
Applying Mutation Testing to Web Applications

Upsorn Praphamontripong and Jeff Offutt
Software Engineering

George Mason University, Fairfax, VA, USA
uprapham@gmu.edu, offutt@gmu.edu

Abstract

As our awareness of the complexities inherent in
web applications grows, we find an increasing need for
more sophisticated ways to test them. Many web appli-
cation faults are a result of how web software compo-
nents interact; sometimes client-server and sometimes
server-server. This paper presents a novel solution to
the problem of integration testing of web applications
by using mutation analysis. New mutation operators
are defined, a tool (webMuJava) that implements these
operators is presented, and results from a case study
applying the tool to test a small web application are
presented. The results show that mutation analysis can
help create tests that are effective at finding web appli-
cation faults, as well as indicating several directions
for improvement.

1 Introduction

Web applications are user interactive software ap-
plications that can be accessed through web browsers.
They are typically developed by teams with diverse
expertise that integrate diverse frameworks and web
components [20]. Web components are software com-
ponents that can be tested independently and interact
with each other to provide services as part of web ap-
plications. Web components are written in different
languages, including Java Servlets, Java Server Pages
(JSPs), JavaScripts, Active Server Pages (ASPs), PHP,
and AJAX (Asynchronous JavaScript and XML). Web
components may reside in different locations and be
integrated dynamically. Web applications are also het-
erogeneous collections of distributed and dynamically

integrated web components. The appearance, user in-
terface and functionality of web applications may vary
by users, time, and geography. Web applications are
also accessed by massive numbers of users with dif-
ferent hardware and web browsers [12].

Society suffers many losses due to web application
failures. In October 2004, PayPal had to waive all cus-
tomers’ transaction fees for an entire day because of
a service outage after upgrading the site [10]. The
service unavailability may have been due to integra-
tion errors [24]. In August 2006, Amazon.com discon-
nected its web site for two hours because of software
problems, losing millions of dollars [28]. In July 2008,
Amazon’s S3 systems web components hosted storage
service failed, causing businesses that rely on this ser-
vice to lose information and revenue [4]. The impact
of faulty web applications may range from inconve-
nience (i.e., malfunction of the application or users’
dissatisfaction), to economic loss (i.e., interruption of
business), and to catastrophic loss (i.e., loss of life due
to failures of medical web applications). This research
is developing new ways to test integration aspects of
web software components. Web applications integrate
components that are on multiple hardware/software
platforms, written in different languages, and do not
share the same memory space. Execution is based on
requests from clients to multiple components on sev-
ers, where each request creates a new thread on an
independent object. The software manages state and
control flow in novel ways that are unique to web ap-
plications. Although powerful, these abilities lead to
new kinds of faults that must be tested with new tech-
niques.

Program mutation testing [5, 1] takes a syntactic
structure (the program), creates slightly modified ver-

sions of the program, then helps the tester find test
inputs that will cause the modified programs to be-
have differently from the original. The modified ver-
sions are created with mutation operators, which en-
code rules that help ensure the software is well tested.
The modified versions are called mutants, and if a test
causes the mutant to behave differently from the orig-
inal version, the test is said to kill the mutant.

This research presents a collection of new muta-
tion operators specifically designed to test interactions
among web components. Several Java-based muta-
tion operators have been proposed in the literature
[3, 16, 17, 21]. However, these do not target web-
specific issues. Therefore, additional mutation oper-
ators to address web-specific faults have the potential
to improve our ability to test web applications.

The web mutation operators in this paper are de-
fined on JSPs and Java Servlets. The web mutation
operators have been implemented in a tool that is based
on muJava [18]. webMuJava automatically generates
mutants, accepts tests, and runs the mutants against
the tests to report results. Test cases are created man-
ually as sequences of requests and can be written in
HttpUnit, HtmlUnit, and Java. Test evaluation is based
on responses from the server and checked automati-
cally.

This paper is organized as follows. Section 2 de-
scribes atomic section modeling of web applications.
Section 3 summarizes mutation testing and extensions
of mutation operators that specifically deal with the
features of web applications. Section 4 describes a tool
and small empirical validation of the mutation opera-
tors. Results are discussed in Section 5. Section 6
provides an overview of related research and Section 7
concludes with further research.

2 Modeling Web Applications

Previous mutation systems have used three general
types of operators: (1) operators that imitate faults that
programmers make, such as replacing one scalar vari-
able with another; (2) operators that force good tests,
such as failing only if an expression has the value zero;
and (3) operators that imitate uncommon faults, such
as changes to a logic predicate that can only be killed
by very powerful tests. Thus, we started by identifying
potential web application faults.

Several papers have attempted to classify faults in
web applications. Guo and Sampath categorized faults
based on functionality of the statements where the
faults reside; database manipulation, control flow and
business logic, form parameter management, web page
appearance, and redirection [8]. Marchetto, Ricca and
Tonella consider faults related to browser incompati-
bility, faults related to the needed plugins, faults re-
lated to form construction, faults related to database
interactions or management, faults related to the web
pages integrations, faults due to the unavailable re-
sources, and faults related to user authentication [19].

These categorizations overlap without being com-
plete or consistent. In the absence of a widely accepted
fault model, this research uses a structural approach.
The mutation operators in this paper are designed to
test control and state connections among web software
components as defined in the atomic section model
[22].

Atomic sections are defined on the presentation
layer of server software, the components that produce
HTML response pages [22]. An atomic section (ATS)
is a piece of HTML such that if one piece of the HTML
is sent to the client, then all the HTML in that ATS is
sent. An ATS may be pure static HTML, or empty,
or an HTML section created by a program component
that contains static structure with content variables.

Atomic sections are combined using algebraic rules
to form component expressions. Let p and pi be com-
ponent expressions. Component expressions are de-
fined as follows. Basis: A component expression p
itself is an atomic section. Sequence (p → p1 ⋅ p2): A
component expression p is composed of a component
expression p1 followed by a component expression p2.
Selection (p → p1∣p2): A component expression p is
obtained by selecting either a component expression
p1 or a component expression p2, but not both. Itera-
tion (p → p1

∗): A component expression p consists of
an arbitrary length sequence of a component expres-
sion p1. Aggregation (p → p1{p2}): A component
expression p is comprised of a component expression
p1, in which a component expression p2 is included as
part of a component p1 when p1 is sent to the client.

We consider five types of transitions among web
components. A Simple Link Transition is an <A>
link in an atomic section that defines a transition from
the client to a web component on the server. If there

2

is more than one <A> link in an atomic section, one
of several web components can be invoked. A Form
Link Transition submits an HTML <FORM>, which
causes a transition from the client to a web component
on the server, along with whatever data is included in
the form. A Component Expression Transition is
when the execution of a web component causes an
atomic section (i.e., a component expression) to be
generated and returned to the client. A web com-
ponent can produce several component expressions.
An Operational Transition is a transition taken by
the user or the environment outside of the control of
the software. Examples of operational transitions are
the user pressing the back button, the forward but-
ton, the refresh button, or directly altering the URL in
the browser. Reloads from cache are also operational
transitions. Finally, a Redirect Transition causes the
client to regenerate the same request to a different
URL.

The fault analysis for this work is based on the po-
tential faults that can occur in the above transitions.
These faults are used to design the web mutation oper-
ators that are defined in Section 3.

Faults in simple link transitions: The href at-
tribute of an <A> tag specifies the destination of a
web resource in the form of a Uniform Resource Iden-
tifier (URL). A common mistake is a web application
developer using an incorrect URL. Another common
mistake is that an incorrect destination could lead to a
loop.

Faults in form link transitions: The HTML
<form> tag defines the server-side form handler as
a URL in the <action> attribute. Four common
mistakes in form link transitions are considered. First,
faults may be due to an unavailable or improper desti-
nation. Faults may occur when the developer uses an
incorrect URL, and the handler specified cannot pro-
cess the request. This is an easy mistake to make, es-
pecially when URLs are generated dynamically on the
server.

Second, faults may occur when the wrong HTTP
transfer mode (GET, POST, etc.) is given. Using the
wrong transfer mode can result in different behavior of
web applications or reveal confidential information.

Third, faults may occur when necessary informa-
tion is omitted or inappropriate information is submit-
ted via hidden controls. Hidden form fields allow web

applications to place data in HTML that will be sub-
mitted in the next request. These elements are not ren-
dered by the browser, but users can see them by view-
ing the source, and also save and modify the source.
If users omit or change hidden input data, the request
can be invalid or allow the users to gain unauthorized
access.

Fourth, faults may be due to parameter mismatches.
For instance, a form and a web component that submits
the form may refer to the same argument with different
names, or a web component may submit a form with
too many arguments. Parameter mismatches can cause
a web component to behave unexpectedly or return im-
proper results.

Faults in component expression transitions: The
contents of HTML, text, or JSP files can be reused or
included into another HTML or JSP file dynamically
using Server-Side Include (SSI)–a server-side script-
ing language. An include directive generates an
atomic section and returns it to the client. Specify-
ing an include directive destination incorrectly may
cause an erroneous response.

Faults in operational transitions: The intended
transitions of the web application’s control may be al-
tered when the user presses the back button, the for-
ward button, or the refresh button They can also be al-
tered when the user directly modifies the URL. Poten-
tial faults include when the user accidentally presses
the button or when the user intentionally bypasses the
input validation. This kind of fault is, in general, due
to the user’s behavior and hence is out of scope of this
project.

Faults in redirect transitions: HTML allows
redirect transitions by using an HTTP-EQUIV
attribute and specifying a forwarded destination
using a URL attribute of a <META> element.
Java Servlets implement redirect transitions with
the res.SendRedirect (destination)
command and JSPs use the <jsp:forward> com-
mand. Faults can occur when the developers specify
incorrect destinations. As a result, the request may be
processed inaccurately or may not be processed at all.

3 Mutation Testing for Web Applications

The effectiveness of mutation testing depends
largely on the mutation operators [16]. The muJava

3

system has traditional mutation operators that modify
individual statements, and object-oriented (OO) class
level operators that modify OO language features.

This paper presents new source-code, first-order,
mutation operators for web software components.
They test the connections defined in Section 2 by mod-
ifying transitions and atomic sections. We define 11
web application mutation operators, grouped into mu-
tation operators that modify HTML and mutation op-
erators that modify JSP.

By convention, the mutation operator names start
with “W”, indicating mutation operators dealing with
web-specific features, and end with a “D” or “R”, in-
dicating whether the operators delete or replace some-
thing. The middle character specifies what language
element is changed.

3.1 Mutation Operators for HTML

Simple link replacement (WLR): The WLR oper-
ator replaces a destination of a simple link transition
specified in an <A> tag with another destination in
the same domain of the targeted web application. This
alteration mimics a common mistake that web appli-
cation developers make. The changes cause references
to incorrect or nonexistent URLs, and may also lead
to dead code. This mutant can be killed by a test case
that causes the reference to the URL to be incorrect.

Simple link deletion (WLD): The WLD operator
removes a destination of a simple link transition speci-
fied in an <A> tag. This modification breaks the orig-
inal control flow.

Form link replacement (WFR): The WFR opera-
tor changes a destination of a form link transition to
another destination in the same domain of the targeted
web applications. Similar to WLR, the changes cause
references to an incorrect or nonexistent URL. Fur-
thermore, the mutated destination may not be able to
process the request. This mutant can be killed by a test
case that causes the reference to the URL to result in
different behavior.

Transfer mode replacement (WTR): The WTR
operator replaces all GET requests with POST requests
and all POST requests with GET requests. The WTR
operator guides testers to generate test inputs to ensure
that transfer modes are specified appropriately.

Hidden form field replacement (WHR): The

WHR operator alters value attributes of an
<input> tag of type hidden with another value;
for instance, null, a space, an empty string, a zero,
and a negative integer (such as -1).

Hidden form field deletion (WHD): The WHD op-
erator removes an entire block of an <input> tag of
type hidden. WHD mutants guide testers to generate
test inputs to ensure that data submitted to the server
are properly handled.

Server-side-include replacement (WIR): The
WIR operator changes file attributes of include
directives to another destination in the same domain
of the targeted web application. The variations distort
part of the original presentation of the web page.

Server-side-include deletion (WID): The WID op-
erator removes an entire include directive from the
HTML file. Thus, a portion of the original presenta-
tion of the web page is distorted. This mutant can only
be killed by a test case that shows the presentation of
the web page to be incorrect.

3.2 Mutation Operators for JSP

Redirect transition replacement (WRR): The
WRR changes a forwarded destination of a redirect
transition specified in <jsp:forward> to another
destination; an incorrect destination or a URL in the
same domain application. The change causes refer-
ences to an incorrect or nonexistent URL. Addition-
ally, to help testers ensure that possible dead code or
an infinite loop is handled properly, a destination may
be replaced by the targeted web application itself. This
mutant can only be killed by a test case that shows the
reference to the URL is incorrect.

Redirect transition deletion (WRD): The WRD
operator removes an entire redirection, as specified in
a <jsp:forward> tag. This operator helps testers
ensure that control flow in the web application is im-
plemented correctly.

Get session replacement (WGR): A new connec-
tion to the web server is opened every time a client re-
trieves a web page. Since the server does not automat-
ically maintain information about the client, the user
session must be properly stored and tracked by server
software. To support session tracking, web software
development frameworks provide in-memory objects
and methods to access those objects. This is called the

4

session object in J2EE. When a reference to a session
object is requested, if the session object does not ex-
ist it can be created (parameter true, or if it does not
exist it will not be created (parameter false). The
WGR operator changes true to false and false
to true.

4 Case Study

An important goal of this project is to evaluate the
use of mutation to test web applications. The web mu-
tation operators in Section 3 were implemented in a
tool, webMuJava, based on muJava [18]. For this case
study, we hand-seeded faults into a moderate size web
application, generated tests to kill the mutants, then
evaluated the tests on their ability to find the seeded
faults.

4.1 Subject Web Application

For an initial trial, we used a web application that
is small enough for reasonable hand analysis, yet large
and complex enough to include a variety of interac-
tions among web components. The mutation operators
are based on atomic sections and transitions. The pa-
per that defined the atomic sections [22] used a web
application called the “Small Text Information System
(STIS),” so this study also used STIS. STIS consists
of 18 Java Server Pages (JSPs) and 5 Java bean classes
and stores information in a MySQL database. Only the
JSPs were mutated, and the study excluded two JSPs
that provide administration features, leaving a total of
16.

It is customary to give a measure of the size of soft-
ware artifacts that are used in empirical studies. How-
ever, size is problematic with scripted page modules
such as JSPs, which contain a mix of HTML, Java
statements and directives. We found two online tools
that measure the size of JSPs, Code Counter Pro1 and
Practiline Source Code Line Counter2. These tools
count carriage returns, count HTML comments, do
not count multi-line HTML statements as one line,
count blank lines, and do not consistently eliminate
Java comments. Most importantly, they do not sepa-
rate HTML from Java statements. Since webMuJava

1http://www.geronesoft.com/
2http://sourcecount.com/features.htm

mutates Java statements in JSP, the number of Java
statements seems to be the most important measure.
Our solution for this study was to count by hand, and
count Java statements, HTML statements, comments
and blank lines separately. These numbers are shown
in Table 1. We believe the number of Java lines is the
most relevant for this project.

4.2 Empirical Conduct

The case study had four steps. First, we used web-
MuJava to create mutants. Second, we generated tests
by hand and automated them. Third, we seeded faults
into a subject program,. Fourth, we ran the tests on the
hand-seeded faults.

We extended muJava by implementing the mutation
operators defined in Section 3. Accordingly, the archi-
tecture of webMuJava is similar to the architecture of
muJava with additional web-specific mutation opera-
tors. MuJava supports only .class files, so addi-
tional modules to parse and analyze JSP and HTML
were implemented in webMuJava.

To ensure that the mutation operators use proper
destinations that are in the same domain of the targeted
web application, only one web application was tested
at a time. URLs appearing in all selected files were
parsed and extracted. The frequency of each URL’s
use was analyzed. This information was recorded and
later used by the operators to mutate the destination of
a link or a form. For example, the WLR operator re-
places the destination of a simple link transition with
the most frequently used URL. If the URL is exactly
the file under test itself, the second most frequently
used URL is used. If there are multiple URLs with the
same frequency, the first URL is used.

Only one URL was used for each destination re-
placement. For example, the WLR operator alters an
original destination to another destination only once.
The reason why the WLR operator does not replace
the original destination with all possible URLs is that
the mutants created are trivial; incorrect URLs will al-
ways result in different behavior of the web applica-
tion. Hence, a selective approach can be used to reduce
the number of mutants.

Figure 1 shows the webMuJava screen for gener-
ating mutants. The testers can select multiple files
to test. Then, the testers can select the web-specific

5

Table 1. Size of the JSP files (in LOC)
JSP file Java HTML Java/HTML Comment Blank Total

lines lines ratio lines lines lines
about 0 97 0.00 8 19 124
browse 62 83 0.75 52 41 238
categories 34 49 0.69 37 21 141
category edit 14 37 0.38 22 13 86
index 0 31 0.00 13 7 51
login 19 32 0.59 22 23 96
logout 10 21 0.48 13 9 53
navigation bar 3 25 0.12 13 9 50
page footer 2 4 0.50 6 3 15
page header 9 7 1.29 9 8 33
record add 4 45 0.09 22 15 86
record delete 3 5 0.60 8 4 20
record edit 36 55 0.65 30 25 146
record insert 12 46 0.26 23 15 96
record search 7 41 0.17 14 11 73
update search 9 3 3.00 6 3 21

Total 224 581 0.39 298 226 1329

mutation operators (or traditional mutants, or class
mutants). Once the tester clicks the Generate
button, webMuJava automatically generates mutants.
These mutants can be viewed in the Web Mutants
Viewer panel. By specifying a target file and a test
case, webMuJava automatically executes all mutants.
Test evaluation is based on responses from the server
and is done automatically.

Test cases were generated by hand as sequences of
HTTP requests and were automated in Java and Htm-
lUnit. HtmlUnit is a test framework that allows the
testers to simulate the behavior of the web applications
to be tested; for instance, invoking HTML pages, fill-
ing out forms, and clicking links.

Each mutated file was stored in a directory indexed
by its name, its mutation operator, and its mutant num-
ber. webMuJava then successively replaces the origi-
nal file with each mutant. Hence, invocations of the
original web application remain the same.

To analyze the potential of our web-specific muta-
tion operators, tests were generated to cover as many
mutants as possible and were later used to execute
hand-seeded faults. webMuJava compares the appear-
ances of the web page created by the original program
to the web page that was created by the mutant. The
comparison excludes a destination value of an <A>
tag or in a form link transition since the transition has
not been triggered. The percentage of seeded faults

detected indicates how well web-specific mutation op-
erators can be used to generate or improve tests.

Faults were seeded into the subject by hand. To
avoid bias, we chose someone who had no prior
knowledge of web mutation testing and little knowl-
edge of traditional mutation testing, but who had expe-
rience building web applications. We asked the faults
to be in the Java statements part of the JSPs, rather
than the HTML, but did not give any more specific
guidance. The fault seeder created 167 faults in the
16 JSPs. Upon analysis, we found that 20 were func-
tionally equivalent to the original JSPs, so they were
excluded, leaving 147.

4.3 Threats to Validity

One potential threat to internal validity is that we
used hand-seeded faults. One person inserted faults
manually based on his experience as a web developer.
This person was not the tester and had no knowledge
of the test method, however there is no guarantee that
they represent real web application faults. For exter-
nal validity, one potential threat is due to the limita-
tion in application domain and representativeness of
our subject. Replication of this study on other web
applications is needed. A construct validity threat is
the use of webMuJava, which was assumed to generate
mutants and mark them as being killed correctly.

6

Figure 1. WebMuJava - Screen for generating mutants

5 Results

Table 2 summarizes the results. Manual analysis
revealed that 12 of the 41 live mutants were equiva-
lent, leaving 29 non-equivalent undetected mutants.
All equivalent mutants were of type WHR and in-
volved changes of values of non-keys of records to be
updated to or deleted from the database. For example,
when a record is being removed, only a record’s
name (a primary key) is taken into account. Thus,
replacing a value of a parameter rec category
from an empty string ("") to null as <input
type="hidden" name="rec category"
value=""> in browse.jsp has no effect. The
WHR operator also generated approximately a third
of the mutants, by far the most. WHR changes
value attributes of hidden inputs to null, a space,
an empty string, a zero, and a negative integer.
Approximately a third of the WHR mutants were
not detected. Most live WHR mutants involve

changes of values of a hidden input dealing with
sorting records; for instance, replacing a value
of a parameter rec sort in browse.jsp from
<input type="hidden" name="rec sort"
value=""> to <input type="hidden"
name="rec sort" value="0"> or to
<input type="hidden" name="rec sort"
value="-1">.

Table 3 shows the results from running the tests
on the hand-seeded faults. The number of hand-
seeded faults varies among JSP files (ranging from
0 to 29) and are not equally distributed. Note that
record delete.jsp had no faults.

The faults that were not found fall into sev-
eral categories. Several relate to changes in scope
settings of jsp:useBeans. For example, in cate-
gory edit.jsp, a scope attribute is altered from session

to page as <jsp:useBean id="iconst" scope="page"

class="stis.ConstBean">.
Several others are due to the changes between an

7

Table 2. Summary of mutants and tests

JSP file Mutants Total Tests Live Killed Score
WLR WLD WFR WTR WHR WHD WIR WID WRR WRD WGR

about 6 6 0 0 0 0 2 2 0 0 0 16 7 0 16 1.00
browse 5 5 3 4 25 5 4 4 0 0 0 55 13 14 41 0.75
categories 4 4 0 3 20 4 2 2 0 0 0 39 11 6 33 0.85
category edit 1 1 0 1 5 1 1 1 1 1 0 13 6 0 13 1.00
index 1 1 1 1 0 0 2 2 0 0 0 8 4 0 8 1.00
login 4 4 0 0 0 0 3 3 1 1 1 17 7 0 17 1.00
logout 2 2 0 0 0 0 1 1 0 0 1 7 3 2 5 0.71
navigation bar 5 5 0 0 0 0 0 0 0 0 0 10 5 0 10 1.00
page footer 1 1 0 0 0 0 1 1 0 0 0 4 2 0 4 1.00
page header 0 0 0 0 0 0 1 1 0 0 1 3 2 1 2 0.67
record add 1 1 1 1 0 0 2 2 0 0 0 8 4 0 8 1.00
record delete 0 0 0 0 0 0 1 1 1 1 0 4 2 0 4 1.00
record edit 1 1 0 1 10 2 2 2 1 1 0 21 6 6 15 0.71
record insert 1 1 0 1 0 0 2 2 1 1 0 9 4 0 9 1.00
record search 0 0 1 1 0 0 0 0 0 0 0 2 2 0 2 1.00
update search 0 0 0 0 0 0 0 0 1 1 1 3 2 0 3 1.00

Total 32 32 6 13 60 12 24 24 6 6 4 219 80 29 190
Live 0 0 0 0 23 3 1 1 0 0 1 29

Killed 32 32 6 13 37 9 23 23 6 6 3 190
Score 1.00 1.00 1.00 1.00 0.62 0.75 0.96 0.96 1.00 1.00 0.75 0.87

equals method and an equal sign (==). An example in
login.jsp is:
if (request.getParameter ("userid").equals("") ||

request.getParameter ("password").equals(""))

The statement was altered to:
if (request.getParameter ("userid")==("") ||

request.getParameter ("password").equals(""))

and
if (request.getParameter ("userid").equals("") ||

request.getParameter ("password")==(""))

However, the input validation blocked empty and null
strings, so this fault was masked and no test case can
cause it to result in a failure.

It may be safe to ignore the masked faults. In
the current software configuration, they cannot result
in failure. However, it may be reasonable to advo-
cate more robust testing where we explicitly test for
masked faults, but that is beyond the scope of this re-
search. Not detecting the scope change faults is more
serious, and indicates a “hole” in our mutation op-
erators. We plan to design and implement a “scope
change” operator in the future.

6 Related Work

Most research in testing web applications has fo-
cused on client-side validation and static server-side
validation of links [11]. These are all static valida-
tion and measurement tools, none of which support
functional testing or black box testing of programs de-
ployed on the web. Some recent research has looked
into testing software as statically determined [13], but
not the problem of distributed integration, as this paper
does. Liu, Kung, Hsia and Hsu [14] test definition-use
pairs among client and server web pages and software
components. The focus was on data interactions rather
than control flow. Ricca and Tonella [25] proposed
an analysis model and corresponding testing strategies
for static web page analysis. Di Lucca and Di Penta
[15] proposed testing sequences through a web appli-
cation that incorporate operational transitions, specif-
ically focusing on the back and forward button tran-
sitions. Andrews et al. [2] introduced a system-level
testing technique for web applications. Elbaum, Karre
and Rothermel [7] proposed a method to use what they
called “user session data” to generate test values for
web applications. This method extracts data values

8

Table 3. Seeded faults detected
JSP file ♯ Faults

♯ Tests Found Ratioseeded
about 4 7 4 1.00
browse 20 13 16 0.80
categories 26 11 21 0.81
category edit 17 6 14 0.82
index 4 4 3 0.75
login 19 7 11 0.58
logout 3 3 2 0.67
navigation bar 2 5 2 1.00
page footer 2 2 2 1.00
page header 5 2 5 1.00
record add 9 4 9 1.00
record delete 0 n/a n/a n/a
record edit 21 6 14 0.67
record insert 9 4 9 1.00
record search 3 2 3 1.00
update search 3 2 3 1.00

Total 147 80 118 80%

from previous user inputs. We are investigating the use
of a technique called bypass testing [23] for input data
validation. Smith and Williams [26] applied mutation
to a healthcare web applications at the unit level, using
the Jumble mutation tool. They used only traditional
(statement-level) mutation operators, and did not test
the interactions among web components.

Dobolyi and Weimer [6] presented a model to dis-
tinguish differences between pairs of XML/HTML
documents, with the goal of supporting regression
testing and reducing testing effort. Dobolyi and
Weimer represented the documents using a tree struc-
ture and compared them based on semantic informa-
tion. Mutation operators were used to train a com-
parator to recognizes potential errors. Several situ-
ations were not considered to be errors. For exam-
ple, the number of element inversions do not indi-
cate serious errors (e.g., <u>The</u> vs.
<u>The</u>). Reordering child nodes of
a tree does not indicate errors since the semantics of
the web page are not changed. Indeed, we found that
altering attribute values can introduce an error. For
instance, changing a value of a value attribute of a
hidden form field can result in submitting inappropri-
ate data to the system.

Because web components interact through inter-
faces and declarations of invocations are not explicit,
it is possible that parameters submitted through the re-

quests may not match. As a result, the application may
exit abnormally, return inappropriate results, or fail at
runtime. Halfond and Orso [9] presented a static anal-
ysis technique to identify parameter mismatches be-
tween two web components. In the future, we plan to
incorporate this idea into a mutation operator.

7 Conclusions and Future Work

This paper presents a new approach to testing web
applications by applying mutation analysis to the con-
nections among web application software components.
Eleven web mutation operators are defined and have
been implemented in a tool called webMuJava. Re-
sults from a case study are presented that show tests
created by applying mutation analysis to web appli-
cations can help find faults. The results have demon-
strated the need for an additional “scope change” mu-
tation operator, which we are already implementing in
webMuJava. Because web applications commonly in-
teract with databases, we also plan to implement SQL
mutation operators [27]. We also plan to perform con-
trolled experiments using larger, more complex, and
industrial web applications to further evaluate this ap-
proach. When webMuJava is stable, we will release it
to the community as an experimental resource.

Acknowledgement: We thank Jae Hyuk Kwak for
hand-seeding faults into our subject JSPs.

References

[1] P. Ammann and J. Offutt. Introduction to Software
Testing. Cambridge University Press, Cambridge,
UK, 2008. ISBN 0-52188-038-1.

[2] A. A. Andrews, J. Offutt, and R. T. Alexander. Testing
web applications by modeling with fsms. Software
and Systems Modeling, 4(3):326–345, August 2005.

[3] P. Chevalley and P. Thévenod-Fosse. A mutation anal-
ysis tool for Java programs. Journal on Software Tools
for Technology Transfer (STTT), September 2002.

[4] H. Dahdah. Amazon s3 systems failure
downs web 2.0 sites, July 2008. Online:
http://www.computerworld.com.au/article/253840,
last access September 2009.

[5] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints
on test data selection: Help for the practicing pro-
grammer. IEEE Computer, 11(4):34–41, April 1978.

[6] K. Dobolyi and W. Weimer. Harnessing web-based
application similarities to aid in regression testing. In

9

20th IEEE International Symposium on Software Re-
liability Engineering. IEEE, November 2009.

[7] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher.
Leveraging user-session data to support web applica-
tion testing. IEEE Transactions on Software Engi-
neering, 31(3):187–202, March 2005.

[8] Y. Guo and S. Sampath. Web application fault clas-
sification - an exploratory study. In ESEM ’08:
Proceedings of the Second ACM-IEEE international
symposium on Empirical software engineering and
measurement, pages 303–305, New York, NY, USA,
2008. ACM.

[9] W. G. J. Halfond and A. Orso. Automated identifica-
tion of parameter mismatches in web applications. In
SIGSOFT ’08/FSE-16: Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations
of software engineering, pages 181–191, New York,
NY, USA, 2008. ACM.

[10] M. Hicks. Paypal says sorry by waiv-
ing fees for a day, October 2004. Online:
http://www.eweek.com/c/a/Web-Services-Web-
20-and-SOA/PayPal-Says-Sorry-by-Waiving-Fees-
for-a-Day/, last access November 2008.

[11] R. Hower. Web site test tools and
site management tools, 2002. Online:
http://www.softwareqatest.com/qatweb1.html,
last access September 2009.

[12] C. Kallepalli and J. Tian. Measuring and modeling
usage and reliability for statistical web testing. IEEE
Transactions on Software Engineering, 27(11):1023–
1036, November 2001.

[13] C. H. Liu, D. Kung, P. Hsia, and C. T. Hsu. Structural
testing of Web applications. In Proceedings of the
11th International Symposium on Software Reliabil-
ity Engineering, pages 84–96, San Jose CA, October
2000. IEEE Computer Society Press.

[14] C. H. Liu, D. Kung, P. Hsia, and C. T. Hsu. An
object-based data flow testing approach for web ap-
plications. International Journal of Software Engi-
neering and Knowledge Engineering, 11(2):157–179,
2001.

[15] G. D. Lucca and M. D. Penta. Considering browser
interaction in web application testing. In 5th Interna-
tional Workshop on Web Site Evolution (WSE 2003),
pages 74–84, Amsterdam, The Netherlands, Septem-
ber 2003. IEEE Computer Society.

[16] Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mu-
tation operators for Java. In Proceedings of the 13th
International Symposium on Software Reliability En-
gineering, pages 352–363, Annapolis MD, November
2002. IEEE Computer Society Press.

[17] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. MuJava : An au-
tomated class mutation system. Wiley’s Software Test-

ing, Verification, and Reliability, 15(2):97–133, June
2005.

[18] Y.-S. Ma, J. Offutt, and Y.-R. Kwon.
muJava home page. Online, 2005.
http://cs.gmu.edu/∼offutt/mujava/,
http://salmosa.kaist.ac.kr/LAB/MuJava/, last ac-
cess December 2008.

[19] A. Marchetto, F. Ricca, and P. Tonella. Empirical
validation of a web fault taxonomy and its usage for
fault seeding. In WSE ’07: Proceedings of the 2007
9th IEEE International Workshop on Web Site Evo-
lution, pages 31–38, Washington, DC, USA, 2007.
IEEE Computer Society.

[20] J. Offutt. Quality attributes of Web software appli-
cations. IEEE Software: Special Issue on Software
Engineering of Internet Software, 19(2):25–32, 2002.

[21] J. Offutt, Y.-S. Ma, and Y.-R. Kwon. The class-level
mutants of muJava. In Workshop on Automation of
Software Test (AST 2006), pages 78–84, Shanghai,
China, May 2006.

[22] J. Offutt and Y. Wu. Modeling presentation layers
of web applications for testing. Software and Sys-
tems Modeling, published online July 2009. DOI:
10.1007/s10270-009-0125-4.

[23] J. Offutt, Y. Wu, X. Du, and H. Huang. Bypass test-
ing of Web applications. In 15th International Sympo-
sium on Software Reliability Engineering, pages 187–
197, Saint-Malo, Bretagne, France, November 2004.
IEEE Computer Society Press.

[24] S. Pertet and P. Narasimhan. Causes of failure
in web applications. Technical Report CMU-
PDL-05-109, Parallel Data Laboratory, Carnegie
Mellon University, December 2005. Online:
http://www.pdl.cmu.edu/PDL-FTP/stray/CMU-PDL-
05-109.pdf, last access November 2008.

[25] F. Ricca and P. Tonella. Analysis and testing of
Web applications. In 23rd International Conference
on Software Engineering (ICSE ’01), pages 25–34,
Toronto, CA, May 2001.

[26] B. H. Smith and L. Williams. Should software testers
use mutation analysis to augment a test set? Journal
of Systems and Software, 82(11):1819–1832, 2009.

[27] J. Tuya, M. J. Suarez-Cabal, and C. de la Riva. Sql-
mutation: a tool to generate mutants of sql database
queries. In Second Workshop on Mutation Analysis
(Mutation 2006), Raleigh, NC, November 2006.

[28] T. R. Weiss. Two-hour outage side-
lines amazon.com, August 2006. Online:
http://www.computerworld.com/action/article.do?-
command=viewArticleBasic&articleId=9002687,
last access November 2008.

10

