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ABSTRACT

Empirical or statistical methods have been introduced into meteorology and oceanography in four distinct stages:
1) linear regression (and correlation), 2) principal component analysis (PCA), 3) canonical correlation analysis, and re-
cently 4) neural network (NN) models. Despite the great popularity of the NN models in many fields, there are three
obstacles to adapting the NN method to meteorology—oceanography, especially in large-scale, low-frequency studies:
(a) nonlinear instability with short data records, (b) large spatial data fields, and (c) difficulties in interpretingrthe nonl
ear NN results. Recent research shows that these three obstacles can be overcome. For obstacle (a), ensemble averaging
was found to be effective in controlling nonlinear instability. For (b), the PCA method was used as a prefilter for com-
pressing the large spatial data fields. For (c), the mysterious hidden layer could be given a phase space interpretation,
and spectral analysis aided in understanding the nonlinear NN relations. With these and future improvements, the non-
linear NN method is evolving to a versatile and powerful technique capable of augmenting traditional linear statistical
methods in data analysis and forecasting; for example, the NN method has been used for El Nifio prediction and for
nonlinear PCA. The NN model is also found to be a type of variational (adjoint) data assimilation, which allows it to be
readily linked to dynamical models under adjoint data assimilation, resulting in a new class of hybrid neural-dynamical

models.
1. Introduction ography in the mid-1970s. 3) To linearly relate a set
of variablesx, . . .,x to another set of variables
The introduction of empirical or statistical methz,, . . .,z , the canonical correlation analysis (CCA)

ods into meteorology and oceanography can as invented by Hotelling (1936), and became popu-
broadly classified as having occurred in four distintr in meteorology and oceanography after Barnett and
stages: 1) Regression (and correlation analysis) viareisendorfer (1987). It is remarkable that in each of
invented by Galton (1885) to find a linear relatiothese three stages, the technique was first invented in
between a pair of variablesandz. 2) With more vari- a biological-psychological field, long before its adap-
ables, the principal component analysis (PCA), alsation by meteorologists and oceanographers many
known as the empirical orthogonal function (EOR)ears or decades later. Not surprisingly, stage 4, in-
analysis, was introduced by Pearson (1901) to find tha&ving the neural network (NN) method, which is just
correlated patterns in a set of variabtgs . .,x . It starting to appear in meteorology—oceanography, also
became popular in meteorology only after Lorentrad a biological-psychological origin, as it developed
(1956) and was later introduced into physical ocedinem investigations into the human brain function. It
can be viewed as a generalization of stage 3, as it
—_— nonlinearlyrelates a set of variabl&s. . .,x to an-
Corresponding author addresBr. W_illiam Hsieh, Oc_eanogra_-_other set of variable§, oz,
phy, De_pt. of Earth and Ocean Sciences, University of British The human brain is one of the great wonders of
Columbia, Vancouver, BC V6T 174, Canada. . )
E-mail: willam@eos.ubc.ca nature—even a very young child can recognize people
In final form 4 May 1998. and objects much better than the most advanced arti-
© 1998 American Meteorological Society ficial intelligence program running on a supercom-
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puter. The brain is vastly more robust and fault tolgerconnecting the neurons. The hiatus ended in the
ant than a computer. Though the brain cells are caecond half of the 1980s, with the rediscovery of the
tinually dying off with age, the person continues tback-propagation algorithm (Rumelhart et al. 1986),
recognize friends last seen years ago. This robustnebsch successfully solved the problem of finding the
is the result of the brain’s massively parallel compuitreights in a model with hidden layers. Since then, NN
ing structure, which arises from the neurons beingsearch rapidly became popular in artificial intelli-
interconnected by a network. It is this parallel congence, robotics, and many other fields (Crick 1989).
puting structure that allows the neural network, witReural networks were found to outperform the linear
typical neuron “clock speeds” of a few millisecond€8ox—Jenkins models (Box and Jenkins 1976) in fore-
about a millionth that of a computer, to outperformasting time series with short memory and at longer
the computer in vision, motor control, and many othkrad times (Tang et al. 1991). During 1991-92, the
tasks. Santa Fe Institute sponsored the Santa Fe Time Series
Fascinated by the brain, scientists began studyiBgediction and Analysis Competition, where all pre-
logical processing in neural networks in the 194@fction methods were invited to forecast several time
(McCulloch and Pitts 1943). In the late 1950s and eadgries. For every time series in the competition, the
1960s, F. Rosenblatt and B. Widrow independentlyinner turned out to be an NN model (Weigend and
investigated the learning and computational capabi@ershenfeld 1994).
ity of neural networks (Rosenblatt 1962; Widrow and Among the countless applications of NN models,
Sterns 1985). Thperceptronmodel of Rosenblatt pattern recognition provides many intriguing ex-
consists of a layer of input neurons, interconnectedamples; for example, for security purposes, the next
an output layer of neurons. After the limits of thgeneration of credit cards may carry a recorded elec-
perceptron model were found (Minsky and Papdronic image of the owner. Neural networks can now
1969), interests in neural network computing wanechrrectly verify the bearer based on the recorded im-
as it was felt that neural networks (also calleae, a nontrivial task as the illumination, hair, glasses,
connectionist models) did not offer any advantage owanrd mood of the bearer may be very different from
conventional computing methods. those in the recorded image (Javidi 1997). In artifi-
While it was recognized that the perceptron modehl speech, NNs have been successful in pronounc-
was limited by having the output neurons linked ding English text (Sejnowski and Rosenberg 1987).
rectly to the neurons, the more interesting problemAlso widely applied to financial forecasting (Trippi
having one or more “hidden” layers of neurons (Fig. &nd Turban 1993; Gately 1995; Zirilli 1997), NN
between the input and output layer was mothballed duedels are now increasingly being used by bank and
to the lack of an algorithm for finding the weights infund managers for trading stocks, bonds, and foreign
currencies. There are well over 300 books on artifi-
cial NNs in the subject guide Books in Print, 1996—
97 (published by R.R. Bowker), including some good
texts (e.g., Bishop 1995; Ripley 1996; Rojas 1996).
By now, the reader must be wondering why these
ubiquitous NNs are not more widely applied to
meteorology and oceanography. Indeed, the purpose
of this paper is to examine the serious problems that
can arise when applying NN models to meteorology
and oceanography, especially in large-scale, low-
frequency studies, and the attempts to resolve these
problems. Section 2 explains the difficulties encoun-
tered with NN models, while section 3 gives a basic
introduction to NN models. Sections 4-6 examine vari-
Input layer layer Output layer  oys solutions to overcome the difficulties mentioned in
Fic. 1. A schematic diagram illustrating a neural network modSFCtIon 2 Sectl_on ! ap_plles the NN method to EI Nifo
with one hidden layer of neurons between the input layer and fggecastmg, Wh”e section 8 shows how th? N_N can be
output layer. For a feed-forward network, the information onlyS€d as nonlinear PCA. The NN model is linked to
flows forward starting from the input neurons. variational (adjoint) data assimilation in section 9.
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2. Difficulties in applying neural extensive research on how to discretize the advec-
networks to meteorology — tive terms correctly. Thus the challenge for NN
oceanography models is how to control nonlinear instability, with

only the relatively short data records available.

Elsner and Tsonis (1992) applied the NN method (o) Meteorological and oceanographic data tend to
forecasting various time series, and comparing with fore- cover numerous spatial grids or stations, and if
casts by autoregressive (AR) models. Unfortunately, each station serves as an input to an NN, then the
because of the computer bug noted in their corrigen- NN will have a very large number of inputs and
dum, the advantage of the NN method was not as con-associated weights. The optimal search for many
clusive as in their original paper. Early attempts to use weights over the relatively short temporal records
neural networks for seasonal climate forecasting were would be an ill-conditioned problem. Hence, even
also at best of mixed success (Derr and Slutz 1994;though there had been some success with NNs in

Tang et al. 1994), showing little evidence that exotic, seasonal forecasting using a small number of pre-

nonlinear NN models could beat standard linear sta- dictors (Navone and Ceccatto 1994; Hastenrath

tistical methods such as the CCA method (Barnett andet al. 1995), it was unclear how the method could

Preisendorfer 1987; Barnston and Ropelewski 1992; be generalized to large data fields in the manner

Shabbar and Barnston 1996) or its variant, the singu-of CCA or SVD methods.

lar value decomposition (SVD) method (Brethertoft) The interpretation of the nonlinear relations found

et al. 1992), or even the simpler principal oscillation by an NN is not easy. Unlike the parameters

pattern (POP) method (Penland 1989; von Storch from a linear regression model, the weights found
et al. 1995; Tang 1995). by an NN model are nearly incomprehensible.

There are three main reasons why NNs have diffi- Furthermore, the “hidden” neurons have always
culty being adapted to meteorology and oceanography:been a mystery.

(a) nonlinear instability occurs with short data records,

(b) large spatial data fields have to be dealt with, and

(c) the nonlinear relations found by NN models are ff¢0st function

less comprehensible than the linear relations found|by

regression methods. Let us examine each of these jif-

ficulties.

(a) Relative to the timescale of the phenomena one i
trying to analyze or forecast, most meteorological 1
and oceanographic data records are short, espe-
cially for climate studies. While capable of mod
eling the nonlinear relations in the data, NN mod-
els have many free parameters. With a short data
record, the problem of solving for many parameters
is ill conditioned; that is, when searching for th
global minimum of the cost function associate
with the problem, the algorithm is often stuck i
one of the numerous local minima surrounding the
true global minimum (Fig. 2). Such an NN could 3

give very noisy or completely erroneous forecasts, Fic. 2. A schematic diagram illustrating the cost function sur-

t.hu.s performing fa}r W_Orse_tha_n a simple linear stgze, where depending on the starting condition, the search algo-
tistical model. This situation is analogous to thathm often gets trapped in one of the numerous deep local minima.
found in the early days of numerical weather pr&he local minima labeled 2, 4, and 5 are likely to be reasonable

diction, where the addition of the nonlinear advetacal minima, while the minimum labeled 1 is likely to be a bad
e%e (in that the data was not well fitted at all). The minimum
|

tive terms to the governing equations, instead eled 3 is the global minimum, which could correspond to an

|mpr_ovmg the foreC_aSts of the “near_mOdeI_S_’ _I erfitted solution (i.e., fitted closely to the noise in the data) and
to disastrous nonlinear numerical instabilitiegay, in fact, be a poorer solution than the minima labeled 2, 4,

(Phillips 1959), which were overcome only aftedind 5.
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Over the last few years, the University of Britismext layer of hidden neurons from the current layer of
Columbia Climate Prediction Group has been tryinteurons. The output neuronsare usually calculated
to overcome these three obstacles. The purpose of ltyig linear combination of the neurons in the layer just
paper is to show how these obstacles can be overcobegore the output layer, that is,
For obstacle a, ensemble averaging was found to be
effective in controlling nonlinear instability. Various - ~
penalty, pruning, and nonconvergent methods also 4 = szkyj +by. )
helped. For b, the PCA method was used to greatly !
reduce the dimension of the large spatial data fields.
For ¢, new measures and visualization techniques construct a NN model for forecasting, the predic-
helped in understanding the nonlinear NN relatiomsr variables are used as the input, and the predictands
and the mystery of the hidden neurons. With theggther the same variables or other variables at some
improvements, the NN approach has evolved to a tetgad time) as the output. Wit denoting the observed
nique capable of augmenting the traditional linear stdata, the NN is trained by finding the optimal values
tistical methods currently used. of the weight and bias parameteﬂﬁ,(\ﬁjk, b]., andb,),
Since the focus of this review is on the applicatiomhich will minimize the cost function:
of the NN method to low-frequency studies, we will
only briefly mention some of the higher-frequency 2
applications. As the problem of short data records is J= Z (Zk - de) : (3)
no longer a major obstacle in higher-frequency appli-
cations, the NN method has been successfully usewvimere the rhs of the equation is simply the sum-
areas such as satellite imagery analysis and ocegnared error of the output. The optimal parameters
acoustics (Lee et al. 1990; Badran et al. 1991; IEEEBn be found by a back-propagation algorithm
1991; French et al. 1992; Peak and Tag 1992; Bank@&tumelhart et al. 1986; Hertz et al. 1991). For the
1994; Peak and Tag 1994; Stogryn et al. 199ader familiar with variational data assimilation meth-
Krasnopolsky et al. 1995; Butler et al. 1996; Marzbarus, we would point out that this back propagation is
and Stumpf 1996; Liu et al. 1997). equivalent to the backward integration of the adjoint
equations in variational assimilation (see section 9).
The back-propagation algorithm has now been
3. Neural network models superceded by more efficient optimization algorithms,

To keep within the scope of this paper, we will
limit our survey of NN models to the feed-forward ¥ = tanh(w x)
neural network. Figure 1 shows a network with one 1 f-- : : : : -
hidden layer, where theh neuron in this hidden layer /
is assigned the valea, given in terms of the input /
valuesx by

0.5}

U
Yj =tanh§2 w; X +b, E 1) ;
: -0.5¢€ /

wherew. andb are the weight and bias parameters,
respectively, and the hyperbolic tangent function is 1 E= : L L L : . :
used as the activation function (Fig. 3). Other functions ™ 32 Wox L
besides the hyperbolic tangent could be used for the

activation function, which was designed originally to Fie. 3. The activation functiop= tanhvx+b), shown wittb

simulate the firing or nonfiring of a neuron upon re= 0 The neuron is activated (i.e., outputs a value of nearly +1)
. . . Is from its neiahbors. If there avahen the input signalis above a threshold; otherwise, it remains

CEIV.Ir.lg |npu_t signais g R ifactive (with a value of arounel). The location of the thresh-

additional hidden layers, then equations of the sag)g along thex axis is changed by the bias paramétand the

form as (1) will be used to calculate the values of teeepness of the threshold is changed by the weight
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such as the conjugate gradient method, simulatgd
annealing, and genetic algorithms (Hertz et al. 1991).
Once the optimal parameters are found, the training
is finished, and the network is ready to perform fore-
casting with new input data. Normally the data record
is divided into two, with the first piece used for net-

work training and the second for testing forecasts. Due
to the large number of parameters and the great flex-
ibility of the NN, the model output may fit the data

very well during the training period yet produce poor
forecasts during the test period. This results from
overfitting; that is, the NN fitted the training data so
well that it fitted to the noise, which of course resulted X
in the poor forecasts over the test period (Fig. 4). An

NN model is usually capable of learning the SlgnatL§erfitting: The dashed curve illustrates a good fit to noisy data

in the_ data, but as t_raining progresses, it often staff3licated by the squares), while the solid curve illustrates
learning the noise in the data; that is, the forecastrfitting, where the fit is perfect on the training data (squares)

error of the model over the test period first decreagesis poor on the test data (circles). Often the NN model begins
and then increases as the model starts to learn the n_la{g'ging the training dat_a_as the dashe_d curve, but with further
in the training data. Overfitting is often a serious prolig"ations: ends up overfitting as the solid curve.

lem with NN models, and we will discuss some solu-

tions in the next section. When forecasting at longer lead times, there are

Consider the special case of a NN with no hiddéwo possible approaches. The iterated forecasting ap-
layers—inputs being several values of a time seriggpach trains the network to forecast one time step
output being the prediction for the next value, and therward, then use the forecasted result as input to the
input and output layers connected by linear activatisame network for the next time step, and this process
functions. Training this simple network is then equivas iterated until a forecast for theh time step is
lent to determining an AR model through least squamastained. The other is the direct or “jump” forecast
regression, with the weights of the NN correspondiagpproach, where a network is trained for forecasting
to the weights of the AR model. Hence the NN modat a lead time afitime steps, with a different network
reduces to the well-known AR model in this limit. for each value af. For deterministic chaotic systems,

In general, most NN applications have only one aerated forecasts seem to be better than direct forecasts
two hidden layers, since it is known that to approx{Gershenfeld and Weigend 1994). For noisy time
mate a set of reasonable functidjgx}) to a given series, it is not clear which approach is better. Our
accuracy, at most two hidden layers are needed (Hexxperience with climate data suggested that the direct
etal. 1991, 142). Furthermore, to approxintatetinu- forecast approach is better. Even with “clearning” and
ous functions, only one hidden layer is enougbontinuity constraints (Tang et al. 1996), the iterated
(Cybenko 1989; Hornik et al. 1989). In our models fdorecast method was unable to prevent the forecast
forecasting the tropical Pacific (Tangang et al. 199&trors from being amplified during the iterations.
Tangang et al. 1998a; Tangang et al. 1998b; Tang et al.

1998, manuscript submitted do Climate,hereafter

THMT), we have not usediore than one hidden layer4. Nonlinear instability

There is also an interestidgstinction between the non-

linear modeling capability of NN models and that of Let us examine obstacle a; that is, the application
polynomial expansions. With only a few parametersf NNs to relatively short data records leads to an ill-
the polynomial expansion is only capable of learnirgpnditioned problem. In this case, as the cost function
low-order interactions. In contrast, even a small NN full of deep local minima, the optimal search would
is fully nonlinear and is not limited to learning lowdikely end up trapped in one of the local minima
order interactions. Of course, a small NN can leafRig. 2). The situation gets worse when we either (i)
only a few interactions, while a bigger one can leamake the NN more nonlinear (by increasing the num-
more. ber of neurons, hence the number of parameters), or

Fic. 4. A schematic diagram illustrating the problem of
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(i) shorten the data record. With a different initializanot difficult to see why the global minimum is often

tion of the parameters, the search would usually enot the best solution. When using linear methods, there

up in a different local minimum. is little danger of overfitting (provided one is not
A simple way to deal with the local minima probtsing too many parameters); hence, the global mini-

lem is to use an ensemble of NNs, where their paramdm is the best solution. But with powerful nonlin-

eters are randomly initialized before training. Thear methods, the global minimum would be a very

individual NN solutions would be scattered around tluose fit to the data (including the noise), like the solid

global minimum, but by averaging the solutions frorourve in Fig. 4. Stopped training, in contrast, would

the ensemble members, we would likely obtain a betaly have time to converge to the dashed curve in

ter estimate of the true solution. Tangang et al. (19984g. 4, which is actually a better solution.

found the ensemble approach useful in their forecastsAnother approach to prevent overfitting is to

of tropical Pacific sea surface temperature anomali@snalize the excessive parameters in the NN model.

(SSTA). The ridge regression method (Chauvin, 1990; Tang
An alternative ensemble technique is “bagginggt al. 1994; Tangang et al. 1998a, their appendix)

(abbreviated from bootstrap aggregating) (Breimamodifies the cost function in (3) by adding weight

1996; THMT). First, training pairs, consisting of th@enalty terms, that is,

predictor data available at the time of a forecast and

the forecast target data at some lead time, are formed. 2 -

The available training pairs are separated into a train- J= Z (Zk B de) * Clz WiJ2 TG z Wizk’ (4)

ing set and a forecast test set, where the latter is re-

served for testing the model forecasts only and is wath c,, c, positive constants, thereby forcing unimpor-

used for training the model. The training set is uséaht weights to zero.

to generate an ensemble of NN models, where eachAnother alternative is network pruning, where

member of the ensemble is trained by a subset of th&gnificant weights are removed. Such methods have

training set. The subset is drawn at random witixymoronic names like “optimal brain damage” (Le

replacement from the training set. The subset has €n et al. 1990). With appropriate use of penalty and

same number of training pairs as the training setuning methods, the global minimum solution may

where some pairs in the training set appear more thenable to avoid overfitting. A comparison of the

once in the subset, and about 37% of the training paffectiveness of nonconvergent methods, penalty

in the training set are unused in the subset. Thesethods, and pruning methods is given by Finnoff

unused pairs are not wasted, as they are used to deteat. (1993).

mine when to stop training. To avoid overfitting, In summary, the nonlinearity in the NN model

THMT stopped training when the error variance fromtroduces two problems: (i) the presence of local

applying the model to the set of “unused” pairs startetinima in the cost function, and (ii) overfitting. Let

to increase. By averaging the output from all the ib be the number of data points adhe number of

dividual members of the ensemble, a final output pgrameters in the model. For many applications of NN

obtained. in robotics and pattern recognition, there is almost an
We found ensemble averaging to be most effectivalimited amount of data, so tHat>> P, whereas in

in preventing nonlinear instability and overfittingcontrast,D ~ P in low-frequency meteorological—

However, if the individual ensemble members are seceanographic studies. The local minima problem is

verely overfitting, the effectiveness of ensemble apresent whed >>P, as well as wheb ~P. However,

eraging is reduced. There are several ways to preveverfitting tends to occur whdh~ P but not wherD

overfitting in the individual NN models of the en>> P. Ensemble averaging has been found to be

semble, as presented below. effective in helping the NNs to cope with local minima
“Stopped training” as used in THMT is a type o&nd overfitting problems.

nonconvergent method, which was initially viewed

with much skepticism as the cost function does not in

general converge to the global minimum. Under ttS%s Prefiltering the data fields

enormous weight of empirical evidence, theorists have

finally begun to rigorously study the properties of Let us now examine obstacle b, that is, the spatially

stopped training (Finnoff et al. 1993). Intuitively, it idarge data fields. Clearly if data from each spatial grid
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is to be an input neuron, the NN will have so many This reduction in the input neurons by EPCAs
parameters that the problem becomes ill conditionexmes with a price, namely the time-domain filtering
We need to effectively compress the input (and oatutomatically associated with the EPCA analysis,
put) data fields by a prefiltering process. PCA analyhich results in some loss of input information.
sis is widely used to compress large data fielldonahan et al. (1998, manuscript submitted to
(Preisendorfer 1988). Atmos.—Oceanfound that the EPCAs could become
In the PCA representation, we have degenerate if the lag was close to the integral
timescale of standing waves in the data. While there
x (t) = Z a,(t)e,, 5) Erpe c<::'I0tearly trade-o_ffs betwe_:en using P_CAS and u_sing
= S, our experiments with forecasting the tropical
Pacific SST found that the much smaller networks re-
and sulting from the use of EPCAs tended to be less prone
to overfitting than the networks using PCAs.
a,(t)= Z x (t)e,, ®) We are al_so studying other possible prefil_tering
processes. Since CCA often uses EPCA to prefilter the
predictor and predictand fields (Barnston and
wheree anda, are thenth mode PCA and its time Ropelewski 1992), we are investigating the possibil-
coefficient, respectively, with the PCAs forming aity of the NN model using the CCA as a prefilter, that
orthonormal basis. PCA maximizes the variance isf using the CCA modes instead of the PCA or EPCA
a,(t) and then, from the residual, maximizes the varnodes. Alternatively, we may argue that all these
ance ofa,(t), and so forth for the higher modes, undegrefilters are linear processes, whereas we should use a
the constraint of orthogonality for the }. If the origi-  nonlinear prefilter for a nonlinear method such as NN.
nal datax(i = 1, .. . ]) imply a very large number of We are investigating the possibility of using NN mod-
input neurons, we can usually capture the main vagls as nonlinear PCAs to do the prefiltering (section 8).
ance of the input data and filter out noise by using the
first few PCA time serieg (n=1, . . . N), withN <<
I, thereby greatly reducing the number of input ne6. Interpreting the NN model
rons and the size of the NN model.

In practice, we would need to provide information We now turn to obstacle ¢, namely, the great diffi-
on how the & } has been evolving in time prior to mak-culty in understanding the nonlinear NN model results.
ing our forecast. This is usually achieved by provida particular, is there a meaningful interpretation of
ing {a ()}, { a (t-AD)}, . . ., {a (t-mAt)}, thatis, some those mysterious neurons in the hidden layer?
of the earlier values off}, as input. Compression of ~ Consider a simple NN for forecasting the tropical
input data in the time dimension is possible with theacific wind stress field. The input consists of the first
extended PCA or EOF (EPCA or EEOF) methotil EPCA time series of the wind stress field (from The
(Weare and Nasstrom 1982; Graham et al. 1987). Florida State University), plus a sine and cosine func-

In the EPCA analysis, copies of the original dateon to indicate the phase with respect to the annual
matrixXij :xi(tj) are stacked with time lagnto a larger cycle. The single hidden layer has three neurons, and
matrix X', the output layer the same 11 EPCA time series one

month later. As the values of the three hidden neurons
X7 = (XT N N ) @ can be plotted in 3D space, Fig. 5 shows their trajec-
ijr Hijarotet Thijenr o tory for selected years. From Fig. 5 and the trajecto-
ries of other years (not shown), we can identify regions
where the superscript T denotes the transposﬁignr;d in the 3D phase space as the EI Nifio warm event phase
= X(t + n7). Applying the standard PCA analysis tand its precursor phase and the cold event and its pre-
X" yields the EPCAS, with the corresponding time seursor. One can issue warm event or cold event fore-
ries {a'}, which because time-lag information has akasts whenever the system enters the warm event
ready been incorporated into the EPCAS, could be uggdcursor region or the cold event precursor region, re-
instead of & (1)}, { a (t—Ab)}, . . . {a (t—-mAt)} from spectively. Thus the hidden layer spans a 3D phase
the PCA analysis, thereby drastically reducing tiepace for the El Nifio—Southern Oscillation (ENSO)
number of input neurons. system and is, thus, a higher-dimension generalization

Bulletin of the American Meteorological Society 1861



In many situations, the NN
model is compared with a linear
model, and one wants to know
how nonlinear the NN model
really is. A useful diagnostic
tool to measure nonlinearity is
spectral analysis (Tangang et al.
1998b). Once a network has
been trained, we replace the
input signals by artificial sinu-
soidal signals with frequencies
w, W, . . .,w,, which were care-
fully chosen so that the nonlin-

Fic. 5. The values of the three hidden neurons plotted in 3D space for the years ega,]rzllntera{:tlons of two signals of
1973, 1976, 1982, 1983, and 1988. Projections onto 2D planes are also shown. The [rdpenciesw a”‘?' wJ would
circles are for the months from January to December, and the two “+” signs for Januar@&fterate frequencies + w and
February of the following year. El Nifio warm events occurred during 1972, 1976, and 1593,— 0.)JD not equal to any of
while a cold event occurred in 1988. In 1973 and 1983, the Tropics returned to coolertgmm-original input frequencies.
ditions from an El Nifio. Notice the similarity between the trajectories during 1972, 19ffa amplitude of a sinusoidal

and 1982, and during 1973, 1983, and 1988. In years with neither warm nor cold even -él’he . .
trajectories oscillate randomly near the center of the cube. From these trajectories, wtgl al is chosen so as to yield

an .
identify the precursor phase regions for warm events and cold events, which could all(ﬁ}%sg_ame Va”fance as that of the
to forecast these events. original real input data. The

output from the NN with the
sinusoidal inputs is spectrally

of the 2D phase space based on the POP method (Tama)yzed (Fig. 6). If the NN is basically linear, spec-
1995). tral peaks will be found only at the original input fre-

Hence we interpret the NN as a projection from tltiencies. The presence of an unexpected peak at
input space onto a phase space, as spanned by thefnreguencyw, equalingw + @ or [k — a)JDfor some
rons in the hidden layer. The state of the system in thg indicates a nonlinear interaction betweenithe
phase space then allows a projection onto the outpat thegth predictor time series. For an overall mea-
space, which can be the same input variables sosaee of the degree of nonlinearity of an NN, we can
time in the future, or other variables in the future. Thémlculate the total area under the output spectrum, ex-
interpretation provides a guide for choosing the appiuding the contribution from the original input fre-
priate number of neurons in the hidden layer; nametyyencies, and divide it by the total area under the
the number of hidden neurons should be the samespsectrum, thereby yielding an estimate of the portion
the embedding manifold for the system. Since tloé output variance that is due to nonlinear interactions.
ENSO system is thought to have only a few degreldsing this measure of nonlinearity while forecasting
of freedom (Grieger and Latif 1994), we have limitethe regional SSTA in the equatorial Pacific, Tangang
the number of hidden neurons to about 3—7 in mostatfal. (1998b) found that the nonlinearity of the NN
our NN forecasts for the tropical Pacific, in contrasénded to vary with forecast lead time and with geo-
to the earlier study by Derr and Slutz (1994), wheggaphical location.
30 hidden neurons were used. Our approach for gen-
erating a phase space for the ENSO attractor with an
NN model is very different from that of Grieger an@. Forecasting the tropical Pacific SST
Latif (1994), since their phase space was generated
from the model output instead of from the hidden Many dynamical and statistical methods have been
layer. Their approach generated a 4D phase space fagplied to forecasting the ENSO system (Barnston
using four PCA time series as input and as outpet,al. 1994). Tangang et al. (1997) forecasted the SSTA
whereas our approach did not have to limit the nuim-the Nifio 3.4 region (Fig. 7) with NN models using
ber of input or output neurons to generate a loweveral PCA time series from the tropical Pacific wind
dimensional phase space for the ENSO system. stress field as predictors. Tangang et al. (1998a) com-
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Spectrum THMT compare the correlation skills of NN, CCA,
I L P L L and multiple linear regression (LR) in forecasting the
A Nifio 3 SSTA index. First the PCAs of the tropical
Pacific SSTA field and the SLP anomaly field were
calculated. The same predictors were chosen for all
B three methods, namely the first seven SLP anomaly
PCA time series at the initial month, and 3 months, 6
10 7 months, and 9 months before the initial month (a
total of 7x 4 = 28 predictors); the first 10 SSTA PCA
time series at the initial month; and the Nifio 3 SSTA
at the initial month. These 39 predictors were then

g
I d e f h .
I I J l l l l further compressed to 12 predictors by an EPCA, and
L | A cross-validated model forecasts were made at various
4

2]

5 & 7 8 9 10 leadtimes after the initial month. Ten CCA modes

trequency were used in the CCA model, as fewer CCA modes
degraded the forecasts. Figure 8 shows that the NN has

Fic. 6. A schematic spectral analysis of the output from an Netter forecast correlation skills than CCA and LR at

model, where the input were artificial sinusoidal time series gl lead times, especially at the 12-month lead time

frequencies 2.0, 3.0, and 4.5 (arbitrary units). The three main pe(a‘m;]ere NN has a correlation skill of 0.54 vs 0.49 for

labeled A, B, and C correspond to the frequencies of the input t"@%A) Figure 9 shows the cross-validated forecasts of

series. The nonlinear NN generates extra peaks in the output sgec- *. .
trum (labeled a—i). The peaks ¢ and g at frequencies of 2.5 zﬂqg Nifio 3 SSTA at 6-month lead time (THMT). In

6.5, respectively, arose from the nonlinear interactions betwe@ther tropical regions, the advantage of NN over CCA
the main peaks at 2.0 (peak A) and 4.5 (peak C) (as the diffaras smaller, and in Nifio 4, the CCA slightly outper-
ence of the frt_aqugncies between C and A is 2.5, and the sunfigrimed the NN model. In this comparison, CCA had
their frequencies is 6.5). an advantage over the NN and LR: While the
predictand for the NN and LR was Nifio 3 SSTA, the
pared the relative merit of using the sea level presspredictands for the CCA were actually the first 10 PCA
(SLP) as predictor versus the wind stress as predictandes of the tropical Pacific SSTA field, from which
with the SLP emerging as the better predictor, espiee regional Nifio 3 SSTA was then calculated. Hence
cially at longer lead times. The reason may be that ttharing training, the CCA had more information avail-
SLP is less noisy than the wind stress; for exampéile by using a much broader predictand field than the
the first seven modes of the tropical pacific SLP abiN and LR models, which did not have predictand
counted for 81% of the total variance, versus only 54#ormation outside Nifio 3.
for the seven wind stress modes. In addition, TangangAs the extratropical ENSO variability is much
et al. (1998a) introduced the approach of ensembb@re nonlinear than in the Tropics (Hoerling et al.
averaging NN forecasts with randomly initialized 997), it is possible that the performance gap between
weights to give better forecasts. The best forecast skiie nonlinear NN and the linear CCA may widen for
were found over the western-central and central eqé@recasts outside the Tropics.
torial regions (Nifio 4 and 3.4) with lesser
skills over the eastern regions (Nifio 3,

P4, and P5) (Fig. 7). A - Y 2

To further simplify the NN models, s, ® o =)
Tangang et al. (1998b) used EPCAs in- 2 Ninod Nino3 e
stead of PCAs and a simple pruning L, I ’ J ] ) i
method. The spectral analysis method ﬁ'f“m\ \\ ‘
was also introduced to interpret the non-_ [ ; * X Nino3 4 |
linear interactions in the NN, showing m\\ <l P
that the nonlinearity of the networks o , , [ ‘ .
tended to increase with lead time and to 120E 150E 180E 150w 120w oW oow
become stronger for the eastern regions r. 7. Regions of interest in the Pacific. SSTA for these regions are used as

of the equatorial Pacific Ocean. the predictands in forecast models.
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09— 77— 71—~ ] J|ayer (Fig. 10). Since there are few bottleneck neurons,
i 1 it would in general not be possible to reproduce the
_ o8k 1 inputs exactly by the output neurons. How many hid-
z [ ] den layers would such an NN require in order to per-
2 i form NLPCA? At first, one might think only one
o 0.71 7 hidden layer would be enough. Indeed with one
© [ 1 hidden layer and linear activation functions, the NN
2 o6F 1 solution should be identical to the PCA solution.
S [ | However, even with nonlinear activation functions, the
o NN solution is still basically that of the linear PCA
s 0.5¢ ] solution (Bourlard and Kamp 1988). It turns out that
g ; 1 for NLPCA, three hidden layers are needed (Fig. 10)
“ 9.4l 4 (Kramer 1991).
i ] The reason is that to properly model nonlinear con-
o 33 L tinuous functions, we need at least one hidden layer

0 3 6 9 12 15 18 between the input layer and the bottleneck layer, and
another hidden layer between the bottleneck layer and
the output layer (Cybenko 1989). Hence, a nonlinear
Fic. 8. Forecast correlation skills for the Nifio 3 SSTA by thiinction maps from the higher-dimension input space
NN, the CCA, and the LR at various lead times (THMT 1998)q the |ower-dimension space represented by the

The cross-validated forecasts were made from the data re :
(1950-97) by first reserving a small segment of test data, trair::BESi[tIeneCk layer, and then an inverse transform maps

the models using data not in the segment, then computing fﬁug—m the bottleneck space back to the original higher-
cast skills over the test data—with the procedure repeated by séinensional space represented by the output layer,
ing the segment of test data around the entire record. with the requirement that the output be as close to the
input as possible. One approach chooses to have only
one neuron in the bottleneck layer, which will extract a
8. Nonlinear principal component single NLPCA mode. To extract higher modes, this first
analysis mode is subtracted from the original data, and the pro-
cedure is repeated to extract the next NLPCA mode.
PCA is popular because it offers the most efficient Using the NN in Fig. 10, A. H. Monahan (1998,
linear method for reducing the dimensions of a dagaersonal communication) extracted the first NLPCA
set and extracting the main features. If we are mabde for data from the Lorenz (1963) three-component
restricted to using only linear transformations, everaotic system. Figure 11 shows the famous Lorenz
more powerful data compression and extractionastractor for a scatterplot of data in the plane. The
generally possible. The NN offers a way to do nonlifirst PCA mode is simply a horiztad line, explaining
ear PCA (NLPCA) (Kramer 1991; Bishop 1995). 60% of the total variance, while the first NLPCA is
In NLPCA, the NN outputs are the same as thlee U-shaped curve, explainid@% of the variance.
inputs, and data compression is achieved by havinggeneral, PCAnodels data with lines, planes, and hy-
relatively few hidden neurons forming a “bottleneckperplanes for higher dimensions, while the NLPCA
uses curves and curved surfaces.
Malthouse (1998) pointed out a
— omamed ‘ ' ‘ ‘ ‘ ' ‘ limitation of the Kramer (1991)
° Forecast ) NLPCA method, with its three hid-
: F den layers. When the curve from
the NLPCA crosses itself, for ex-
ample forming a circle, the method
ol , \ , , | fails. The reason is that with only

1 L L 1
1950 1956 1960 1965 1970 1975 1980 1985 1990 1995 2000

Year one hidden layer between the input

Fic. 9. Forecasts of the Nifio 3 SSTA (in °C) at 6-month lead time by an NN mo%@p th? bottleneck layer, and again
(THMT 1998), with the forecasts indicated by circles and the observations by the &% hidden layer between the
line. With cross-validation, only the forecasts over the test data are shown here. bottleneck and the output, the non-

Lead time (months)
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linear mapping functions are limited tontinuous
functions (Cybenko 1989), which of course cannot
identify 0° with 360°. However, we believe this fail-
ure can be corrected by having two hidden layers be-
tween the input and bottleneck layers, and two hidden
layers between the bottleneck and output layers, since
any reasonable function can be modeled with two hid-

den layers (Hertz et al. 1991, 142). As the PCA is a Bottleneck
cornerstone in modern meteorology—oceanography, a 1nput layer Output
nonlinear generalization of the PCA method by NN layer layer

is indeed exciting. .
9 Fic. 10. The NN model for calculating NLPCA. There are three

hidden layers between the input layer and the output layer. The
middle hidden layer is the “bottleneck” layer. A nonlinear func-
9. Neural networks and variational tion maps from the higher-dimension input space to the lower-
data assimilation dimension bottleneck space, followed by an inverse transform
mapping from the bottleneck space back to the original space rep-

o TR sented by the outputs, which are to be as close to the inputs as
Variational data assimilation (Daley 1991) arosrg ssible. Data compression is achieved by the bottleneck, with

. . P
from the need to use data to guide numerical mOdﬁ"TéNLPCA modes described by the bottleneck neurons.
[including coupled atmosphere—ocean models (Lu and

Hsieh 1997, 1998a, 1998b)], whereas neural network
models arose from the desire to model the vast efWilks 1995; Vislocky and Fritsch 1997), where the
pirical learning capability of the brain. With sucldynamical model is run first before the statistical
diverse origins, it is no surprise that these two metimethod is applied.
ods have evolved to prominence completely indepen- What good would such a union bring? Our present
dently. Yet from section 3, the minimization of the costynamical models have good forecast skills for some
function (3) by adjusting the parameters of the Nariables and poor skills for others (e.g., precipitation,
model is exactly what is done in variational (adjoingnowfall, 0zone concentration, etc.). Yet there may be
data assimilation, except that here the governing eqeafficient data available for these difficult variables
tions are the neural network equations, (1) and (B)at empirical methods such as NN may be useful in
instead of the dynamical equations (see appendix fmproving their forecast skills. Also, hybrid coupled
details). models are already being used for El Nifio forecast-
Functionally, as an empirical modeling techniquéng (Barnett et al. 1993), where a dynamical ocean
NN models appear closely related to the familiar limmodel is coupled to an empirical atmospheric model.
ear empirical methods, such as CCA, SVD, PCA, aAdcombined neural-dynamical approach may allow
POP, which belong to the class of singular value thre NN to complement the dynamical model, leading
eigenvalue methods. This apparent similarity is sonte-an improvement of modeling and prediction skills.
what misleading, as structurally, the NN model is a
variational data assimilation method. An analogy
would be the dolphin, which lives in the sea like a fisl,0. Conclusions
but is in fact a highly evolved mammal, hence the
natural bond with humans. Similarly, the fact that the The introduction of empirical or statistical meth-
NN model is a variational data assimilation methastls into meteorology and oceanography has been
allows it to be bonded naturally to a dynamical modetoadly classified as having occurred in four distinct
under a variational assimilation formulation. The dystages: 1) linear regression (and correlation analysis),
namical model equations can be placed on equal fa®t-PCA analysis, 3) CCA (and SVD), and 4) NN.
ing with the NN model equations, with both th&hese four stages correspond respectively to the evolv-
dynamical model parameters and initial conditiorigg needs of finding 1) a linear relation (or correlation)
and the NN parameters found by minimizing a singbetween two variablesandz, 2) the correlated pat-
cost function. This integrated treatment of the empiterns within a set of variables . . .,x ; 3) the linear
cal and dynamical parts is very different from preserglations between a set of variabkgs. . .,x and an-
forecast systems such as Model Output Statistiother set of variableg, . . .,z ; and 4) the nonlinear
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z ear models, such as the CCA, de-
pends critically on our ability to
tame nonlinear instability.

Recent research shows that all
three obstacles can be overcome.
For obstacle a, ensemble averaging
is found to be effective in control-
ling nonlinear instability. Penalty
and pruning methods and noncon-
vergent methods also help. For b,
the PCA method is found to be an
effective prefilter for greatly reduc-
ing the dimension of the large spa-
tial data fields. Other possible
prefilters include the EPCA,
rotated PCA, CCA, and nonlinear
PCA by NN models. For c, the
mysterious hidden layer can be
given a phase space interpretation,
and a spectral analysis method aids
in understanding the nonlinear NN
relations. With these and future im-
provements, the nonlinear NN
method is evolving to a versatile
and powerful technique capable of
augmenting traditional linear statis-
tical methods in data analysis and
in forecasting. The NN model is a
type of variational (adjoint) data as-
similation, which further allows it
to be linked to dynamical models

Fic. 11. Data from the Lorenz (1963) three-component, ¢) chaotic system were under adjoint data assimilation,
used to perform PCA and NLPCA (using the NN model shown in Fig. 10), with fhetentially leading to a new class of
results displayed as a scatterplot in ¥& plane. The horizontal line is the ﬂrSthybrid neural-dynamical models.
PCA mode, while the curve is the first NLPCA mode (A. H. Monahan 1998, personal
communication).

X
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Despite the great popularity of the NN models in
many fields, there are three obstacles in adapting
the NN method to meteorology—oceanography: (Appendix: Connecting neural networks
nonlinear instability, especially with a short data with variational data assimilation
record; (b) overwhelmingly large spatial data fields;
and (c) difficulties in interpretting the nonlinear NN With a more compact notation, the NN model in
results. In large-scale, low-frequency studies, whegection 3 can be simply written as
data records are in general short, the potential success
of the unstable nonlinear NN model against stable lin- z=N(x,q), (A2)
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wherex andz are the input and output vectors, respeproposed a new NN training scheme, where the
tively, andq is the parameter vector containing vT/jk, Lagrange function is
bj, andb,. A Lagrange functiori,, can be introduced,

~ 2 ~ 2
L=+ ue(z-N), a2 L7 +a 'y [Z(t)-z,O] +BY [2(t) - t)]
where the model constraint (A1) is incorporated in the * Z u(t) ) [Z(t * At) B N(Z(t)’ q)] (AG)
optimization with the help of the Lagrange multipli-
ers (or adjoint variableg). The NN model has nowwhere,z, the input to the NN model, is also adjusted
been cast in a standard adjoint data assimilation forthe optimization process, along with the model pa-
mulation, where the Lagrange functibis to be op- rameter vectoq. The second term on the right-hand
timized by finding the optimal control parametqrs side of (A6), the relative importance of which is con-
via the solution of the adjoint equations for the&olled by the coefficiend, is a constraint to force the
adjoint variablegt (Daley 1991). Thus, the NN jar-adjustable inputs to be close to the data. The third term,
gon “back-propagation” is simply “backward integrawhose relative importance is controlled by the coeffi-
tion of the adjoint model” in adjoint data assimilatiokient 3, is a constraint to force the inputs to be close
jargon. to the outputs of the previous step. However, this term
Often, the predictands are the same variables asdbes not dictate that the inputs have to be the outputs
predictors, only at a different time; that is, (A1) andf the previous step. It is thus a weak constraint of
(A2) become continuity (Daley 1991). Note thatandf are scalar
constants, wheregit) is a vector of adjoint variables.
zZ(t +At) = N(z,(1),9), (A3) The weak continuity constraint version (A6) can thus
be thought of as the middle ground between the strong
L=J+ Z u(t) [z(t +At) _ N(Zd (t)q)] (Ad) continuity constraint version (A5) and no continuity
constraint version (A4).
whereAt is the forecast lead time. For notational sim- Let us now couple an NN model to a dynamical
plicity, we have ignored some details in (A3) and (Adjnodel under an adjoint assimilation formulation. This
for example, the forecast made at tingeuld use not kind of a hybrid model may benefit a system where
only z,(t), but also earlier data; alimay also de- some variables are better simulated by a dynamical
pend on other predictor or forcing data model, while other variables are better simulated by
There is one subtle difference between tre NN model.
feedforward NN model (A4) and standard adjoint data Suppose we have a dynamical model with govern-
assimilation—the NN model starts with the dgfat ing equations in discrete form,
every time step, whereas the dynamical model takes
the data as initial condition only at the first step. For u(t +ot) =M(u, v, p, t), (A7)
subsequent steps, the dynamical model takes the
model output of the previous step and integrates fovhereu denotes the vector of state variables in the
ward. So in adjoint data assimilation with dynamidynamical modely denotes the vector of variables not
modelsz, (t) in Eq. (A4) is replaced bg(t), thatis, modeled by the dynamical model, gndenotes a vec-
tor of model parameters and/or initial conditions. Sup-
pose thev variables, which could not be forecasted
L=3+3 u(t)- [2(t+20) -N(z(t).a)]. (A5) el by a dynamical model, could be forecasted with
better skills by an NN model, that is,
where only at the initial time= 0 isz(0) =z,(0). We
can think of this as a strong constraint of continuity v(t +At) =N(u, v, g, t), (A8)
(Daley 1991), since it imposes that during the data
assimilation period [0}, the solution has to be con-where the NN modé\l has inputsi andv, and param-
tinuous. In contrast, the training scheme of the NN hetersg.
no constraint of continuity. If observed data, andv, are available, then we
However, the NN training scheme does not hagan define a cost function,
to be without a continuity constraint. Tang et al. (1996)

Bulletin of the American Meteorological Society 1867



_ _ T _ brid coupled ocean—atmosphere modeClimate 6, 1545—
J‘Z(U uy) U(u-u,) 1566.
T (A9) Barnston, A. G., and C. F. Ropelewski, 1992: Prediction of ENSO
+ Z (V _Vd) V(V _Vd)1 episodes using canonical correlation analydi<limate,5,
1316-1345.
where the superscript T denotes the transpos&Jang—, and Coauthors, 1994: Long-lead seasonal forecasts—where
andV the weighting matrices, often computed from do we standBull. Amer. Meteor. Soc75,2097-2114.
the inverses of the covariance matrices of the ObSI(%IP—hOD’ C. M., 1995Neural Networks for Pattern Recognition.

. . . . . Clarendon Press, 482 pp.
vational errors. For simplicity, we have omitted the Ol%'ourlard, H., and Y. Kamp, 1988: Auto-association by multilayer

servational operator matrices and terms representingerceptrons and singular value decomposi@al. Cybern.,
a priori estimates of the parameters, both commonly59,291-294. _ _ _
used in actual adjoint data assimilation. The Lagran%@; G.P.E, an% ((3: 'Vi Jﬁ”fﬁj”s’ Dlgm;es Series Analysis:
; o i orecasting and ControHolden-Day, pp.

functionL is given by Breiman, L., 1996: Bagging predictiordach. Learning24,

123-140.

_ T _ Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An inter-
L=J+ z )\(t) [U(t + 5t) M] comparison of methods for finding coupled patterns in climate

T (A10) data.J. Climate 5, 541-560.
+ z u(t) [V(t + At) - N]’ Butler, C. T., R. V. Meredith, and A. P. Stogryn, 1996: Retriev-
ing atmospheric temperature parameters from dmsp ssm/t-1

. . . data with a neural networl. Geophys. Red.01,7075-7083.
whereh andu are the vectors of adjoint variables. Thl(s,hauvin, Y., 1990: Generalization performance of overtrained

formulation places the dynamical mod&l and the  pack-propagation networksleural NetworksEURASIP
neural network mode\ on equal footing, as both are workshop Proceedings, B. Almeida and C. J. Wellekens,
optimized (i.e., optimal values pfandq are found)  Eds., Springer-Verlag, 46-55.

by minimizing the Lagrange functida—that is, the Crick, F., 1989: The recent excitement about neural networks.
adjoint equations fok andp are obtained from the __Nature,337,129-132.

L. . . . Cybenko, G., 1989: Approximation by superpositions of a sigmoi-
variation ofl. with respect ta andv, while the grad" dal function.Math. Control, Signals, Sysg, 303-314.

ents of the cost function with respectt@ndq are paley, R., 1991Atmospheric Data Analysi€ambridge Univer-
found from the variation df with respect tg andqg. sity Press, 457 pp.

Note that withouv andN, Egs. (A7), (A9), and (A10) Derr, V.E., and R. J. Slutz, 1994: Prediction of El Nifio events in
simply reduce to the standard adjoint assimilation the Pacific by means of neural networksApplic.,8, 51-63.

roblem for a dvnamical model: whereas without Elsner, J. B., and A. A. Tsonis, 1992: Nonlinear prediction, chaos,
p y ! and noiseBull. Amer. Meteor. Socz3,49-60; Corrigendum,

andM, Egs. (A8), (A9), and (A10) simply reduce to 74 243.
finding the optimal parametegsfor the NN model.  Finnoff, w., F. Hergert, and H. G. Zimmermann, 1993: Improv-
Here, the hybrid neural-dynamical data assimila- ing model selection by nonconvergent methodsural Net-

tion model (A10) is in a strong continuity constraint Works,6, 771-783.

form. Similar hybrid models can be derived for a wedke"ch M- N., W. F. Krajewski, and R. R. Cuykendall, 1992:
Rainfall forecasting in space and time using a neural network.
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