally distributed data and hence not
adequate for categorical outcomes. However, researchers who treat categorical
outcomes as if they were normally distributed would rely on these fit indexes. Our
aim is to show under which conditions reliance on these fit measures leads to in-
correct conclusions if the normality assumption is violated.

We use only a small number of different data-generating models. The aim of
the simulation is not to quantify the effects of violating the normality assump-
tion for different models. Instead, we aim at illustrating that there is a large num-
ber of characteristics of the data that may result in a distortion of the factor
structure if factor models for continuous data are fitted to ordered categorical
outcomes. By including the data characteristics as design factors in the simula-
tion, we can show that certain combinations may be detrimental to a meaningful
investigation of MI. We investigate three different ways of categorization
(threshold schemes; see later), different numbers of response categories (5-, 7-,
and 10-point items), two levels of reliability of observed data, two levels of
group separation with respect to their factor means, and different total sample
sizes (N = 300, N = 500, N = 1,000, and N = 3,000). Measurement invariant sin-
gle factor models and linear growth models are used to generate the continuous
Y* data. The continuous data are categorized using different threshold schemes.
The models that generated the continuous data are fitted to the categorized data.
We also fit models for categorical outcomes to provide an indication of the re-
sults of fitting the correct model for categorical data. This is done only for the
categorized linear growth data with time-invariant and time-varying thresholds
due to current software limitations.2 All simulations are carried out using the
Monte Carlo feature in Mplus 2.1 (Muthén & Muthén, 2002) if not mentioned
otherwise. We report observed rejection rates at an expected 0.05 level and the
coverage of parameters of interest.

Although we have carried out all meaningful combinations of the different lev-
els of the design factors of our simulation study, the results of only some of the
combinations are presented later in an attempt to avoid redundancy. The design
factors and their levels are presented in Table 1. More specific explications are
given in the next two paragraphs. The remainder of the section is divided in three
parts covering the single factor model, the linear growth multigroup model, and the
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2The current version of Mplus requires all response categories to be observed in all groups. In the
part of the simulation involving the single factor model, our aim is to show the effects of separation of
groups, which means that low-response categories are not necessarily observed in a high-scoring group
and vice versa. In addition, it is currently not possible to generate data with group-varying thresholds.
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analysis of subscales created by averaging across multiple categorical items at
each time point.

For each data type, 100 replications are generated that differ with respect to the
factor scores and residual scores. Multivariate normal data are generated for three
subpopulations throughout. Subpopulation sample sizes for total N = 300 are 100
for all three groups; for total N = 500 they are 100, 200, and 200; for total N = 1,000
they are 300, 300, and 400; and for N = 3000 they are again equal. All models for
the continuous data are measurement invariant because the three subpopulations
differ only with respect to the factor mean(s) and variances. The multivariate nor-
mal data are then categorized using three different schemes: (a) invariant indicator
(or time point in the growth model) and invariant subpopulation thresholds (IT/IS),
(b) variant indicator (time point) and invariant subpopulation thresholds (VT/IS),
and (c) invariant indicator (time point) and variant subpopulation thresholds
(IT/VS). Time-varying thresholds means that the observed variable is not measure-
ment invariant over time. Group-varying thresholds represent a violation of MI
across groups because the distribution of observed (ordered categorical) variables
given the factor scores depends also on the thresholds and is therefore not the same
for all subpopulations.

The different categorization schemes are carried out as follows. The continuous
data generated by the single factor and the linear growth model, respectively, are
categorized into 5-, 7-, and 10-point scale data. To obtain invariant indicator
thresholds (or time invariant thresholds in case of the growth model), the average
range of the continuous indicators taken over the whole sample (i.e., not separately
per subpopulation) is divided into intervals of equal length. The number of inter-
vals equals the number of response categories. The thresholds that separate the in-
tervals are held constant across indicators (time points) when allocating a continu-
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TABLE 1
Simulation Design: Manipulations of Data Characteristics

and Type of Fitted Model

Data Characteristics Fitted Models

Reliability: moderate (.55), good (.85) SFMcont
Separation: moderate (1 SD), large (2 SD) SFMcont
Threshold scheme: IT/IS, VT/IS, IT/VS SFMcont (IT/IS, VT/IS)

LGMcont (IT/IS,VT/IS, IT/VS)
LGMcat (IT/IS, VT/IS)

Number of categories: 5, 7, 10 LGMcont and LGMcat
Total sample size: 300, 500, 1,000, 3,000 SFMcont

Note. SFM = single factor model for continuous data; LGMcont = linear growth model for contin-
uous data; LGMcat = linear growth model for categorical data; IT/IS = invariant time or item/invariant
subpopulation; VT/IS = variant time or item/invariant subpopulation; IT/VS = invariant time/variant
subpopulation.
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ous outcome to one of the categories using Equation 7. To obtain subpopulation
invariant thresholds, the intervals and thresholds are held constant across
subpopulations. Indicator-varying thresholds in the single factor model are ob-
tained by shifting the thresholds linearly to the left for three of the five items and to
the right for the other two (for details, see later). Time-varying threshold for the
linear growth model correspond to slightly varying thresholds across the four time
points, and group-varying thresholds mirror a low-, a medium-, and a high-scoring
group (for details, see later).

Single Factor Model for Multiple Groups

Continuous data are generated for a single factor model with five indicators. The
data are analyzed with a multigroup model for continuous outcomes. The single
factor model is used to investigate the effects of (a) separation of groups, (b)
average reliability of indicators.3 (c) indicator invariant thresholds versus indica-
tor-varying thresholds, and (d) sample size. Thresholds are group invariant
throughout.

The continuous data are categorized in 5, 7, and 10 categories. Separation of
groups refers to factor mean differences that equal 0, 1, –1 and 0, 2, –2 in the three
groups in the continuous data. Factor variances equal 1 in all groups. Hence, stan-
dardized factor mean differences are 1 and 2 SDs between groups for the two levels
of group separation. Average reliability of the indicators in the continuous data is
0.45 or 0.8. Invariant thresholds are obtained as described previously. The indica-
tor-varying thresholds are obtained by subtracting a constant from the thresholds
of two indicators and adding the same constant to the thresholds of the remaining
three indicators. The constant equals 1

5
of the range of the continuous outcomes.

Hence, on a 5-point scale, participants would score on average one category higher
on the first two indicators. It results in two indicators being skewed to the right and
the remaining three being skewed to the left and represents a test with two “easy”
items favoring the higher response categories and three more “difficult” items.
Fitting a measurement invariant model may result in a rejection because of the ne-
cessity to add difficulty factors (Gorsuch, 1983). In this way, the work carried out
by Bernstein and Teng (1989) in a single group context is extended to a multi-
ple-group setting. Total sample sizes are 300, 500, 1,000, and 3,000.

Results of the single factor model for multiple groups. The effects inves-
tigated with the single factor model were consistent with our expectations (see Ta-
ble 2). Increasing the separation between groups results in a slightly higher rejec-
tion rate when reliability is low; the effect is more pronounced when combined
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3Here, reliability isunderstoodas thepercentageofvarianceof the indicators that isdue to thefactor.
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with high reliability. Introducing indicator-specific thresholds results in high rejec-
tion rates across the board even for small sample sizes. Results for fitting continu-
ous models to 5-point Likert scale data are acceptable for larger sample sizes only
given low reliability and indicator-invariant thresholds. Generally, higher reliabil-
ity results in increased χ2, which corroborates the findings of Bernstein and Teng
(1989) in a single group setting.

In addition to the rejection rates that are based on the normal theory χ2 fit statis-
tic, we report the average coverage of parameters of interest. To obtain the cover-
age of parameters corresponding to the factor loadings and the latent mean differ-
ences the scale of the latent variable is fixed to the true value in the fitted model.
The coverage of the estimates of the factor mean differences in this part of the sim-
ulation is larger than 0.85 even for small sample sizes. This finding does not seem
to depend on any of the other design factors. However, the coverage corresponding
to the factor loadings is smaller than 0.1. Hence, fitting the model for continuous
outcomes seems to affect especially the estimated factor structure and to a much
lesser extent the estimates of the latent mean differences.

Linear Growth Model for Multiple Groups

Continuous data are generated for linear growth models with a single indicator at
each of four time points. The linear growth curve model is used to investigate the
effects of (a) number of scale points, (b) time-varying thresholds, (c)
group-varying thresholds, and again (d) total sample size. Average reliability in the
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TABLE 2
Observed Rejection Rates at an Expected 0.05 Level When Fitting

the Single Factor Multi-Group Model for Continuous Outcomes
to 5-Point Scale Data

Total N

Low
Rel/Small

Sep

Low
Rel/Large

Sep

High
Rel/Small

Sep

High
Rel/Large

Sep

Indicator invariant thresholds
300 0.06 0.08 0.33 0.47
500 0.10 0.09 0.26 0.63

1,000 0.09 0.09 0.45 0.85
3,000 0.11 0.18 0.84 1.0

Indicator variant thresholds
300 0.48 1.0 0.63 1.0
500 0.70 1.0 0.68 1.0

1,000 1.0 1.0 0.98 1.0
3,000 1.0 1.0 1.0 1.0

Note. Sep =  factor mean separation between groups; Rel = reliability in the continuous data.
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continuous data is held constant at approximately 0.7. The separation of groups is
small. The growth curves for Group 1 is flat with zero intercept and slope. Group 2
has a 0.3 intercept and a 0.1 slope, whereas Group 3 has a 0.6 intercept and a nega-
tive 0.1 slope. Factor variances are constant across groups and are unity for the in-
tercept factor and 0.25 for the slope factor. Hence, the differences in intercept cor-
respond to standard deviations, and the slope differences have to be divided by
0.25. The covariance of the intercept and slope factor is zero. The number of re-
sponse categories is 5, 7, and 10. The total sample size is 500, 1,000, or 3,000.
Time-varying and group-varying thresholds are not combined in our design, al-
though this may happen in empirical data. For the sake of interpretability of re-
sults, we keep group thresholds invariant when thresholds vary across time and
vice versa. Time-varying threshold are obtained as follows. Taking the
time-invariant thresholds as a starting point, we subtract a constant from all thresh-
olds of the second time point and add the same constant to the thresholds of the
third time point. The constant corresponds to 1/18 of the total range of observed
continuous scores, which can be regarded as a very small average threshold differ-
ences across time. Subpopulation-varying thresholds are obtained by subtracting
approximately 1/10 of the range from all thresholds of one of the three
subpopulations. Note that group-varying thresholds violate MI across groups.

Results of the linear growth model for multiple groups. Given our choice
of parameter values for the data generation, rejection rates when fitting a linear
growth model for continuous data to categorical data are close to the expected 0.05
level only for sample size 500 and time-invariant and group-invariant thresholds
(see Table 3). As can be expected, increasing sample size leads to increases in re-
jection rates. An increase in the number of response categories does not lead to
lower rejection rates. All types of threshold variation chosen in this study result in
unacceptable rejection rates. Note that the MI model should be rejected when fitted
to the group- or time-variant threshold data because threshold variation represents
a violation of MI across groups or time, respectively. However, when fitting a
model for continuous data, the thresholds are not estimated and a researcher would
not know whether unacceptable fit is due to group- or to time-varying thresholds.
This lack of knowledge complicates group comparisons with respect to their latent
growth trajectories.

The coverage of the parameters of the latent mean differences is again good.
The factor loadings of the linear growth model are fixed; hence, no coverage is re-
ported. However, the reliability (e.g., ratio of variance explained by the factors by
total variance) is underestimated, and the underestimate is worse with smaller
numbers of response categories.

Fitting the correct model, that is, a linear growth model for categorical out-
comes, to the categorical data leads to rejection rates that do not deviate much from
the expected 0.05. The range of observed rejection rates varies between 0.04 and
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0.13 across all sample sizes (500, 1,000, and 3,000) and is not affected by
time-varying or time-invariant thresholds. The parameter coverage exceeds 95%.
Hence, fitting the adequate model for categorical outcomes leads to very satisfying
results.

Analyzing Subscale Scores

In an empirical situation, researchers often analyze more continuous looking sum
or average scores instead of the individual ordered categorical indicators. There-
fore, we construct subscale scores by generating multiple continuous indicators
per time point (3, 5, 7, 9, or 15 indicators). The factor model used to generate the
multiple indicator scores is a single factor model, which is invariant across time.
On a conceptual level, this corresponds to indicators that measure the same single
underlying construct at each time point, that is, the continuous items are uni-
dimensional and measurement invariant across time. Next, the scores are catego-
rized into 5-point scales using thresholds that are group invariant but that differ for
the first time point as compared to the remaining time points. Finally, the catego-
rized data for multiple indicators are averaged at each time point. This is done for
500 participants. The data are generated using Splus routines and analyzed with a
modified RunAll utility.4
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TABLE 3
Observed Rejection Rates at an Expected 0.05 Level for the Continuous

Multi-Group Linear Growth Model When Fitted to 5-point Scale Data

Thresholds N = 500 N = 1,000 N = 3,000

Number of categories = 5
Equal 0.07 0.21 0.46
Time 0.92 1.0 1.0
Group 1.0 1.0 1.0

Number of categories = 7
Equal 0.10 0.24 0.59
Time 0.98 1.0 1.0
Group 1.0 1.0 1.0

Number of categories = 10
Equal 0.11 0.26 0.64
Time 1.0 1.0 1.0
Group 1.0 1.0 1.0

Note. Time and group refers to time and group varying thresholds. Rejection rates for the categor-
ical linear groth model (LGM) with group varying threshold are not provided because the current ver-
sion of the Monte Carlo utility does not provide this option.

4Please see Mplus Web page http://www.statmodel.com
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Results of analyzing subscale scores. As before, the fitted model is re-
stricted to represent MI. The main finding when analyzing subscale scores created
by averaging over multiple indicators is that reliability of the observed average
score at each time point increases as more indicators are added to the subscale. The
reliability is 0.80 in the case of 3 indicators per subscale and increases to 0.90 in
the case of 15 indicators. The increase might have been expected because reliabil-
ity of the total test score increases with the length of a test because the measure-
ment error cancels out. However, in the context of analyzing ordered categorical
outcomes with models for continuous outcomes, increased reliability has a detri-
mental effect. It results in an increased power to detect the distortions of the linear
growth model introduced here by time-varying thresholds. The average χ2 over
100 replications equals 288.14 for 3 indicators and increases to 808.23 for 15 indi-
cators per subscale. Note that the fitted model has 26 df. The detrimental effect of
higher reliability is consistent with the results of the single factor model. Hence,
unacceptable fit caused by threshold differences across time is not improved by
creating and analyzing subscales instead of analyzing the individual outcomes.

We performed additional analyses with data obtained by averaging over multi-
ple indicators that had been categorized with time- and group-invariant thresholds
before averaging. Fit indexes remained approximately on the same acceptable
level when increasing the number of averaged indicators. For both equal and un-
equal thresholds, parameter estimates were similar across different numbers of av-
eraged indicators.

Discussion of the Simulation Results

The simulation illustrates some of the possible drawbacks that can be encountered
when fitting factor models for continuous data to ordered categorical data. The
magnitude of the effects of violating the normality assumption of course depends
heavily on the parameter values that we have chosen for our data-generating mod-
els. However, the primary aim of this simulation is not to quantify the effects of
violating the normality assumption but rather to illustrate the complexity of the in-
terplay of the various effects. It is apparent that threshold differences across indica-
tors or time points, threshold differences across groups, separation of groups, reli-
ability of observed indicators, and sample size can all have impact on the model fit
and hence on observed rejection rates.

Fitting the correct model, that is, a multigroup model for categorical outcomes
to the categorical data leads to satisfying results. The observed rejection rates are
close to the expected rates, and the parameter coverage exceeds 95%.

Interestingly, analyzing subscale scores obtained by averaging across categori-
cal indicators does not necessarily improve the situation. Reliability increases by
adding indicators to the subscale and so does the power to reject the measurement
invariant model in case thresholds differ across time points.
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CONCLUSION

Ordered categorical data are often analyzed with models for multivariate normal
data. This practice can be problematic if the analysis aims at comparing groups on
a latent level. Interpretations of factor mean differences between groups such as,
for instance, differences in latent growth trajectories are valid only if the test or
questionnaire can be shown to be measurement invariant across groups. Hence, in-
vestigation of MI is a necessary first step in this type of analysis.

The simulation study shows that fitting models for continuous data to ordered
categorical data complicates a meaningful comparison of groups on a latent
level. Not only different types of inequality of thresholds across groups, which
represent a violation of MI, but also separation of groups, reliability of the ob-
served variables, and sample size affect rejection rates. In an empirical setting, a
researcher would not know whether unfavorable measures of goodness of fit are
really due to a violation of MI, due to threshold differences across items that re-
sult in structural differences, or due to the fact that the data are categorical and
measures of goodness of fit based on the assumption of normally distributed
data do not function properly. No clear distinction can be made in case a latent
growth model is rejected between MI across groups on the one hand and thresh-
old changes across time on the other if thresholds are not estimated. Underesti-
mation of factor variance further complicates the interpretation of group differ-
ences with respect to factor means. When applied to normally distributed data,
tests of MI often provide useful information in case the MI model does not lead
to acceptable fit because the results can reveal the sources of the violation. This,
however, is not the case when categorical data are analyzed with models for con-
tinuous outcomes. The source of unacceptable fit remains obscure. Conse-
quently, if a study aims at comparing groups or classes with respect to the fac-
tors that underlie a given test or questionnaire, it seems preferable to fit a model
for ordered categorical outcomes. Fitting models for categorical outcomes pro-
vides the possibility to test hypotheses concerning threshold invariance across
groups and indicators or time points.
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