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1. Introduction

The introduction of empirical or statistical meth-
ods into meteorology and oceanography can be
broadly classified as having occurred in four distinct
stages: 1) Regression (and correlation analysis) was
invented by Galton (1885) to find a linear relation
between a pair of variables x and z. 2) With more vari-
ables, the principal component analysis (PCA), also
known as the empirical orthogonal function (EOF)
analysis, was introduced by Pearson (1901) to find the
correlated patterns in a set of variables x

1
, . . ., x

n
. It

became popular in meteorology only after Lorenz
(1956) and was later introduced into physical ocean-

ography in the mid-1970s. 3) To linearly relate a set
of variables x

1
, . . ., x

n
 to another set of variables

z
1
, . . ., z

m
, the canonical correlation analysis (CCA)

was invented by Hotelling (1936), and became popu-
lar in meteorology and oceanography after Barnett and
Preisendorfer (1987). It is remarkable that in each of
these three stages, the technique was first invented in
a biological–psychological field, long before its adap-
tation by meteorologists and oceanographers many
years or decades later. Not surprisingly, stage 4, in-
volving the neural network (NN) method, which is just
starting to appear in meteorology–oceanography, also
had a biological–psychological origin, as it developed
from investigations into the human brain function. It
can be viewed as a generalization of stage 3, as it
nonlinearly relates a set of variables x

1
 . . ., x

n
 to an-

other set of variables z
1
, . . ., z

m
.

The human brain is one of the great wonders of
nature—even a very young child can recognize people
and objects much better than the most advanced arti-
ficial intelligence program running on a supercom-
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puter. The brain is vastly more robust and fault toler-
ant than a computer. Though the brain cells are con-
tinually dying off with age, the person continues to
recognize friends last seen years ago. This robustness
is the result of the brain’s massively parallel comput-
ing structure, which arises from the neurons being
interconnected by a network. It is this parallel com-
puting structure that allows the neural network, with
typical neuron “clock speeds” of a few milliseconds,
about a millionth that of a computer, to outperform
the computer in vision, motor control, and many other
tasks.

Fascinated by the brain, scientists began studying
logical processing in neural networks in the 1940s
(McCulloch and Pitts 1943). In the late 1950s and early
1960s, F. Rosenblatt and B. Widrow independently
investigated the learning and computational capabil-
ity of neural networks (Rosenblatt 1962; Widrow and
Sterns 1985). The perceptron model of Rosenblatt
consists of a layer of input neurons, interconnected to
an output layer of neurons. After the limits of the
perceptron model were found (Minsky and Papert
1969), interests in neural network computing waned,
as it was felt that neural networks (also called
connectionist models) did not offer any advantage over
conventional computing methods.

While it was recognized that the perceptron model
was limited by having the output neurons linked di-
rectly to the neurons, the more interesting problem of
having one or more “hidden” layers of neurons (Fig. 1)
between the input and output layer was mothballed due
to the lack of an algorithm for finding the weights in-

terconnecting the neurons. The hiatus ended in the
second half of the 1980s, with the rediscovery of the
back-propagation algorithm (Rumelhart et al. 1986),
which successfully solved the problem of finding the
weights in a model with hidden layers. Since then, NN
research rapidly became popular in artificial intelli-
gence, robotics, and many other fields (Crick 1989).
Neural networks were found to outperform the linear
Box–Jenkins models (Box and Jenkins 1976) in fore-
casting time series with short memory and at longer
lead times (Tang et al. 1991). During 1991–92, the
Santa Fe Institute sponsored the Santa Fe Time Series
Prediction and Analysis Competition, where all pre-
diction methods were invited to forecast several time
series. For every time series in the competition, the
winner turned out to be an NN model (Weigend and
Gershenfeld 1994).

Among the countless applications of NN models,
pattern recognition provides many intriguing ex-
amples; for example, for security purposes, the next
generation of credit cards may carry a recorded elec-
tronic image of the owner. Neural networks can now
correctly verify the bearer based on the recorded im-
age, a nontrivial task as the illumination, hair, glasses,
and mood of the bearer may be very different from
those in the recorded image (Javidi 1997). In artifi-
cial speech, NNs have been successful in pronounc-
ing English text (Sejnowski and Rosenberg 1987).
Also widely applied to financial forecasting (Trippi
and Turban 1993; Gately 1995; Zirilli 1997), NN
models are now increasingly being used by bank and
fund managers for trading stocks, bonds, and foreign
currencies. There are well over 300 books on artifi-
cial NNs in the subject guide to Books in Print, 1996–
97 (published by R.R. Bowker), including some good
texts (e.g., Bishop 1995; Ripley 1996; Rojas 1996).

By now, the reader must be wondering why these
ubiquitous NNs are not more widely applied to
meteorology and oceanography. Indeed, the purpose
of this paper is to examine the serious problems that
can arise when applying NN models to meteorology
and oceanography, especially in large-scale, low-
frequency studies, and the attempts to resolve these
problems. Section 2 explains the difficulties encoun-
tered with NN models, while section 3 gives a basic
introduction to NN models. Sections 4–6 examine vari-
ous solutions to overcome the difficulties mentioned in
section 2. Section 7 applies the NN method to El Niño
forecasting, while section 8 shows how the NN can be
used as nonlinear PCA. The NN model is linked to
variational (adjoint) data assimilation in section 9.

FIG. 1. A schematic diagram illustrating a neural network model
with one hidden layer of neurons between the input layer and the
output layer. For a feed-forward network, the information only
flows forward starting from the input neurons.
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2. Difficulties in applying neural
networks to meteorology—
oceanography

Elsner and Tsonis (1992) applied the NN method to
forecasting various time series, and comparing with fore-
casts by autoregressive (AR) models. Unfortunately,
because of the computer bug noted in their corrigen-
dum, the advantage of the NN method was not as con-
clusive as in their original paper. Early attempts to use
neural networks for seasonal climate forecasting were
also at best of mixed success (Derr and Slutz 1994;
Tang et al. 1994), showing little evidence that exotic,
nonlinear NN models could beat standard linear sta-
tistical methods such as the CCA method (Barnett and
Preisendorfer 1987; Barnston and Ropelewski 1992;
Shabbar and Barnston 1996) or its variant, the singu-
lar value decomposition (SVD) method (Bretherton
et al. 1992), or even the simpler principal oscillation
pattern (POP) method (Penland 1989; von Storch
et al. 1995; Tang 1995).

There are three main reasons why NNs have diffi-
culty being adapted to meteorology and oceanography:
(a) nonlinear instability occurs with short data records,
(b) large spatial data fields have to be dealt with, and
(c) the nonlinear relations found by NN models are far
less comprehensible than the linear relations found by
regression methods. Let us examine each of these dif-
ficulties.

(a) Relative to the timescale of the phenomena one is
trying to analyze or forecast, most meteorological
and oceanographic data records are short, espe-
cially for climate studies. While capable of mod-
eling the nonlinear relations in the data, NN mod-
els have many free parameters. With a short data
record, the problem of solving for many parameters
is ill conditioned; that is, when searching for the
global minimum of the cost function associated
with the problem, the algorithm is often stuck in
one of the numerous local minima surrounding the
true global minimum (Fig. 2). Such an NN could
give very noisy or completely erroneous forecasts,
thus performing far worse than a simple linear sta-
tistical model. This situation is analogous to that
found in the early days of numerical weather pre-
diction, where the addition of the nonlinear advec-
tive terms to the governing equations, instead of
improving the forecasts of the linear models, led
to disastrous nonlinear numerical instabilities
(Phillips 1959), which were overcome only after

extensive research on how to discretize the advec-
tive terms correctly. Thus the challenge for NN
models is how to control nonlinear instability, with
only the relatively short data records available.

(b) Meteorological and oceanographic data tend to
cover numerous spatial grids or stations, and if
each station serves as an input to an NN, then the
NN will have a very large number of inputs and
associated weights. The optimal search for many
weights over the relatively short temporal records
would be an ill-conditioned problem. Hence, even
though there had been some success with NNs in
seasonal forecasting using a small number of pre-
dictors (Navone and Ceccatto 1994; Hastenrath
et al. 1995), it was unclear how the method could
be generalized to large data fields in the manner
of CCA or SVD methods.

(c) The interpretation of the nonlinear relations found
by an NN is not easy. Unlike the parameters
from a linear regression model, the weights found
by an NN model are nearly incomprehensible.
Furthermore, the “hidden” neurons have always
been a mystery.

FIG. 2. A schematic diagram illustrating the cost function sur-
face, where depending on the starting condition, the search algo-
rithm often gets trapped in one of the numerous deep local minima.
The local minima labeled 2, 4, and 5 are likely to be reasonable
local minima, while the minimum labeled 1 is likely to be a bad
one (in that the data was not well fitted at all). The minimum
labeled 3 is the global minimum, which could correspond to an
overfitted solution (i.e., fitted closely to the noise in the data) and
may, in fact, be a poorer solution than the minima labeled 2, 4,
and 5.
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Over the last few years, the University of British
Columbia Climate Prediction Group has been trying
to overcome these three obstacles. The purpose of this
paper is to show how these obstacles can be overcome:
For obstacle a, ensemble averaging was found to be
effective in controlling nonlinear instability. Various
penalty, pruning, and nonconvergent methods also
helped. For b, the PCA method was used to greatly
reduce the dimension of the large spatial data fields.
For c, new measures and visualization techniques
helped in understanding the nonlinear NN relations
and the mystery of the hidden neurons. With these
improvements, the NN approach has evolved to a tech-
nique capable of augmenting the traditional linear sta-
tistical methods currently used.

Since the focus of this review is on the application
of the NN method to low-frequency studies, we will
only briefly mention some of the higher-frequency
applications. As the problem of short data records is
no longer a major obstacle in higher-frequency appli-
cations, the NN method has been successfully used in
areas such as satellite imagery analysis and ocean
acoustics (Lee et al. 1990; Badran et al. 1991; IEEE
1991; French et al. 1992; Peak and Tag 1992; Bankert
1994; Peak and Tag 1994; Stogryn et al. 1994;
Krasnopolsky et al. 1995; Butler et al. 1996; Marzban
and Stumpf 1996; Liu et al. 1997).

3. Neural network models

To keep within the scope of this paper, we will
limit our survey of NN models to the feed-forward
neural network. Figure 1 shows a network with one
hidden layer, where the jth neuron in this hidden layer
is assigned the value y

j
, given in terms of the input

values x
i
 by

y w x bj ij i j
i

= +





∑tanh , (1)

where w
ij
 and b

j
 are the weight and bias parameters,

respectively, and the hyperbolic tangent function is
used as the activation function (Fig. 3). Other functions
besides the hyperbolic tangent could be used for the
activation function, which was designed originally to
simulate the firing or nonfiring of a neuron upon re-
ceiving input signals from its neighbors. If there are
additional hidden layers, then equations of the same
form as (1) will be used to calculate the values of the

next layer of hidden neurons from the current layer of
neurons. The output neurons z

k
 are usually calculated

by a linear combination of the neurons in the layer just
before the output layer, that is,

z w y bk jk j k
j

= +∑ ~ ~
. (2)

To construct a NN model for forecasting, the predic-
tor variables are used as the input, and the predictands
(either the same variables or other variables at some
lead time) as the output. With z

dk
 denoting the observed

data, the NN is trained by finding the optimal values
of the weight and bias parameters (w

ij
, w~

jk
, b

j
, and b

~
k
),

which will minimize the cost function:

J z zk dk= −( )∑ 2
, (3)

where the rhs of the equation is simply the sum-
squared error of the output. The optimal parameters
can be found by a back-propagation algorithm
(Rumelhart et al. 1986; Hertz et al. 1991). For the
reader familiar with variational data assimilation meth-
ods, we would point out that this back propagation is
equivalent to the backward integration of the adjoint
equations in variational assimilation (see section 9).

The back-propagation algorithm has now been
superceded by more efficient optimization algorithms,

FIG. 3. The activation function y = tanh(wx + b), shown with b
= 0. The neuron is activated (i.e., outputs a value of nearly +1)
when the input signal x is above a threshold; otherwise, it remains
inactive (with a value of around −1). The location of the thresh-
old along the x axis is changed by the bias parameter b and the
steepness of the threshold is changed by the weight w.
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such as the conjugate gradient method, simulated
annealing, and genetic algorithms (Hertz et al. 1991).
Once the optimal parameters are found, the training
is finished, and the network is ready to perform fore-
casting with new input data. Normally the data record
is divided into two, with the first piece used for net-
work training and the second for testing forecasts. Due
to the large number of parameters and the great flex-
ibility of the NN, the model output may fit the data
very well during the training period yet produce poor
forecasts during the test period. This results from
overfitting; that is, the NN fitted the training data so
well that it fitted to the noise, which of course resulted
in the poor forecasts over the test period (Fig. 4). An
NN model is usually capable of learning the signals
in the data, but as training progresses, it often starts
learning the noise in the data; that is, the forecast
error of the model over the test period first decreases
and then increases as the model starts to learn the noise
in the training data. Overfitting is often a serious prob-
lem with NN models, and we will discuss some solu-
tions in the next section.

Consider the special case of a NN with no hidden
layers—inputs being several values of a time series,
output being the prediction for the next value, and the
input and output layers connected by linear activation
functions. Training this simple network is then equiva-
lent to determining an AR model through least squares
regression, with the weights of the NN corresponding
to the weights of the AR model. Hence the NN model
reduces to the well-known AR model in this limit.

In general, most NN applications have only one or
two hidden layers, since it is known that to approxi-
mate a set of reasonable functions f

k
({x

i
}) to a given

accuracy, at most two hidden layers are needed (Hertz
et al. 1991, 142). Furthermore, to approximate continu-
ous functions, only one hidden layer is enough
(Cybenko 1989; Hornik et al. 1989). In our models for
forecasting the tropical Pacific (Tangang et al. 1997;
Tangang et al. 1998a; Tangang et al. 1998b; Tang et al.
1998, manuscript submitted to J. Climate, hereafter
THMT), we have not used more than one hidden layer.
There is also an interesting distinction between the non-
linear modeling capability of NN models and that of
polynomial expansions. With only a few parameters,
the polynomial expansion is only capable of learning
low-order interactions. In contrast, even a small NN
is fully nonlinear and is not limited to learning low-
order interactions. Of course, a small NN can learn
only a few interactions, while a bigger one can learn
more.

When forecasting at longer lead times, there are
two possible approaches. The iterated forecasting ap-
proach trains the network to forecast one time step
forward, then use the forecasted result as input to the
same network for the next time step, and this process
is iterated until a forecast for the nth time step is
obtained. The other is the direct or “jump” forecast
approach, where a network is trained for forecasting
at a lead time of n time steps, with a different network
for each value of n. For deterministic chaotic systems,
iterated forecasts seem to be better than direct forecasts
(Gershenfeld and Weigend 1994). For noisy time
series, it is not clear which approach is better. Our
experience with climate data suggested that the direct
forecast approach is better. Even with “clearning” and
continuity constraints (Tang et al. 1996), the iterated
forecast method was unable to prevent the forecast
errors from being amplified during the iterations.

4. Nonlinear instability

Let us examine obstacle a; that is, the application
of NNs to relatively short data records leads to an ill-
conditioned problem. In this case, as the cost function
is full of deep local minima, the optimal search would
likely end up trapped in one of the local minima
(Fig. 2). The situation gets worse when we either (i)
make the NN more nonlinear (by increasing the num-
ber of neurons, hence the number of parameters), or

FIG. 4. A schematic diagram illustrating the problem of
overfitting: The dashed curve illustrates a good fit to noisy data
(indicated by the squares), while the solid curve illustrates
overfitting, where the fit is perfect on the training data (squares)
but is poor on the test data (circles). Often the NN model begins
by fitting the training data as the dashed curve, but with further
iterations, ends up overfitting as the solid curve.
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(ii) shorten the data record. With a different initializa-
tion of the parameters, the search would usually end
up in a different local minimum.

A simple way to deal with the local minima prob-
lem is to use an ensemble of NNs, where their param-
eters are randomly initialized before training. The
individual NN solutions would be scattered around the
global minimum, but by averaging the solutions from
the ensemble members, we would likely obtain a bet-
ter estimate of the true solution. Tangang et al. (1998a)
found the ensemble approach useful in their forecasts
of tropical Pacific sea surface temperature anomalies
(SSTA).

An alternative ensemble technique is “bagging”
(abbreviated from bootstrap aggregating) (Breiman
1996; THMT). First, training pairs, consisting of the
predictor data available at the time of a forecast and
the forecast target data at some lead time, are formed.
The available training pairs are separated into a train-
ing set and a forecast test set, where the latter is re-
served for testing the model forecasts only and is not
used for training the model. The training set is used
to generate an ensemble of NN models, where each
member of the ensemble is trained by a subset of the
training set. The subset is drawn at random with
replacement from the training set. The subset has the
same number of training pairs as the training set,
where some pairs in the training set appear more than
once in the subset, and about 37% of the training pairs
in the training set are unused in the subset. These
unused pairs are not wasted, as they are used to deter-
mine when to stop training. To avoid overfitting,
THMT stopped training when the error variance from
applying the model to the set of “unused” pairs started
to increase. By averaging the output from all the in-
dividual members of the ensemble, a final output is
obtained.

We found ensemble averaging to be most effective
in preventing nonlinear instability and overfitting.
However, if the individual ensemble members are se-
verely overfitting, the effectiveness of ensemble av-
eraging is reduced. There are several ways to prevent
overfitting in the individual NN models of the en-
semble, as presented below.

“Stopped training” as used in THMT is a type of
nonconvergent method, which was initially viewed
with much skepticism as the cost function does not in
general converge to the global minimum. Under the
enormous weight of empirical evidence, theorists have
finally begun to rigorously study the properties of
stopped training (Finnoff et al. 1993). Intuitively, it is

not difficult to see why the global minimum is often
not the best solution. When using linear methods, there
is little danger of overfitting (provided one is not
using too many parameters); hence, the global mini-
mum is the best solution. But with powerful nonlin-
ear methods, the global minimum would be a very
close fit to the data (including the noise), like the solid
curve in Fig. 4. Stopped training, in contrast, would
only have time to converge to the dashed curve in
Fig. 4, which is actually a better solution.

Another approach to prevent overfitting is to
penalize the excessive parameters in the NN model.
The ridge regression method (Chauvin, 1990; Tang
et al. 1994; Tangang et al. 1998a, their appendix)
modifies the cost function in (3) by adding weight
penalty terms, that is,

J z z c w c wk dk ij jk= −( ) + + ∑∑∑ 2
1

2
2

2~ , (4)

with c
1
,
 
c

2
 positive constants, thereby forcing unimpor-

tant weights to zero.
Another alternative is network pruning, where

insignificant weights are removed. Such methods have
oxymoronic names like “optimal brain damage” (Le
Cun et al. 1990). With appropriate use of penalty and
pruning methods, the global minimum solution may
be able to avoid overfitting. A comparison of the
effectiveness of nonconvergent methods, penalty
methods, and pruning methods is given by Finnoff
et al. (1993).

In summary, the nonlinearity in the NN model
introduces two problems: (i) the presence of local
minima in the cost function, and (ii) overfitting. Let
D be the number of data points and P the number of
parameters in the model. For many applications of NN
in robotics and pattern recognition, there is almost an
unlimited amount of data, so that D >> P, whereas in
contrast, D ~ P in low-frequency meteorological–
oceanographic studies. The local minima problem is
present when D >> P, as well as when D ~ P. However,
overfitting tends to occur when D ~ P but not when D
>> P. Ensemble averaging has been found to be
effective in helping the NNs to cope with local minima
and overfitting problems.

5. Prefiltering the data fields

Let us now examine obstacle b, that is, the spatially
large data fields. Clearly if data from each spatial grid
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is to be an input neuron, the NN will have so many
parameters that the problem becomes ill conditioned.
We need to effectively compress the input (and out-
put) data fields by a prefiltering process. PCA analy-
sis is widely used to compress large data fields
(Preisendorfer 1988).

In the PCA representation, we have

x t a t ei n in
n

( ) = ( )∑ , (5)

and

a t x t en i in
i

( ) = ( )∑ , (6)

where e
n
 and a

n
 are the nth mode PCA and its time

coefficient, respectively, with the PCAs forming an
orthonormal basis. PCA maximizes the variance of
a

1
(t) and then, from the residual, maximizes the vari-

ance of a
2
(t), and so forth for the higher modes, under

the constraint of orthogonality for the {e
n
}. If the origi-

nal data x
i
(i = 1, . . . , I) imply a very large number of

input neurons, we can usually capture the main vari-
ance of the input data and filter out noise by using the
first few PCA time series a

n
(n = 1, . . ., N), with N <<

I, thereby greatly reducing the number of input neu-
rons and the size of the NN model.

In practice, we would need to provide information
on how the {a

n
} has been evolving in time prior to mak-

ing our forecast. This is usually achieved by provid-
ing {a

n
(t)}, { a

n
(t−∆t)}, . . ., {a

n
(t−m∆t)}, that is, some

of the earlier values of {a
n
}, as input. Compression of

input data in the time dimension is possible with the
extended PCA or EOF (EPCA or EEOF) method
(Weare and Nasstrom 1982; Graham et al. 1987).

In the EPCA analysis, copies of the original data
matrix X

ij
 = x

i
(t

j
) are stacked with time lag τττττ into a larger

matrix X′,

′ = ( )+ +X X X XT T T T...ij ij ij n, , , ,τ τ (7)

where the superscript T denotes the transpose and X
ij+n τ

= x
i
(t

j
 + nτ). Applying the standard PCA analysis to

X′ yields the EPCAs, with the corresponding time se-
ries {a

n
′}, which because time-lag information has al-

ready been incorporated into the EPCAs, could be used
instead of {a

n
(t)}, { a

n
(t − ∆t)}, . . . {a

n
(t − m∆t)} from

the PCA analysis, thereby drastically reducing the
number of input neurons.

This reduction in the input neurons by EPCAs
comes with a price, namely the time-domain filtering
automatically associated with the EPCA analysis,
which results in some loss of input information.
Monahan et al. (1998, manuscript submitted to
Atmos.–Ocean) found that the EPCAs could become
degenerate if the lag τ was close to the integral
timescale of standing waves in the data. While there
are clearly trade-offs between using PCAs and using
EPCAs, our experiments with forecasting the tropical
Pacific SST found that the much smaller networks re-
sulting from the use of EPCAs tended to be less prone
to overfitting than the networks using PCAs.

We are also studying other possible prefiltering
processes. Since CCA often uses EPCA to prefilter the
predictor and predictand fields (Barnston and
Ropelewski 1992), we are investigating the possibil-
ity of the NN model using the CCA as a prefilter, that
is, using the CCA modes instead of the PCA or EPCA
modes. Alternatively, we may argue that all these
prefilters are linear processes, whereas we should use a
nonlinear prefilter for a nonlinear method such as NN.
We are investigating the possibility of using NN mod-
els as nonlinear PCAs to do the prefiltering (section 8).

6. Interpreting the NN model

We now turn to obstacle c, namely, the great diffi-
culty in understanding the nonlinear NN model results.
In particular, is there a meaningful interpretation of
those mysterious neurons in the hidden layer?

Consider a simple NN for forecasting the tropical
Pacific wind stress field. The input consists of the first
11 EPCA time series of the wind stress field (from The
Florida State University), plus a sine and cosine func-
tion to indicate the phase with respect to the annual
cycle. The single hidden layer has three neurons, and
the output layer the same 11 EPCA time series one
month later. As the values of the three hidden neurons
can be plotted in 3D space, Fig. 5 shows their trajec-
tory for selected years. From Fig. 5 and the trajecto-
ries of other years (not shown), we can identify regions
in the 3D phase space as the El Niño warm event phase
and its precursor phase and the cold event and its pre-
cursor. One can issue warm event or cold event fore-
casts whenever the system enters the warm event
precursor region or the cold event precursor region, re-
spectively. Thus the hidden layer spans a 3D phase
space for the El Niño–Southern Oscillation (ENSO)
system and is, thus, a higher-dimension generalization
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of the 2D phase space based on the POP method (Tang
1995).

Hence we interpret the NN as a projection from the
input space onto a phase space, as spanned by the neu-
rons in the hidden layer. The state of the system in the
phase space then allows a projection onto the output
space, which can be the same input variables some
time in the future, or other variables in the future. This
interpretation provides a guide for choosing the appro-
priate number of neurons in the hidden layer; namely,
the number of hidden neurons should be the same as
the embedding manifold for the system. Since the
ENSO system is thought to have only a few degrees
of freedom (Grieger and Latif 1994), we have limited
the number of hidden neurons to about 3–7 in most of
our NN forecasts for the tropical Pacific, in contrast
to the earlier study by Derr and Slutz (1994), where
30 hidden neurons were used. Our approach for gen-
erating a phase space for the ENSO attractor with an
NN model is very different from that of Grieger and
Latif (1994), since their phase space was generated
from the model output instead of from the hidden
layer. Their approach generated a 4D phase space from
using four PCA time series as input and as output,
whereas our approach did not have to limit the num-
ber of input or output neurons to generate a low-
dimensional phase space for the ENSO system.

In many situations, the NN
model is compared with a linear
model, and one wants to know
how nonlinear the NN model
really is. A useful diagnostic
tool to measure nonlinearity is
spectral analysis (Tangang et al.
1998b). Once a network has
been trained, we replace the N
input signals by artificial sinu-
soidal signals with frequencies
ω

1
, ω

2
, . . ., ω

N
, which were care-

fully chosen so that the nonlin-
ear interactions of two signals of
frequencies ω

i
 and ω

j
 would

generate frequencies ω
i
 + ω

j
 and

ω
i
 − ω

j
 not equal to any of

the original input frequencies.
The amplitude of a sinusoidal
signal is chosen so as to yield
the same variance as that of the
original real input data. The
output from the NN with the
sinusoidal inputs is spectrally

analyzed (Fig. 6). If the NN is basically linear, spec-
tral peaks will be found only at the original input fre-
quencies. The presence of an unexpected peak at
frequency ω′, equaling ω

i
 + ω

j
 or ω

i
 − ω

j
 for some

i, j, indicates a nonlinear interaction between the ith
and the j th predictor time series. For an overall mea-
sure of the degree of nonlinearity of an NN, we can
calculate the total area under the output spectrum, ex-
cluding the contribution from the original input fre-
quencies, and divide it by the total area under the
spectrum, thereby yielding an estimate of the portion
of output variance that is due to nonlinear interactions.
Using this measure of nonlinearity while forecasting
the regional SSTA in the equatorial Pacific, Tangang
et al. (1998b) found that the nonlinearity of the NN
tended to vary with forecast lead time and with geo-
graphical location.

7. Forecasting the tropical Pacific SST

Many dynamical and statistical methods have been
applied to forecasting the ENSO system (Barnston
et al. 1994). Tangang et al. (1997) forecasted the SSTA
in the Niño 3.4 region (Fig. 7) with NN models using
several PCA time series from the tropical Pacific wind
stress field as predictors. Tangang et al. (1998a) com-

FIG. 5. The values of the three hidden neurons plotted in 3D space for the years 1972,
1973, 1976, 1982, 1983, and 1988. Projections onto 2D planes are also shown. The small
circles are for the months from January to December, and the two “+” signs for January and
February of the following year. El Niño warm events occurred during 1972, 1976, and 1982,
while a cold event occurred in 1988. In 1973 and 1983, the Tropics returned to cooler con-
ditions from an El Niño. Notice the similarity between the trajectories during 1972, 1976,
and 1982, and during 1973, 1983, and 1988. In years with neither warm nor cold events, the
trajectories oscillate randomly near the center of the cube. From these trajectories, we can
identify the precursor phase regions for warm events and cold events, which could allow us
to forecast these events.
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pared the relative merit of using the sea level pressure
(SLP) as predictor versus the wind stress as predictor,
with the SLP emerging as the better predictor, espe-
cially at longer lead times. The reason may be that the
SLP is less noisy than the wind stress; for example,
the first seven modes of the tropical pacific SLP ac-
counted for 81% of the total variance, versus only 54%
for the seven wind stress modes. In addition, Tangang
et al. (1998a) introduced the approach of ensemble
averaging NN forecasts with randomly initialized
weights to give better forecasts. The best forecast skills
were found over the western-central and central equa-
torial regions (Niño 4 and 3.4) with lesser
skills over the eastern regions (Niño 3,
P4, and P5) (Fig. 7).

To further simplify the NN models,
Tangang et al. (1998b) used EPCAs in-
stead of PCAs and a simple pruning
method. The spectral analysis method
was also introduced to interpret the non-
linear interactions in the NN, showing
that the nonlinearity of the networks
tended to increase with lead time and to
become stronger for the eastern regions
of the equatorial Pacific Ocean.

THMT compare the correlation skills of NN, CCA,
and multiple linear regression (LR) in forecasting the
Niño 3 SSTA index. First the PCAs of the tropical
Pacific SSTA field and the SLP anomaly field were
calculated. The same predictors were chosen for all
three methods, namely the first seven SLP anomaly
PCA time series at the initial month, and 3 months, 6
months, and 9 months before the initial month (a
total of 7 × 4 = 28 predictors); the first 10 SSTA PCA
time series at the initial month; and the Niño 3 SSTA
at the initial month. These 39 predictors were then
further compressed to 12 predictors by an EPCA, and
cross-validated model forecasts were made at various
lead times after the initial month. Ten CCA modes
were used in the CCA model, as fewer CCA modes
degraded the forecasts. Figure 8 shows that the NN has
better forecast correlation skills than CCA and LR at
all lead times, especially at the 12-month lead time
(where NN has a correlation skill of 0.54 vs 0.49 for
CCA). Figure 9 shows the cross-validated forecasts of
the Niño 3 SSTA at 6-month lead time (THMT). In
other tropical regions, the advantage of NN over CCA
was smaller, and in Niño 4, the CCA slightly outper-
formed the NN model. In this comparison, CCA had
an advantage over the NN and LR: While the
predictand for the NN and LR was Niño 3 SSTA, the
predictands for the CCA were actually the first 10 PCA
modes of the tropical Pacific SSTA field, from which
the regional Niño 3 SSTA was then calculated. Hence
during training, the CCA had more information avail-
able by using a much broader predictand field than the
NN and LR models, which did not have predictand
information outside Niño 3.

As the extratropical ENSO variability is much
more nonlinear than in the Tropics (Hoerling et al.
1997), it is possible that the performance gap between
the nonlinear NN and the linear CCA may widen for
forecasts outside the Tropics.

FIG. 6. A schematic spectral analysis of the output from an NN
model, where the input were artificial sinusoidal time series of
frequencies 2.0, 3.0, and 4.5 (arbitrary units). The three main peaks
labeled A, B, and C correspond to the frequencies of the input time
series. The nonlinear NN generates extra peaks in the output spec-
trum (labeled a–i). The peaks c and g at frequencies of 2.5 and
6.5, respectively, arose from the nonlinear interactions between
the main peaks at 2.0 (peak A) and 4.5 (peak C) (as the differ-
ence of the frequencies between C and A is 2.5, and the sum of
their frequencies is 6.5).

FIG. 7. Regions of interest in the Pacific. SSTA for these regions are used as
the predictands in forecast models.
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8. Nonlinear principal component
analysis

PCA is popular because it offers the most efficient
linear method for reducing the dimensions of a data-
set and extracting the main features. If we are not
restricted to using only linear transformations, even
more powerful data compression and extraction is
generally possible. The NN offers a way to do nonlin-
ear PCA (NLPCA) (Kramer 1991; Bishop 1995).

In NLPCA, the NN outputs are the same as the
inputs, and data compression is achieved by having
relatively few hidden neurons forming a “bottleneck”

layer (Fig. 10). Since there are few bottleneck neurons,
it would in general not be possible to reproduce the
inputs exactly by the output neurons. How many hid-
den layers would such an NN require in order to per-
form NLPCA? At first, one might think only one
hidden layer would be enough. Indeed with one
hidden layer and linear activation functions, the NN
solution should be identical to the PCA solution.
However, even with nonlinear activation functions, the
NN solution is still basically that of the linear PCA
solution (Bourlard and Kamp 1988). It turns out that
for NLPCA, three hidden layers are needed (Fig. 10)
(Kramer 1991).

The reason is that to properly model nonlinear con-
tinuous functions, we need at least one hidden layer
between the input layer and the bottleneck layer, and
another hidden layer between the bottleneck layer and
the output layer (Cybenko 1989). Hence, a nonlinear
function maps from the higher-dimension input space
to the lower-dimension space represented by the
bottleneck layer, and then an inverse transform maps
from the bottleneck space back to the original higher-
dimensional space represented by the output layer,
with the requirement that the output be as close to the
input as possible. One approach chooses to have only
one neuron in the bottleneck layer, which will extract a
single NLPCA mode. To extract higher modes, this first
mode is subtracted from the original data, and the pro-
cedure is repeated to extract the next NLPCA mode.

Using the NN in Fig. 10, A. H. Monahan (1998,
personal communication) extracted the first NLPCA
mode for data from the Lorenz (1963) three-component
chaotic system. Figure 11 shows the famous Lorenz
attractor for a scatterplot of data in the x–z plane. The
first PCA mode is simply a horizontal line, explaining
60% of the total variance, while the first NLPCA is
the U-shaped curve, explaining 73% of the variance.
In general, PCA models data with lines, planes, and hy-
perplanes for higher dimensions, while the NLPCA

uses curves and curved surfaces.
Malthouse (1998) pointed out a

limitation of the Kramer (1991)
NLPCA method, with its three hid-
den layers. When the curve from
the NLPCA crosses itself, for ex-
ample forming a circle, the method
fails. The reason is that with only
one hidden layer between the input
and the bottleneck layer, and again
one hidden layer between the
bottleneck and the output, the non-

FIG. 8. Forecast correlation skills for the Niño 3 SSTA by the
NN, the CCA, and the LR at various lead times (THMT 1998).
The cross-validated forecasts were made from the data record
(1950–97) by first reserving a small segment of test data, training
the models using data not in the segment, then computing fore-
cast skills over the test data—with the procedure repeated by shift-
ing the segment of test data around the entire record.

FIG. 9. Forecasts of the Niño 3 SSTA (in °C) at 6-month lead time by an NN model
(THMT 1998), with the forecasts indicated by circles and the observations by the solid
line. With cross-validation, only the forecasts over the test data are shown here.
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linear mapping functions are limited to continuous
functions (Cybenko 1989), which of course cannot
identify 0° with 360°. However, we believe this fail-
ure can be corrected by having two hidden layers be-
tween the input and bottleneck layers, and two hidden
layers between the bottleneck and output layers, since
any reasonable function can be modeled with two hid-
den layers (Hertz et al. 1991, 142). As the PCA is a
cornerstone in modern meteorology–oceanography, a
nonlinear generalization of the PCA method by NN
is indeed exciting.

9. Neural networks and variational
data assimilation

Variational data assimilation (Daley 1991) arose
from the need to use data to guide numerical models
[including coupled atmosphere–ocean models (Lu and
Hsieh 1997, 1998a, 1998b)], whereas neural network
models arose from the desire to model the vast em-
pirical learning capability of the brain. With such
diverse origins, it is no surprise that these two meth-
ods have evolved to prominence completely indepen-
dently. Yet from section 3, the minimization of the cost
function (3) by adjusting the parameters of the NN
model is exactly what is done in variational (adjoint)
data assimilation, except that here the governing equa-
tions are the neural network equations, (1) and (2),
instead of the dynamical equations (see appendix for
details).

Functionally, as an empirical modeling technique,
NN models appear closely related to the familiar lin-
ear empirical methods, such as CCA, SVD, PCA, and
POP, which belong to the class of singular value or
eigenvalue methods. This apparent similarity is some-
what misleading, as structurally, the NN model is a
variational data assimilation method. An analogy
would be the dolphin, which lives in the sea like a fish,
but is in fact a highly evolved mammal, hence the
natural bond with humans. Similarly, the fact that the
NN model is a variational data assimilation method
allows it to be bonded naturally to a dynamical model
under a variational assimilation formulation. The dy-
namical model equations can be placed on equal foot-
ing with the NN model equations, with both the
dynamical model parameters and initial conditions
and the NN parameters found by minimizing a single
cost function. This integrated treatment of the empiri-
cal and dynamical parts is very different from present
forecast systems such as Model Output Statistics

(Wilks 1995; Vislocky and Fritsch 1997), where the
dynamical model is run first before the statistical
method is applied.

What good would such a union bring? Our present
dynamical models have good forecast skills for some
variables and poor skills for others (e.g., precipitation,
snowfall, ozone concentration, etc.). Yet there may be
sufficient data available for these difficult variables
that empirical methods such as NN may be useful in
improving their forecast skills. Also, hybrid coupled
models are already being used for El Niño forecast-
ing (Barnett et al. 1993), where a dynamical ocean
model is coupled to an empirical atmospheric model.
A combined neural–dynamical approach may allow
the NN to complement the dynamical model, leading
to an improvement of modeling and prediction skills.

10. Conclusions

The introduction of empirical or statistical meth-
ods into meteorology and oceanography has been
broadly classified as having occurred in four distinct
stages: 1) linear regression (and correlation analysis),
2) PCA analysis, 3) CCA (and SVD), and 4) NN.
These four stages correspond respectively to the evolv-
ing needs of finding 1) a linear relation (or correlation)
between two variables x and z; 2) the correlated pat-
terns within a set of variables x

1
, . . ., x

n
; 3) the linear

relations between a set of variables x
1
, . . ., x

n
 and an-

other set of variables z
1
, . . ., z

m
; and 4) the nonlinear

FIG. 10. The NN model for calculating NLPCA. There are three
hidden layers between the input layer and the output layer. The
middle hidden layer is the “bottleneck” layer. A nonlinear func-
tion maps from the higher-dimension input space to the lower-
dimension bottleneck space, followed by an inverse transform
mapping from the bottleneck space back to the original space rep-
resented by the outputs, which are to be as close to the inputs as
possible. Data compression is achieved by the bottleneck, with
the NLPCA modes described by the bottleneck neurons.
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relations between x
1
, . . ., x

n
 and z

1
, . . ., z

m
. Without ex-

ception, in all four stages, the method was first in-
vented in a biological–psychological field, long before
its adaptation by meteorologists and oceanographers
many years or decades later.

Despite the great popularity of the NN models in
many fields, there are three obstacles in adapting
the NN method to meteorology–oceanography: (a)
nonlinear instability, especially with a short data
record; (b) overwhelmingly large spatial data fields;
and (c) difficulties in interpretting the nonlinear NN
results. In large-scale, low-frequency studies, where
data records are in general short, the potential success
of the unstable nonlinear NN model against stable lin-

ear models, such as the CCA, de-
pends critically on our ability to
tame nonlinear instability.

Recent research shows that all
three obstacles can be overcome.
For obstacle a, ensemble averaging
is found to be effective in control-
ling nonlinear instability. Penalty
and pruning methods and noncon-
vergent methods also help. For b,
the PCA method is found to be an
effective prefilter for greatly reduc-
ing the dimension of the large spa-
tial data fields. Other possible
prefilters include the EPCA,
rotated PCA, CCA, and nonlinear
PCA by NN models. For c, the
mysterious hidden layer can be
given a phase space interpretation,
and a spectral analysis method aids
in understanding the nonlinear NN
relations. With these and future im-
provements, the nonlinear NN
method is evolving to a versatile
and powerful technique capable of
augmenting traditional linear statis-
tical methods in data analysis and
in forecasting. The NN model is a
type of variational (adjoint) data as-
similation, which further allows it
to be linked to dynamical models
under adjoint data assimilation,
potentially leading to a new class of
hybrid neural–dynamical models.

Acknowledgments. Our research on
NN models has been carried out with the

help of many present and former students, especially Fredolin T.
Tangang and Adam H. Monahan, to whom we are most grateful.
Encouragements from Dr. Anthony Barnston and Dr. Francis
Zwiers are much appreciated. W. Hsieh and B. Tang have been
supported by grants from the Natural Sciences and Engineering
Research Council of Canada, and Environment Canada.

Appendix:  Connecting neural networks
with variational data assimilation

With a more compact notation, the NN model in
section 3 can be simply written as

z = N(x,q), (A1)

FIG. 11. Data from the Lorenz (1963) three-component (x, y, z) chaotic system were
used to perform PCA and NLPCA (using the NN model shown in Fig. 10), with the
results displayed as a scatterplot in the x–z plane. The horizontal line is the first
PCA mode, while the curve is the first NLPCA mode (A. H. Monahan 1998, personal
communication).
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where x and z are the input and output vectors, respec-
tively, and q is the parameter vector containing w

ij
, w~

jk
,

b
j
, and b

~
k
. A Lagrange function, L, can be introduced,

L J= + −( )•∑µµ z N , (A2)

where the model constraint (A1) is incorporated in the
optimization with the help of the Lagrange multipli-
ers (or adjoint variables) µµµµµ. The NN model has now
been cast in a standard adjoint data assimilation for-
mulation, where the Lagrange function L is to be op-
timized by finding the optimal control parameters q,
via the solution of the adjoint equations for the
adjoint variables µµµµµ (Daley 1991). Thus, the NN jar-
gon “back-propagation” is simply “backward integra-
tion of the adjoint model” in adjoint data assimilation
jargon.

Often, the predictands are the same variables as the
predictors, only at a different time; that is, (A1) and
(A2) become

z(t +∆t) = N(z
d
(t),q), (A3)

L J t t t td= + ( ) +( ) − ( )( )[ ]•∑ µ z N z q∆ , , (A4)

where ∆t is the forecast lead time. For notational sim-
plicity, we have ignored some details in (A3) and (A4):
for example, the forecast made at time t could use not
only z

d 
(t), but also earlier data; and N may also de-

pend on other predictor or forcing data x
d
.

There is one subtle difference between the
feedforward NN model (A4) and standard adjoint data
assimilation—the NN model starts with the data z

d 
at

every time step, whereas the dynamical model takes
the data as initial condition only at the first step. For
subsequent steps, the dynamical model takes the
model output of the previous step and integrates for-
ward. So in adjoint data assimilation with dynamic
models, z

d 
(t) in Eq. (A4) is replaced by z(t), that is,

L J t t t t= + ( ) +( ) − ( )( )[ ]•∑µµ z N z q∆ , , (A5)

where only at the initial time t = 0 is z(0) = z
d 
(0). We

can think of this as a strong constraint of continuity
(Daley 1991), since it imposes that during the data
assimilation period [0,T], the solution has to be con-
tinuous. In contrast, the training scheme of the NN has
no constraint of continuity.

However, the NN training scheme does not have
to be without a continuity constraint. Tang et al. (1996)

proposed a new NN training scheme, where the
Lagrange function is

L J t t t t

t t t t

d= + ( ) − ( )[ ] + ( ) − ( )[ ]
+ ( ) +( ) − ( )( )[ ]

∑ ∑
∑ •

α β~ ~

~ , ,

z z z z

z N z q

2 2

µµ ∆

where, z~, the input to the NN model, is also adjusted
in the optimization process, along with the model pa-
rameter vector q. The second term on the right-hand
side of (A6), the relative importance of which is con-
trolled by the coefficient α, is a constraint to force the
adjustable inputs to be close to the data. The third term,
whose relative importance is controlled by the coeffi-
cient β, is a constraint to force the inputs to be close
to the outputs of the previous step. However, this term
does not dictate that the inputs have to be the outputs
of the previous step. It is thus a weak constraint of
continuity (Daley 1991). Note that α and β are scalar
constants, whereas µµµµµ(t) is a vector of adjoint variables.
The weak continuity constraint version (A6) can thus
be thought of as the middle ground between the strong
continuity constraint version (A5) and no continuity
constraint version (A4).

Let us now couple an NN model to a dynamical
model under an adjoint assimilation formulation. This
kind of a hybrid model may benefit a system where
some variables are better simulated by a dynamical
model, while other variables are better simulated by
an NN model.

Suppose we have a dynamical model with govern-
ing equations in discrete form,

u(t +δt) = M (u, v, p, t), (A7)

where u denotes the vector of state variables in the
dynamical model, v denotes the vector of variables not
modeled by the dynamical model, and p denotes a vec-
tor of model parameters and/or initial conditions. Sup-
pose the v variables, which could not be forecasted
well by a dynamical model, could be forecasted with
better skills by an NN model, that is,

v(t +∆t) = N(u, v, q, t), (A8)

where the NN model N has inputs u and v, and param-
eters q.

If observed data u
d
 and v

d
 are available, then we

can define a cost function,

(A6)
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J d d

d d

= −( ) −( )
+ −( ) −( )
∑

∑
u u U u u

v v V v v

T

T
,

(A9)

where the superscript T denotes the transpose and U
and V the weighting matrices, often computed from
the inverses of the covariance matrices of the obser-
vational errors. For simplicity, we have omitted the ob-
servational operator matrices and terms representing
a priori estimates of the parameters, both commonly
used in actual adjoint data assimilation. The Lagrange
function L is given by

L J t t t

t t t

= + ( ) +( ) −[ ]
+ ( ) +( ) −[ ]

∑
∑

λλ

µµ

T

T

u M

v N

δ

∆ ,
(A10)

where λλλλλ and µµµµµ are the vectors of adjoint variables. This
formulation places the dynamical model M  and the
neural network model N on equal footing, as both are
optimized (i.e., optimal values of p and q are found)
by minimizing the Lagrange function L—that is, the
adjoint equations for λλλλλ and µµµµµ are obtained from the
variation of L with respect to u and v, while the gradi-
ents of the cost function with respect to p and q are
found from the variation of L with respect to p and q.
Note that without v and N, Eqs. (A7), (A9), and (A10)
simply reduce to the standard adjoint assimilation
problem for a dynamical model; whereas without u
and M , Eqs. (A8), (A9), and (A10) simply reduce to
finding the optimal parameters q for the NN model.

Here, the hybrid neural-dynamical data assimila-
tion model (A10) is in a strong continuity constraint
form. Similar hybrid models can be derived for a weak
continuity constraint or no continuity constraint.
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