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Applying Occam's razor in modeling cognition:

A Bayesian approach

IN JAE MYUNG and MARK A. PITT
Ohio State University, Columbus, Ohio

In mathematical modeling of cognition, it is important to have well-justified criteria for choosing
among differing explanations (i.e., models) of observed data. This paper introduces a Bayesian model
selection approach that formalizes Occam's razor, choosing the simplest model that describes the
data well. The choice of a model is carried out by taking into account not only the traditional model
selection criteria (i.e., a model's fit to the data and the number of parameters) but also the extension
ofthe parameter space, and, most importantly, the functional form of the model (i.e., the way in which
the parameters are combined in the model's equation). An advantage of the approach is that it can
be applied to the comparison of non-nested models as well as nested ones. Application examples are
presented and implications of the results for evaluating models of cognition are discussed.

A goal of research in psychology, as in other behavioral

sciences, is to infer the underlying process that generated

observed data. The use of sophisticated mathematical

models to describe these processes has grown considerably,

especially in cognitive psychology (see, e.g., 1.R. Ander

son & Sheu, 1995; N. H. Anderson, 1981; Ashby & Town

send, 1986; Busemeyer & Townsend, 1993; Gillund &

Shiffrin, 1984; Green & Swets, 1966; Hintzman, 1986;

Kruschke, 1992; Massaro & Friedman, 1990; Medin &

Schaffer, 1978; Murdock, 1982; Nosofsky, 1986; Oden &

Massaro, 1978; Reed, 1972; van Zandt & Ratcliff, 1995).

Yet, the development of equally sophisticated and well
justified methods for evaluating the adequacy of the mod

els themselves has lagged behind. Jacobs and Grainger

(1994) recently summarized a number ofcriteria for choos

ing among models: (I) generality (does the model general

ize well across different experimental settings?); (2) ex

planatory adequacy (are the assumptions of the model

plausible and compatible with established findings?);

(3) descriptive adequacy (does the model fit the pattern

of data well?); and (4) complexity (is the formulation
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[e.g., the number of parameters] of the model simple?).

Among these, descriptive adequacy and complexity have

been used most frequently, probably because they are

easier to quantify than the other two. Together they embody
the principle ofOccam's razor, which states that "entities

should not be multiplied beyond necessity" (William of
Occam, ca. 1290-1349). The goal of model selection is

to choose the simplest (i.e., least complex) model that de

scribes the data well (i.e., descriptive adequacy).

In this paper, we introduce a new Bayesian method of

formalizing Occam's razor in model selection. It goes be

yond current selection methods by taking into account

dimensions of complexity that are not captured by its

predecessors. We begin with a tutorial on model selection

methods that are currently in use. Next, fundamentals of
the Bayesian model selection approach are described,

and its desirable properties are discussed. The utility of

the Bayesian approach is then demonstrated using con

crete examples with simulated data. Finally, the merits and

shortcomings of the Bayesian approach are discussed

and contrasted with traditional approaches.

MODEL SELECTION CRITERIA

Descriptive Adequacy

The goal of mathematical modeling in cognitive psy

chology is straightforward: Given observed data, identify

the underlying processes that generated the data. Because
a model is defined as a set of assumptions about under

lying processes, the goal ofthe researcher is to determine

the viability of the model. There are, however, at least two
obstacles to such an endeavor. First, given the nearly in

finite number of distinct models that can be defined by

combining different assumptions, the true model might
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not be one of a particular set ofmodels that is being tested.
Second, random noise in data can obscure model identi

fication. Consequently, a realistic goal of mathematical
modeling is to choose the model that represents the clos

est approximation to the "true" model.

How can the closest approximation be identified when

the true model has yet to be discovered? Consider the sit
uation in which the true model is included in the set of

models being tested and further, data are noise free. In this

ideal situation, the true model must fit the data perfectly
(e.g., as measured using a metric such as sum of squared

errors). Note that this is a necessary-but not sufficient

condition, for there could be more than one model that fits

the data perfectly. By extending this logic to less ideal sit

uations (e.g., noisy data), the following model selection

rule is obtained: Choose the model that provides the best
fit to the data. Accordingly, the foremost criterion ofmodel

selection, descriptive adequacy, is born. Examples ofde

scriptive adequacy measures that are in use include the

percent variance accounted for by the model (i.e., coeffi
cient ofdetermination), the sum ofsquared errors (SSE)

between observed and predicted outcomes, and the max
imum likelihood, in which the probability ofobtaining the

observed data is maximized with respect to the model's

possible parameter values (see Bickel & Doksum, 1977).

For a model to be considered true, it must satisfy the
minimal condition of sufficiency in fitting data well. A

failure to do so invalidates the model. An illustrative ex
ample is shown in Figure 1. Each of the four solid lines

in the figure represents a model's best fit to the same data

set (solid dots) using the least squares estimation method.

Modell is a two-parameter linear model. As can be seen,
it fits the data poorly, with only 79.5% of the variance

accounted for. Systematic deviations from the line are evi

dent at the endpoints and in the middle of the range.

Clearly, Modell fails the test ofdescriptive adequacy and

can be dropped from further consideration. In contrast,
Model 2, a three-parameter exponential model, fits the

data fairly well, accounting for 96% ofthe variance with
no systematic deviation from the fit. Between the first two

models, Model 2 would be chosen as the preferred de

scription ofthe data. Models 3 and 4 are discussed in the

next section.

Model Complexity
It is important to note that descriptive adequacy is a

heuristic. Selection of the best fitting model may be use

ful in identifying the true model or closest approximation,
but the rule's accuracy is not guaranteed. This is because

model fit can be improved by increasing model complex

ity. Complexity refers to the flexibility inherent in a

model that enables it to fit diverse patterns of data. I It

can be understood by contrasting the data-fitting capa

bilities of simple and complex models. A simple model

is one that assumes that a specific pattern will be found

in the data. If this pattern occurs, the model will fit the

data well. Simple models make clear and falsifiable pre

dictions precisely because a specific pattern is assumed
to be present. In terms ofactually testing the model, what

this means is that the model's fit will be good over a siz

able range ofparameter values. A complex model, on the

other hand, is more flexible than a simple model, provid

ing good fits to a wide range of data patterns. To do so,

however, the complex model's parameters must be finely
tuned. This is because as the model's parameters change,

even slightly, the postulated data pattern also changes.
There are at least three dimensions of a model that con

tribute to its complexity, thereby significantly affecting

model fit: the number of parameters, the model's func

tional form, and the extension of the parameter space. In

•
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Figure 1. The effect of the number of parameters in a model on the model's ability
to fit data. A single data set (dots) was fitted to four models (lines) differing in the

number of parameters (n). Percentage of variance accounted for by each model is
shown in parentheses.



the following subsections, we discuss the implications of

each of these for model selection.
Number of parameters. In general, a model with

many parameters fits data better than a model with few

parameters, even if the latter generated the data (Collyer,
1985). The effect ofexcessive parameters on model fit is

illustrated in the bottom panels in Figure 1. Model 3 was

created from Model 2 by introducing an additional cyclic

component with four new parameters. Its fit is improved

over Model 2, but only by a meager 2.5%. The extra pa
rameters seem unnecessary, capturing what appear to be

a few idiosyncracies in the data. Model 4 is a more dra

matic example ofa model with excessive parameters. It fits

the data perfectly and even tells us more than the data do.

Model 4 is an interpolation model with 20 parameters,

the same number as data points. Such a model can al

ways be found and by design, it will fit the data perfectly.
A problem with Models 3 and 4 is that they generalize

poorly to other data because they precisely fit only one

data set. Thus it seems unlikely that these models accu

rately reflect the mental processes responsible for generat

ing the data.
The preceding examples should make it clear that there

is a tradeoff between fit and generalizability as the num

ber of parameters increases. The best fit should be pre

ferred when it is not achieved at the expense ofadditional
parameters. (For a discussion ofthe related issue ofthe the

oretical justification of the extra parameters, see Jacobs
& Grainger, 1994, and Cudeck & Henly, 1991.) Three

model selection methods were proposed that adjust for

variation in the number of parameters among models.

They do so by penalizing more heavily models with many

parameters as opposed to those with few parameters.

Akaike (1973,1983) introduced the Akaike informa

tion criterion (AIC), which is defined as

AIC; = -2In(ML;) + Zn; (1)

In this equation, ML; is the maximum likelihood for

Model i and n; is the number of free parameters in the

model. The criterion prescribes that the model that mini

mizes the Ale should be chosen. If the choice is between

two models with equal maximum likelihood values but

different numbers of parameters, AIC favors the model
with fewer parameters. The AIC has been employed in

time series analysis (e.g., Cryer, 1986), psychometric data

analysis (e.g., Bozdogan, 1987), and mathematical mod

eling ofcategorization (e.g., Maddox & Ashby, 1993; Ta

kane & Shibayama, 1992).
Schwarz (1978) introduced another criterion called

the Bayesian information criterion (BIC), defined as

BIC; = -2In(ML;) + 2n;lns (2)

where In(s) is the natural log of sample size (s: number

ofobservations per stimulus) of the data. The model that
minimizes BIC should be chosen. Note its similarity to

Ale. Only the penalty term for excessive parameters is

slightly different (2n; vs. n; In(s)). A comparison ofboth
criteria shows that AIC favors more complex models than

BIC for large sample sizes when In(s) > 2 (i.e., s > 8).
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Steiger and colleagues (Steiger, 1990; Steiger & Lind,
1980; see also Browne & Cudeck, 1992, Cudeck & Henly,

1991) introduced yet another criterion, called the root

mean square error ofapproximation (RMSEA), defined as

vr:
RMSEA = I I. (3)

~N - n i

In this equation, the function F; is a measure of the lack
offit for model i (e.g., using SSE) and N is the data size.?

RMSEA penalizes complex models by subtracting the
number of parameters (n i ) from the divisor, N. The

RMSEA closely approximates the root mean squared de

viation (RMSD), which is a sample statistic often used in

mathematical modeling (see, e.g., Massaro & Friedman,

1990).

Functional form. The number of parameters is the

only dimension of model complexity that AIC, BIC, and

RMSEA consider. An often unrecognized dimension of

model complexity that can significantly affect model fit

by simply capturing irrelevant patterns of data is func

tional form, which can be defined as the way in which

parameters are combined in the model equation.
Figure 2 illustrates the effect that functional form can

have on model fit. There is a universe (U) of possible

data, subsets ofwhich are consistent with different mod
els. The set M, denotes a data region that Model M fits

"well" in an appropriately defined sense (e.g., maximum

likelihood). Model Mb, which has more parameters than

M, but the same functional form, accounts for a wider

range of data. Now consider the third model, Me' which
has the same number of parameters as Model M, but as

sumes a functional form different from that of Ma. Not

only is the Meregion larger than that of'M, (i.e., more data

are accounted for by Me) but also, most of the data that

M, fits can also be fitted by Me' Importantly, the reverse
is not true. Thus the functional form of Model M makes
it a more flexible model than Ma. e

Another example ofthe importance offunctional form
in model behavior is a comparison of two psychophysi

cal models. Townsend (1975) pointed out that Stevens's

law ('P(x) = k . xa) is more complex, and thus less falsi

fiable, than Fechner's law ('P(x) = k . In(x+ /3)), even

though both have the same number ofparameters. This is

u

Figure 2. Data-fitting capabilities of various models.
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because psychological and physical dimensions are as

sumed to be related by a power function in Stevens's law,

making it capable offitting data that have negative, posi

tive, and zero curvature. Fechner's law assumes a logarith

mic relationship, which can fit data patterns with a neg

ative curvature only.

More recently, the superfluous effects of functional

form in model fitting were shown in an insightful simu

lation study by Cutting, Bruno, Brady, and Moore (1992).

They compared two non-nested models ofperception, the

linear integration model (LIM; Anderson, 1981) and the

fuzzy logic model ofperception (FLMP; Oden & Massaro,

1978).3 The two models have the same number of para

meters but different functional forms, a linear additive

function in LIM and a nonlinear multiplicative function

in FLMP. In the first simulation, data patterns were gen

erated that spanned the range of the parameter space.

Both models were then fitted to all data patterns. Results

showed that FLMP was more flexible than LIM, provid

ing a superior fit (i.e., smaller RMSD) for 80.3% of the

data patterns with exponential functions and 95.7% with

logistic functions. If the number of parameters were the

only factor affecting model complexity, the percentage

of superior fits should have been about 50%.

A more convincing demonstration ofFLMP's superior

functional form can be found in the results from another

simulation, in which the models were fitted to a set of

random numbers (dependent variable) generated from a

uniform distribution ranging from 0 to 1. Again, FLMP

performed at better than chance level (60.8%). Further

exploring this issue, Cutting et al. (1992) also fitted the

models to noisy data whose means were generated by

LIM. Again, FLMP fitted the data better than LIM itself

about 60% of the time, and did so even more decisively

when the added noise was relatively large. Given that

LIM produced the data, the percentage of superior fits by

FLMP should have been at least below the chance level

of 50%, though ideally it should have been zero.

Massaro and Cohen (1993) argued that Cutting et al.s
(1992) simulations distorted the true data-fitting abilities

of FLMP. Massaro and Cohen stated that in the simula

tions in which the FLMP and LIM were fitted to a range

ofexponential and logistic functions, the functions were

ones that favored FLMp, and that a set ofplausible func

tions could be created that could just as easily cause the

LIM to provide a superior fit. This criticism would have

been more convincing if supporting evidence had been

provided. Massaro and Cohen also claimed that the simu

lations in which the models were fitted to random data pro

vided an unfair test of the models, because both models

fit the data so poorly (very large RMSDs) that FLMP's

superior fits are not meaningful. This reasoning ignores

the consistency with which FLMP provided better fits than

LIM and places an arbitrary limit on the interpretation of

goodness-of-fit measures. Regardless ofthe quality ofthe

fit, the simulations clearly show FLMP's superior ability

at fitting data. Finally, Massaro and Cohen argued that

the simulations using noisy data were invalid because Cut

ting et al. had used an artificially narrow range of data

values (between 0.3 and 0.7, whereas observed values

often span from 0 to 1). Our own simulations in the pres

ent paper go a long way toward dispelling this criticism.

Data values ranged between 0.1 and 0.9, and we consis

tently found that FLMP provided superior fits. Further

more, we also found that LIM never provided superior

fits to those provided by FLMP. If the two models could

mimic each other equally well (i.e., if they were equally

flexible), then LIM should have fit FLMP data as well as

FLMP fit LIM data. Without assuming that FLMP is

more flexible than LIM, it is difficult to explain the sim

ulation results, in particular the asymmetric pattern of

model mimicry.

The point of this discussion is not to argue against the

psychological validity ofFLMP or LIM, but rather to make

clear the importance of functional form in model selec

tion. Because both models have the same number ofpa

rameters, FLMP's advantage must be due to the functional

form of the model equation. The nonlinear function of

FLMP seems more flexible than the linear function ofLIM

in fitting noisy data, thus improving model fit.

Extension of parameter space. Another dimension

of model complexity that can also influence model fit is

the extension of the parameter space. To illustrate the

point, consider two one-parameter models that share the

same functional form ofy = 1/(1+e- 8x ) , but assume dif

ferent ranges of the parameter 8. In Modell, 8 ranges

from -R to R, where R is a constant. In Model 2, 8's

range is cut in half, spanning from 0 to R. Modell allows

the parameter to be either positive or negative, whereas

Model 2 allows it to be only positive. The parameter range

of Model 1 is twice that of Model 2. As shown in Fig

ure 3, this difference in parameter space means that

Model 1 can fit decreasing (8 < 0) and increasing (8 >

0) patterns ofdata. Model 2 can fit only the latter. Solely

by virtue of the larger parameter space, Modell is guar

anteed to fit data showing a decreasing pattern better than
Model2.

To summarize, mathematical models can vary along a

number of dimensions. It is necessary to incorporate all

of them into the model selection procedure to maximize

its accuracy. Selection ofa model based solely on descrip

tive adequacy can lead to incorrect conclusions unless

appropriate adjustments are made for the three dimen

sions ofmodel complexity (number ofparameters, func

tional form, and extension ofparameter space), which can

significantly and independently affect model fit. Stan

dard model selection criteria such as AIC and BIC con

sider only the first of these." Such criteria are appropri

ate to use when comparing nested models, which tends to

be done in psychometric research (e.g., analysis ofvari

ance models, regression models, latent variable models).

However, their use in comparing non-nested models,

which is virtually always the case in models ofcognition,

is not justified and can lead to erroneous conclusions, as

we demonstrate in the section Application Example of

Bayesian Model Selection.

The Bayesian method described next provides a way to

overcome the limitation of the standard model selection
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Figure 3. An example of how the extension of the parameter space can af

fect model fit. A range of possible data patterns that each of two different
models can fit is shown. The two models share the same functional form ofy =
1/(1+r 8x ) but assume different ranges ofthe parameter 8: -R < 8< R < co

for Modell; 0 < 8 < R < oo for Model 2. Values of R are listed next to the cor

responding function.

criteria. The method combines all three dimensions of

model complexity, as well as descriptive adequacy, into

a single measure, thus making it particularly suitable for

testing models of cognition.'

BAYESIAN MODEL SELECTION

We begin this section by describing the basics of the

Bayesian model selection approach, followed by a con

sideration of the computational issues surrounding its

implementation.

Fundamentals of Bayesian Model Selection
Recently there has been a surge of interest in Bayesian

methods of model selection among statisticians, mathe

maticians, physicists, chemists, and neural network re

searchers (e.g., Berger & Perrichi, 1996; Bretthorst, 1989;

Carlin & Chib, 1995; Gelfand & Dey, 1994; Gregory &

Loredo, 1992; W. H. Jeffreys & Berger, 1992; Le &

Raftery, 1996; MacKay, 1992; Raftery, 1993, 1994; Ris

sanen, 1986, 1990; Smith & Roberts, 1993). In this sec

tion, we provide a comprehensive overview of Bayesian

model selection methods, emphasizing their utility in eval-

uating models ofcognition and discussing their implica

tions for mathematical modeling of psychological data

(see Kass & Raftery, 1995, for a more technically rigor

ous presentation of the material).

Application of the Bayesian approach requires a statis

tical formulation of a model that specifies the probabil

ity density function (i.e., distribution) of the data. For ex

ample, a model of semantic priming may assume that

response times in the lexical decision task follow a nor

mal probability density with a certain mean and standard

deviation. Moreover, the mean may increase or decrease

depending on theoretical predictions, whereas the standard

deviation is an unknown but fixed quantity.

Model selection is carried out by computing the pos

terior probability that each of the models is correct (i.e.,

true) given a particular data set. This process is formally

stated as follows:

For each model M; and the data D, compute the pos

terior probability, P(M;I D), from the prior probabil

ity, P(M;), and the evidence for M;, P(D IM;), using

the Bayes rule, and then choose the model that maxi

mizes the posterior probability.
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For simplicity, we will consider only the two-model case

ofmodels M] and M2 , although extension to multimodel

cases is straightforward. From the Bayes rule, we obtain

P(MiID) = P(M[) . P(DIM[) (4)

P(M2 I D) P(M2 ) P(DIM2 )

The first term, P(M11 D)/P(M21D), is called the posterior

odds ratio, and represents the ratio of the model likeli

hoods given the data. The second term, P(M1)/P(M2 ) , is

called the prior odds ratio; it represents the ratio of the

model likelihoods before evaluating the data. Model pri

ors are determined independently of the data. The third

term, P(D IM])/P(DI M2 ) is called the Bayes factor or evi

dence ratio. The numerator and denominator each repre

sent the probabilities ofthe data given each model. Model

selection is achieved by computing the prior odds ratio

and the Bayes factor. In other words, the equation above

can be rewritten as

posterior odds ratio = (prior odds ratio) X (Bayes factor).

Prior odds P(M j ) . P(MJ represents the probability

that the model M, is a true description ofthe events under

study before data are collected. For real-world problems,

this probability may not exist, or not be known even if it

does. We assume equal model priors; that is, P(M])/

P(M2) = 1. This assumption is often made by research

ers in Bayesian model selection (Berger & Perrichi, 1996;

Carlin & Chib, 1995; Gregory & Loredo, 1992; Raftery,

1993), and is an unavoidable simplification ofa problem

for which there is not as yet a satisfactory solution. An im

plication ofthe assumption is that model selection is based

solely on the Bayes factor. The decision to ignore model

priors does not undermine use ofthe Bayesian approach.

Rather, it represents a calculated approximation to the

true Bayesian model selection criterion.v

Bayes factor P(DIM1 )/P(DIM2) . The Bayes factor is

defined as a ratio oftwo marginal likelihoods, which can

best be understood by noting their relationship to likeli

hood functions. A likelihood function is the probability

of the given data computed for a particular value of the

param eter of a model, P(DI 8, M,'), and thus is a function

of the parameter 8. In essence, the likelihood function is

a goodness-of-fit measure of a model for a given para

meter value. Ifthe value of the parameter changes, the fit

might also change. The marginal likelihood of a model,

P(DIM.), is the probability of the data as a whole, inde

pendent of parameter values. It is an average of likeli

hoods under a prior distribution ofthe parameter. The mar

ginal likelihood is expressed in the following integral

form:

P(DIMJ = JP(DI8,M;)P(8I MJd8 (i = 1,2). (5)

where 8is a parameter vector under Model i, P(DI8,Mi)
is the likelihood function, and P( 8 IMi ) is the prior den

sity of 8 for Model i.

Under the particular assumption of a uniform prior

density function of the parameter [i.e., P( 8 IMJ = con

stant], the marginal likelihood is proportional to the area

Model E

Model F

Parameter 0

Figure 4. Maximum likelihood functions for three pairs of
models as a function of the parameter e. Models A, C, and E are
more complex (more peaked functions) than are models B, D,and
F. See text for details.

under the curve representing the likelihood function. To

illustrate, likelihood functions for two models, A and B,

are shown in the top panel of Figure 4. Note that the ab

scissa of the figure represents parameter value, not data

value. Although the maximum likelihoods (i.e., the high

est values) are the same for both models, the marginal

likelihood ofModel B is larger because the area under its

function is larger. Note that the functions should be

thought ofas actual representations of the models. Their

peakedness is determined by model complexity, to which

we now turn.

Model Complexity: A Bayesian View
A model is selected in the Bayesian approach by max

imizing the marginal likelihood. Under some simplifying

assumptions, the marginal likelihood can be expressed

in words as

goodness of fit
marginal likelihood = I I . (6)

mode comp exity

The numerator, goodness of fit, is the maximum likeli

hood of the data given the model, P(DI8o,Mi ) , where 8
0

is the parameter value that maximizes the likelihood



function. The denominator term represents a model com
plexity measure that embodies all three dimensions of

complexity: number ofparameters, functional form, and
extension of parameter space. A simplified mathemati

cal function depicting their relationship is shown below.

(A technical discussion of the mathematics is presented

in Appendix A.)

model complexity = g(n;,F;(8
0),RJ

(7a)

g(n;,F;(8
0
),R; ) = (JF;(8

0
)(Ri! ... R;n) (7b)

I

In the equation above, {J is a positive scaling factor, n; is

the number of parameters of Model i, and R; = (Ri!"'"
R;n) is a vector representing the range of the parameter

vector 80fModei i (e.g., R;k equals 2 if the parameter 8k

is defined on - I ~ 8k ~ + I). F; (8
0

) is a "functional

form" factor whose value depends on how the parame

ters are combined mathematically in the model. Because

this factor is evaluated at 8
0

, which is determined by the

data, the value of the functional-form factor may depend
on the data.? Roughly speaking, the peakedness of the

likelihood function near 8
0

is positively correlated with

the value of F;(8
0

) ' For example, in Figure 3, F;(8
0

) is
higher for Model A than for Model B. As F,((

0
) , R ik , and

n; increase, so does model complexity. According to

Equation 6, a more complex model yields a smaller mar

ginal likelihood; consequently, it is less likely to be se

lected as the best fitting model. Model B would be cho

sen over Model A using the Bayesian method if other

things were equal (i.e., same R;k and n; for both models).

The middle and lower panels of Figure 4 are examples

of other model relationships that illustrate further how

model complexity affects model selection. For the pairs
ofmodels, assume that they have the same number ofpa

rameters and the same extension of the parameter space,

and further, that the prior density of the parameter fol

lows a uniform distribution. In the lower panel, both se

lection methods (Bayesian and standard) would likely

reach the same conclusion when evaluating Models E and

F. Not only does Model F provide a much poorer fit than

Model E, but also its marginal likelihood is smaller.

Whether the maximum likelihood or the marginallikeli

hood were used to select the most appropriate model,

Model E would be the clear winner.
In the middle panel, Model C would be chosen over

Model D using the standard method because C's maxi

mum likelihood is larger than D's. Bayesian model selec

tion is less straightforward in this case. Even though D's

fit is not as good, it would be chosen because its marginal
likelihood is larger than C's. Maximization of the mar

ginal likelihood favors a model that not only fits data

well, but also does so over a wide range of parameters.

Model D does so to a far greater extent than C. Compar
isons such as this, in which goodness of fit and model

complexity differ greatly between models, should bene

fit from application of the Bayesian approach.

In this last example, the Bayesian method might seem

to yield counterintuitive results because the model that

provides the best fit to the data is not chosen as the pre-
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ferred model. This is because model complexity is just

as important as model fit in influencing model selection.
In the Bayesian approach, the ability ofthe model to fit the

data reasonably well over a range of parameter values is
what is important because it indicates that the model

captures the structure in the data with a minimum ofcom

plexity (e.g., minimal reliance on functional form, number
of parameters, etc.). Models in which parameters must

be finely tuned to achieve a good fit (Models A and C)

are valued less, precisely because the fit is achieved by
relying on the complexity ofthe model. The contribution

ofcomplexity to model fit should not be underestimated.

By finely tuning parameters, a complex model can fit a

range ofdata patterns, not because it is the "true" model,

but because it is the most flexible, easily adjusting to vari

ations in the data. Taken to an extreme, one could imag

ine a highly complex model fitting almost any data set
very well.

The preceding examples should make it clear that the

difference in the pattern of data to be maximized by the
likelihood function versus the marginal likelihood can

have nontrivial implications for model selection and is at

the heart ofthe Bayesian approach. Maximization of the

marginal likelihood is accomplished by pitting maximi

zation of the likelihood function against complexity min

imization. A more complex model will be favored only if

its goodness of fit is large enough to justify the additional

complexity of the model. It is in this sense that Bayesian
model selection is a quantitative implementation of Oc

cam's razor.

Computation of the Bayes Factor
Although the simplified expression in Equation 6 is

useful to illustrate basic ideas of Bayesian model selec

tion, it is derived under some restrictive assumptions about

the shape of the likelihood function. Goodness offit and
model complexity are not, in general, separable from each

other, but instead, the two work together implicitly within

a single measure, which is the marginal likelihood. Com

putation of the Bayes factor P(DIM,)/P(DIMz) then re
quires evaluating the multiple integral in Equation 5.

Readers who are not interested in the mathematical de

tails of computing the Bayes factor should skip to the sec

tion, Application Example of Bayesian Model Selection.

PriorsP(8IMj ) . To evaluate the integral, the prior den

sity of the parameter, P( 8 IMJ, must be specified. Two
straightforward methods for obtaining the prior are de

scribed below. Others are discussed in Appendix B.
Whatever method is used, it is very important to perform

some form ofsensitivity analysis to ensure that the result

ing Bayes factor is reasonably stable over a range of val

ues. For a more comprehensive treatment of this crucial
topic, see Berger (1985) and Kass and Raftery (1995).

A simple-minded method for choosing priors is to use

a noninformative prior, which by definition assumes no

information about the parameter 8. For example, the uni

form density function 7C( 8) = I on 0 ~ 8 ~ 1 is a nonin

formative prior. Although a noninformative prior would

be an obvious choice when absolutely no information is
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available, often the noninformative prior is an improper
prior having infinite mass (i.e., frc(8)d8 = 00). One ex
ample is the uniform density rc(8) = c on 0 ~ 8 < 00

where c > O. Another reasonable choice of a noninfor

mative prior for 0 ~ 8 < 00 that has the desirable scale

invariance property [i.e., rc(8) = rc(8/a)/ a for any a>
0] is rc(8) = 1/8; this is also an improper prior. Although

the justification and interpretation of noninformative

improper priors is disputed (see Berger, 1985, pp. 89-90),

they are routinely used in Bayesian inference (e.g., Gel
fand & Dey, 1994; H. Jeffreys, 1961).

Informative priors can be used when information about

8 is available. One way to do this is to obtain an infor

mative prior from an experimental setup. To illustrate,

consider a signal detection experiment consisting of n

conditions in which the signal-to-noise ratio is systemati

cally varied from lowest in Condition 1 to highest in Con

dition n. Assume that the number of correct responses

out ofa total ofs trials in Condition k (k = 1,... , n) is bi
nomially distributed with Binis, 8k ) where 8k (0 ~ 8k ~ I)

is the binomial probability parameter. A reasonable way

to obtain the prior rc(8" ... , en) is to assume that ek s are
the order statistics (i.e., ei ~ ~ for any i <j), resulting from

an independent random sample from the uniform distribu

tion on [0,1]. For example, given a particular random

sample of three (n = 3) observations, (.53, .29, .87), from

the uniform distribution, the desired order statistics are

obtained as e, = .29, e2 = .53, and e3 = .87. For other

similar cases, by being creative and reasonable, one can
find priors that best capture the information available in

the experimental design as well as in the data.

Numerical methods for computing the Bayes fac
tor. A closed-form solution to the integral in Equation 5

is the preferred method for computing the Bayes factor.

Most often, however, the integral must be evaluated nu
merically. A simple Monte Carlo integration method

(Thisted, 1988, p. 302) can be used for integrals involv

ing fewer than 10parameters. More efficient methods such

as Markov chain Monte Carlo (MCMC) methods should

be used for integrals involving large numbers ofparame

ters. For comprehensive treatments of MCMC methods

and numerical integration methods in general, readers are

directed to Smith (1991), Smith and Roberts (1993), and

Thisted (1988, sec. 5.6).
The logic of the MCMC method is to obtain a suffi

ciently large sample of random observations generated

from a probability density function in a prespecified

manner, and then to use the sample to evaluate a desired

integral. More specifically, the integral in Equation 5 is
approximated by the following time average:

(8)

In this equation, {e', e2, ... , eT } is a random sample of
T vectors drawn from the prior density function rc(e) of

Model i. Various versions of MCMC, such as the Gibbs

sampler (Gelfand & Smith, 1990; Geman & Geman, 1984;
Wakefield, Smith, Racine-Poon, & Gelfand, 1994)and the

Metropolis-Hastings algorithm (Hastings, 1970), have been
proposed. The Gibbs sampler will be described here, pri
mari�y because it is easy to apply once the set of fully con
ditional distributions ofthe parameters (the probability dis

tributions ofeach parameter conditional on all remaining
parameters) is identified, at least up to proportionality.

The iteration procedure for generating a random sam

ple ofany size by the Gibbs sampler is summarized in the

following steps. A hypothetical example of the Gibbs

sampler is shown in square brackets, [ ... ], for a three
parameter case with the parameters (e1, e2, ( 3) defined

between 0 and 1:

Initialization:

Determine T;

Pick an arbitrary starting vector eo = (e~, ..., ()~ )
[eO = (.52, .19, .34)];

Define and set a temporary vector etemp: = eo
[e temp = (.52, .19, .34)];

Lete temp{ - k} denote a set of the current values in
etemp without the kth element

[e.g., for k = 2, e temp{ -2} = (eltemp = 52,

ejemp = .34).]

Let SUM = 0;

Let t= 1.

Step 1: Take a random sample of e\ from the condi
tional distribution rc(ell e temp{ -I})

[e\ = .91];

Replace er' of etemp with the new

e\ [e temp = (.91, .19, .34)].

Step 2: Take a random sample of e ~ from the condi

tional distribution rc(e2 1 e temp{ - 2})

[ei = .48];

Replace er' of etemp with the new ei
[e temp = (.91, .48, .34)].

Step n: Take a random sample of e ~ from the condi
tional distribution rc(en Ietemp{ -n})

[ e ~ = .20];

Replace e~-l of etemp with the new e~

[e temp = (.91, .48, .20)].

Evaluation:

Set et = etemp and evaluate p(Dle t , MJ at et

[e t = (.91, .48, .20)];

SUM = SUM + p(Dle t, Mi ) ;

If t < T then let t = t+ 1 and go to Step 1 or else go to

End.

End:

SUM = SUM /T.

The value of the variable SUM represents a numerical

solution to the integral in Equation 5 for the specified
number of iterations (T). The number of iterations nee-
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essary to obtain an accurate approximation ofthe integral

is not easy to determine beforehand. Raftery and Lewis

(1991) have provided useful guidelines for estimating T,

which depends on the type of problem, the model equa

tion, and the specific priors used. Probably the most prac

tical method is to examine the converging pattern of the

sum by plotting it against the number of iterations to

identify where the curve becomes stationary. A few runs

usually give a good estimate for a given problem.

APPLICATION EXAMPLE OF BAYESIAN

MODEL SELECTION

In this section, an implementation of the Bayesian

model selection method is illustrated through numerical

examples with simulated data.

Models of Information Integration

A long-standing question that continues to receive con

siderable attention in cognitive psychology is, How is in

formation from different sources (e.g., sensory and con

textual) integrated during perception? The answer to this

question has broad implications for theory development

because information integration is a common denomi

nator among models: Models must specify when and

how independent sources of information are combined

during processing. Entire classes of models will have to

be modified if they are shown to have the wrong func

tional architecture.

Interest in information integration spawned a variety

of mathematical models of integration (see N. H. Ander

son, 1981; Massaro & Friedman, 1990). Their number

and relative simplicity provided an appropriate context

in which to test the Bayesian selection method. In a typi

cal experiment on information integration, two or more

stimulus dimensions are factorially manipulated and pre

sented to one or two modalities (e.g., auditory, visual).

Participants identify stimuli along one dimension. Of in

terest is the influence of the orthogonal dimension on

perception. For example, context effects in speech per

ception are investigated by measuring categorization of

perceptually ambiguous phonemes embedded in words

and nonwords.

For simplicity, only data from a two-factor, two

response-category experiment will be considered. Ex

tension ofthe approach to more general cases is straight

forward. Suppose that the first factor has nl levels and

the second has n2 levels, so that Si) (i = I, ... , n I;) =

I, ... , n2) denotes the stimulus constructed with Level i

of the first factor and Level) of the second. The stimuli

are presented to participants in a random order and equally

often over s independent trials. Participants categorize

the stimuli as one of two possibilities, A or B. Let a ran

dom variable Xi) denote the number of Category A re

sponses participants made when Stimulus Si) was pre

sented. Then, Xi) will follow a binomial probability

distribution with parameters Pi) (probability of Cate

gory A response) and s (number of independent obser

vations).
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Three non-nested models of information integration

were chosen for evaluation on the basis of their similar

ities in implementation. They were the fuzzy logic model

of perception (FLMP) by Oden and Massaro (1978), the

linear integration model (LIM) by N. H. Anderson (1981),

and the theory of signal detection (TSD) by Green and

Swets (1966). All three assume that the probability of

classifying a stimulus as a member of Category A is a

function ofthe extent to which the two feature dimensions

of the stimulus (i and j ) support the category response

(Massaro & Friedman, 1990). Specifically, the response

probability, Pi)' is assumed to be a function of two inde

pendent parameters, ()i and Aj , each of which represents

the degree of support for a Category A response given

the specific i and) feature dimensions of a stimulus. The

three models, however, differ in how the two parameters

are combined to produce Pi)'

According to the FLMP, Pi) takes the following non

linear form (see Massaro & Friedman, 1990):

()iAj

The LIM assumes a linear combination rule for Pi) as

follows:

()i + Aj
Pi], LIM = -2- . (9b)

For the TSD, the response probability is given by

P'j,TSD = <l>h~1 <I>-I(Vi)2 + Vi) <I>-1(A j)2 I ], (9c)

where <1>( ) and <I>-l( ) are the cumulative and inverse

cumulative normal functions, respectively. The s i) is the

sign ( :::': I) of (<I> -1(()i) +<I> - I(Aj )) and vi) is the sign ( :::': I)
of (<I> -I( ();) . <I>-I(A

j
)).

Note that all three models possess the same number of

parameters (two) as well as the same extension of the pa

rameter space (i.e., 0 < ()i' Aj < 1), but differ in their

functional form. Model selection using a standard

method, such as AIC, would be decided solely on good

ness of fit. Numerical examples in the following section

demonstrate the improvement in model selection that is

achieved with the Bayesian method.

Specification of Priors

To apply the Bayesian method, a probability density

distribution for the two parameters of the model must be

specified. We assumed that the distributions were the

same for all three models, and further, that the parame

ters belonging to the first experimental variable were in

dependent of those belonging to the second. In determin

ing the characteristics of the distributions, a sensible

choice is informative priors, because prior information

about the parameters is available from the experimental

setup that the present examples are intended to simulate.

The method in which levels of the independent variable

are created frequently ensures that ordinal information

about the parameters is available, even before data are

collected. For example, in speech perception experi-
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ments, the levels ofone of the variables (e.g., steps along

a fbaf-fdaf phonetic continuum) are varied incremen
tally so that the probability of a Category A response at

level i is greater than or equal to that at level i' if i < i',

and vice versa. The levels ofthe other variable can be ma

nipulated in a similar fashion. Details on how this ordi
nal information was incorporated in the prior probabili

ties are provided in Appendix e.

Simulated Data and Model Fitting
Data simulating three response patterns in a 2 X 8 fac

torial design (i.e., nl = 2 and n2 = 8) were created. Three

distinct parameter sets, chosen to represent a range of re

sponse patterns in categorization experiments, were used
to generate the simulated data.f Each set contained 10 pa

rameter values (2+8). For each set, 16 (N = 16) binomial

response probabilities (Pi}) were then computed using one
of the three model equations in Equation 9. Each of the

nine panels in Figure 5 shows a plot of the 16 probabili

ties for a given model and parameter set. Note that these

probabilities represent ideal, error-free performance.

To simulate actual performance by human participants,
samples were created using each parameter set in Figure 5

according to the binomial probability distribution as fol-

lows. For each of the 16 response probabilities (Pi})' a
series of 20 (s = 20) independent binary outcomes (0
or 1) were generated in such a way that the probability

of I was Pi}' Next, the number of Is in the series was
summed and divided by s to obtain an observed propor
tion for the particular combination of i and j. Finally, the

above procedure was repeated for the remaining 15 val

ues to obtain 16 observed proportions, which together
constituted a single sample. One hundred samples were

created for each of the nine panels in Figure 5.

Each of the three models was fitted to each simulated

sample separately. This was done using the standard

method and the Bayesian method to compare their abil

ities to recover (i.e., identify) the model that generated

the original data. For the standard method, a nonlinear

optimization routine (Marquardt compromise method;
Marquardt, 1963) was used to find the least squares esti

mates that minimized the sum ofsquared errors between

the simulated and predicted data. Because the number of

parameters was the same across models, this procedure

was equivalent to other methods, such as Ale. For the

Bayesianmethod, the integral in Equation 5 was evaluated

numerically using an extended series of simple Monte
Carlo simulations.?
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Figure S. Binary response probabilities used to create the simulated data. The three panels in each row represent three
different response patterns generated from the fuzzy logic model of perception (FLMP), the linear integration model
(LI M), and the theory of signal detection (TSD) using Equations 9a-9c with a single set of 10 parameter values. Three
sets of parameter values, corresponding to the three rows in the figure, were used.
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Table 1

Summary Fits ofthe Simulated Data for the FLMP, LIM, and TSD Models

in the Standard Method

Set I Set 2 Set3

Data Generated From: FLMP LIM TSD FLMP LIM TSD FLMP LIM TSD

Model fitted:

FLMP RMSD 0.093 0.106 0.109 0.046 0.089 0.065 0.045 0.103 0.065

% variance 95.63 85.44 93.71 99.30 94.84 98.82 99.40 93.09 98.85

%win 62 14 20 65 47 20 54 33 26

LIM RMSD 0.156 0.108 0.181 0.215 0.098 0.311 0.252 0.114 0.270

% variance 88.44 85.05 82.72 86.96 94.00 75.81 83.71 91.75 81.96

%win 0 36 0 0 31 0 0 17 0

TSD RMSD 0.100 0.105 0.092 0.051 0.099 0.060 0.048 0.102 0.059

% variance 94.94 85.79 95.52 99.18 93.61 99.02 99.31 93.23 99.06

%win 38 50 80 35 22 80 46 50 74

Note-For each model fitted, the first row shows the arithmetic mean root mean squared deviation

(RMSD) for the model, averaged across 100 samples, the second row shows the arithmetic mean percent

variance accounted for, and the third row shows the percent of samples in which the model fits better than

the other two models. FLMP, fuzzy logic model of perception; LIM, linear integration model; TSD, the

ory of signal detection.

Results
The results are summarized in Table I for the standard

method. For the simulated data generated from the FLMp,

model recovery rate-the percent of samples in which

the model that generated the samples was correctly iden

tified as the best fitting model-was 50%-60%, essen

tially uniform across the three parameter sets. When the

original FLMP model was incorrectly identified (30%

50% of the time), it was always identified as the TSD

model, never as the LIM model. Note that even when the

FLMP was correctly identified, the winning margin was

miniscule, rarely besting the TSD by more than a 10%

difference in RMSD. The mirror image of this outcome

was obtained for the simulated data generated from the

TSD. The TSD was recovered approximately 78% of the

time and was incorrectly identified as the FLMP around

22% ofthe time. It was never recovered as the LIM. These

results suggest that the FLMP and TSD are close compet

itors. Each is flexible enough to mimic the other reason

ably well. LIM is a lone loser that consistently failed to

beat the data-fitting abilities of FLMP and TSD.

The above interpretation is further supported by the

model fitting results for the LIM. What is most striking

is the failure of LIM to beat out the competitors in fitting

its own data. Model recovery rate for the LIM was only

28% across the three parameter sets.l? The FLMP and

TSD bested the LIM in two of the three parameter sets.

Comparison of the RMSDs, however, reveals that the fits

for all models are fairly similar. Competitors were never

far behind the best fitting model. This is shown graphi

cally in the three left panels of Figure 6, which are fre

quency distributions of RMSD ratios fitted to the LIM

data by the LIM and FLMP models. The FLMP usually

bested the LIM by less than a 10% difference in RMSD.

This asymmetry in data fitting between FLMP and LIM

is just what Cutting et al. (1992) found.

The model recovery results from application of the

Bayesian method are summarized in Table 2. Unlike

RMSD scores, which can be difficult to interpret because

they are relative values, the marginal likelihoods in Ta

ble 2 are meaningfully interpretable. For each model, they

represent the actual probabilities of observing the par

ticular pattern ofdata for the given model. Because ofthe

extremely large number of possible data patterns, these

probabilities should be very small (10- 20 to 10- 16) .

They should not be interpreted as being insignificant.

Recall that the Bayes factor is a ratio of two marginal

likelihoods. Bayes factors greater than 20 should be con-

Table 2

Summary Fits of the Simulated Data for the FLMP, LIM, and TSD Models in the Bayesian Method

~ I ~ 2 ~ 3

Data Generated From: FLMP LIM TSD FLMP LIM TSD FLMP LIM TSD

Model fitted:

FLMP P(DIM) 6.7xIO-17 7.0X 10- 19 9.9XIO-18 8.4XIO-15 1.0XIO-17 2.4XIO-17 3.4x 10- 15 9.2XIO-19 2.1 X 10- 15

%Win 86 0 25 98 3 6 91 II 38

LIM P(DIM) 7.3XIO-19 7.7X 10- 17 2.6X 10- 20 4.9X 10- 21 1.8x 10- 16 4.3X 10- 28 1.7X 10- 27 l.l X10- 17 4.8X 10- 30

%Win 5 100 0 0 97 0 0 89 0

TSD P(DIM) 7.8X 10- 19 2.2X 10- 19 2.8X 10- 17 2.3X 10- 16 1.9XIO-19 1.3XIO-15 2.0X 10- 16 3.6X I0-20 2.9XIO-15

% Win 9 0 75 2 0 94 9 0 62

Note-For each model fitted, the first row shows the geometric mean marginal likelihood, P(DIM), averaged across 100 samples, and the sec

ond row shows the percent of samples in which the model fits better than the other two models. FLMP, fuzzy logic model of perception; LIM.

linear integration method; TSD, theory of signal detection.
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sidered strong evidence for the favored model. Values
greater than 150 should be considered very strong evi
dence (Kass & Raftery, 1995).

Overall, the data show a marked improvement in data

recovery over the standard method. For the FLMP and

TSD models, recovery rate between the Bayesian and

standard methods improved in four of the six cells (86
vs. 62, 98 vs. 65, 94 vs. 80,91 vs. 54). There was one tie

(75 vs. 80) and one case in which it did worse (62 vs. 74).

In addition, the winning model won more decisively with
the Bayesian method. For the four cases in which there

was an improvement, the marginal likelihood was 17 to

86 times that of the losing model.

Even more impressive are the recovery results for the

LIM model. The Bayesian method recovered the LIM

model from 89% to 100% of the time. This outcome is

in sharp contrast to the standard method, which pro
duced recovery rates barely one third as good (17%
36%). When the LIM did win, it was an overwhelming

victor a majority ofthe time. This is shown graphically in

the right three panels of Figure 6, which are frequency

distributions of the log ratios of marginal likelihoods

(i.e., Bayes factors) fitted to the LIM data by the LIM

and FLMP models. As can be seen across all three para-

meter sets, the degree of support for the LIM is at quite
a comfortable level, the Bayes factors ranging from
about 10 to 1,000.

The results in Tables 1 and 2 together clearly demon
strate the superiority of the Bayesian method in model
selection. By penalizing models for the complexity oftheir

functional form, the Bayesian method improves model
recovery rate significantly over the standard method. The

functional forms ofthe three models are indeed markedly

different from one another. The LIM assumes a linear

form with respect to the parameters, whereas both the

FLMP and TSD assume sophisticated nonlinear forms.

Unless this component of model complexity is incorpo
rated into the selection process, a complex model will be

mistakenly declared as the best fitting model for a given

parameter set more often than a simple model, as shown

in Table 1. Note that this will occur not because the com

plex model is more plausible, but because the extra flex

ibility built into the complex model enables it to capture

more of the random, idiosyncratic variation in the data

than the simpler model, thus improving goodness of fit.

However, the Bayesian method failed to recover the

correct model some ofthe time. This occurred primarily
when the FLMP was fitted to TSD data using parameter
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sets 1 and 3 (top right corner of each 3X3 matrix). On

trials in which a model recovery error was made, the

FLMP beat the TSD by very little, with the Bayes factor

rarely exceeding 5. Note also how localized model re

covery errors were across the three data sets. Fewer errors
were found with parameter set 2 or in the opposite cor

ner ofeach matrix, where they might be expected, when

the TSD model was fitted to FLMP data (2%,9% error

rates).
Because the errors occurred with specific parameter

sets and the Bayes factor was usually small in these cases,

we attribute the high errors to FLMP providing exception

ally good fits to the regions in data space occupied by

parameter sets 1 and 3 (Figure 5). That is, FLMP's good

ness of fit was so good in this region that it partially offset

the complexity penalty that the model is normally as

sessed, thereby besting the TSD by a hair. This superior

data-fitting ability does not extend to the data space oc

cupied by parameter set 2, enabling the correct model to

be recovered most of the time. Systematic studies are

planned to test the viability of this speculative account.

DISCUSSION

In this final section, we discuss the pros and cons of

using the Bayesian and standard methods. An advantage

ofthe standard method is that it is easy to use. To choose

among models, one need obtain only two easy-to-compute

indices for each model: a model fit index, such as RMSD

or maximum likelihood, and a complexity index, a count

ofthe number offree parameters. These are combined to

yield an overall measure ofmodel fit using a simple alge

braic formula, the exact form of which depends on the

particular criterion used (e.g., AIC, BIC, RMSEA). The

model that minimizes the overall fit is chosen.

The present findings demonstrate that despite the sim

plicity and convenience of the standard method, critical

dimensions of complexity, such as functional form, are

ignored when it is used. Influences of functional form

can be ignored only when two rather restricting assump

tions are met: The sample size is sufficiently large (i.e.,

theoretically infinite) and the models being compared

are nested. Indeed, it is these assumptions from which

many of the selection criteria for standard models (e.g.,

AIC and BIC) were derived and their desirable properties

were shown (e.g., asymptotic optimality; Schwarz, 1978).
Strictly speaking, whenever these assumptions are vio

lated, use of the standard method is not justified.

This does not mean that the standard method should be

abandoned. It is useful for discriminating among nested
models that have the same functional form, thereby can

celing out effects due to this dimension of complexity.

This might often be the case in psychometric data analy

sis in which models being compared tend to be nested

(e.g., regression models, latent variable models). However,

as we have seen, use of the standard method can lead to

erroneous decisions, especially for data of small or mod

erate sample sizes.
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In contrast to the standard method, the Bayesian method

does not require the frequently unrealistic assumption of

a large sample size. It is safe to apply the method to com

parisons among models with data of any sample size.
Nor is the Bayesian method confined to evaluating nested

models. This is because it appropriately adjusts the model

complexity measure for differences in functional form.

This latter feature makes the method particularly well

suited for comparing mathematical models ofcognition,

of which many are non-nested.

Areas of inquiry in which the Bayesian method could

be fruitfully applied include categorization models, such

as decision-bound models (Ashby, 1992; Ashby & Gott,

1988; Ashby & Townsend, 1986), prototype models (Reed,

1972), and context models (Medin & Schaffer, 1978;

Nosofsky, 1986); memory models, such as search-of

associative-memory (SAM) models (Gillund & Shiffrin,

1984), multiple trace models (Hintzman, 1986, 1988), and

holographic memory models (Metcalfe-Eich, 1982; Mur

dock, 1982); and causal inference models, such as the

linear model (Schustack & Sternberg, 1981), the weighted

L1P model (Allan, 1980, 1993), and the Bayesian infer
ence model (1. R. Anderson, 1990;1.R. Anderson & Sheu,

1995). Like the standard method, the Bayesian method is

not limited to testing models of cognition and could be

used to test quantitative models in any area ofpsychology.
The Bayesian method, however, has its drawbacks. One

is that parameter priors are required to compute the mar

ginallikelihoods. The standard method, on the other hand,

ignores information about priors, even when available.

Although this is a rational strategy in an exploratory phase

of research (e.g., when no or little reliable information

about parameter priors can be obtained), it may not be

justifiable when building mathematical models, which

are usually developed at advanced stages of a research

program. In this case, it makes sense to capitalize on the

available information in the data or in the experimental

setup to compute priors. We have suggested several ways

ofdetermining priors by utilizing such information (Ap

pendix B).
Another drawback of the Bayesian method is its heavy

demand for computational resources. Unlike the simple

formulas prescribed in the standard method, the Bayesian

method usually requires numerical computations ofinte

gral form to evaluate the posterior probability distribution.

This task has been simplified greatly by recent advances

in the area ofBayesian computation (e.g., the Gibbs sam

pler, Geman & Geman, 1984). Nevertheless, it may still

be viewed as an obstacle by those who are not familiar

with numerical computation methods. I I

Despite the apparent differences between the Bayesian

and standard methods, there are cases in which both will

perform similarly for large sample sizes. For example,
the BIC can be viewed as a crude approximation of the

Bayes factor that ignores priors (see Appendix D).

Given the advantages and disadvantages of the Bayes
ian method, it might be best to apply the method to com

parisons among well-developed mathematical models.
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Without sufficiently detailed models, the construction of

reliable priors may not be possible, or if accomplished,

might increase the chances of unwarranted decisions. In

addition, if a myriad of mathematical models have to be
evaluated, a nontrivial amount ofcomputing time will be

needed. We recommend that the simple, easy-to-use

standard method be applied first to eliminate grossly

unfit models in order to narrow the field to a few highly

competitive ones. Then apply the Bayesian method to fur

ther differentiate among the survivors. This technique bal

ances computational costs with model selection costs.

There is no reason for the Bayesian method to be the sin

gle, universal model selection tool.
In conclusion, we have introduced a Bayesian model

selection method that embodies the principle ofOccam 's

razor. We have tried to present a balanced view of the

method, pointing out its desirable features (i.e., sensitiv

ity to functional form and applicability to comparison

among non-nested models and data of any sample size)

as well as some current drawbacks (i.e., computational cost
and specification of parameter priors). When applied

with discretion, it can be a useful tool for distinguishing

sensible models from superfluous ones, thus contribut

ing to theoretical advancement in the discipline.

One final note. Quantitative methods must not be used
as the final decision makers when comparing models.

Bayesian or non-Bayesian, quantitative model selection

methods cannot replace other selection criteria (e.g., ex

planatory power, plausibility, internal consistency). Math
ematical modeling will best serve the discipline when

used in conjunction with these criteria. In this regard, we

concur with the word of caution offered by Browne and
Cudeck (1992, p. 253), "Fit indices should not be re

garded as a measure of usefulness of a model. ... Con
sequently, they should not be used in a mechanical deci

sion process for selecting a model. Model selection has

to be a subjective process involving the use ofjudgment."
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NOTES

I. Note that the term complexity only partly corresponds to its

usage in everyday language.

2. It is important to distinguish between data size (N) in Equa

tion 3 and sample size (s: the number ofobservations per stimulus) in

Equation 2. To illustrate, consider a categorization experiment in

which each subject was asked to categorize 16 different stimuli gen

erated from a 2 x 8 factorial manipulation of two stimulus dimen

sions. A total of 20 subjects were tested, with each responding to each

stimulus only once. In this case, the data size is N = i 6, the sample

size is s = 20, and thus the total number of observations is sN = 320.

3. Two models are non-nested ifthe functional form of one model

cannot be reduced to a special case of the other. For example, a poly

nomiai model of the form y = 90 + 9 1x + 9iX 2 and an exponential

model of the formy = 90+ 9 lexp( -92x ) are non-nested. On the other

hand, the polynomial model and another model of the form y = 90 +
91x are nested because the latter is obtained from the former as its spe

cial case by setting 92 = O.

4. Bozdogan (1987) extended the AIC to reflect functional form

using an asymptotically consistent criterion called the consistent AIC

with Fisher information (CAICF). Note that the CAICF and AIC were

developed for comparison among nested models, in which effects due

to functional form are at best minimal.

5. Bamber and van Santen (1985) argued that even when assess

ing the testability (whether there exist potential outcomes that are in

consistent with the model) and identifiability (whether the model's pa

rameters are uniquely determined for a specific outcome) of a model,

the same three dimensions of complexity must be considered.

6. From a computational complexity point of view, meaningful

model priors can be defined under the assumption that structure in the

world evolved out of randomness (Chaitin, 1966; Kolmogorov, 1968;

Solomonoff, 1964; for reviews of the topic, see Cover & Thomas,

1991, and Li & Vitanyi, 1993). The idea is that if objects in the world

were created randomly, the probability of observing a simple object

should be much higher than that of observing a complex object. The

utility of this approach for deriving meaningful priors in cognitive

psychology has yet to be explored satisfactorily.
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7. Although the functional form ofa model remains fixed, model
complexity due to functional form may not, and it can be dependent on

the data itself. One situation in which complexity does remain fixed
is testing normal probability models (see Appendix A).

8. The 10 parameter values assumed for each parameter set were

as follows: for parameter set I, () = (0.66,0.33), A = (0.88, 0.77, 0.66,
0.55,0.44,0.33,0.22,0.11); for parameter set 2, ()= (0.85,0.15), A=
(0.95,0.90,0.74,0.58,0.42,0.26,0.10,0.05); and for parameter set 3,
e= (0.75,0.25), A = (0.95,0.90,0.80,0.75, .0.20, 0.07, 0.05, 0.02).

9. A typical run of the Monte Carlo simulation required about

50,000 iterations to obtain a reasonable level of accuracy for the mar
ginal likelihood, though in some cases up to 500,000 iterations were

needed.
10. This imperfect model recovery performance for the LIM per

sists for larger sample sizes (s). For example, simulations not reported

here showed that model recovery rate for the LIM was still about 50%
for s = 100 and 80% for s = 1,000 fairly uniformly across the three

parameter sets.
II. C source code, which implements the Monte Carlo methods

used in the application examples, is available from the authors.
12.This condition is known as the independence axiom in conjoint

measurement theory and is widely assumed in models of choice be
havior under uncertainty (Roberts, 1979).

APPENDIX A

This appendix describes details of the Laplace approxima

tion of the marginal likelihood in Equation 5. Assume that the

likelihood function P(D 18,M;) is highly peaked near its maxi

mum 8
0

(e.g., normal density) and further, that the prior den

sity P( 81M;) is essentially flat in the neighborhood of 8
0

,

Under these assumptions, the following approximation to the

marginal likelihood for large sample size (De Bruijn, 1958;

Tierney & Kadane, 1986) is obtained:

P(DIM,) = P(DI80,M;) , (i = 1,2). (AI)

IHi ( 8
0)II/Z

/ [(2n')n/2 P(8
0IM;)]

In this equation, ni is the number ofparameters for the Model i,

and H;(8
0

) is the negative Hessian matrix ofthe log likelihood,

Hi(8) = -VZlog[P(D I8,M ;) P(8 IM ;) ] (= -VZlog[P(8ID,M,)]

from the Bayes rule), evaluated at 8
0

, P(DI8
0,M;)

is the maxi

mum likelihood ofthe data given the model. As can be seen in

the above equation, maximization of the marginal likelihood

involves not only maximization of the numerator (the likeli

hood function) but also, importantly, minimization of the de

nominator term of the equation. Intuitively, the denominator

can be understood as a measure of model complexity:

. IHi(80
)11/z

Model Complexity = --/-z--1- . (A2)
(2n)n, P( 8

0
M;)

This model complexity measure reflects the functional form of

the model through IH,(8
0)1.

H,(8
0

) will take on a different value

depending on how the parameters are combined in the model.

The functional-form factor, F;(8
0

) , in Equation 7a is defined as

F;(8
0

) = IH;(8
0)llIZ.

To give a concrete example for F;(8
0

) , con

sider a family ofmultivariate normal probability models N(J1,

l) in which each model is defined by a distinct covariance ma

trix 1 and has the mean vector as a parameter (i.e., 8 = J1). As

suming a uniform density for P(8IM i ) , it can be shown that

Hi (8
0

) is equal to the inverse ofthe covariance matrix and is in

dependent ofthe data D as well as the parameter J1, so F;( 8
0

) =

Ill-liZ. Note that /l/-lIz becomes lIafor ni = 1 of univariate

normal probability models. Thus, the smaller the variance ofa

normal probability model, the larger the F;(8
0

) and thus the

more complex the model. Put another way, a model that is

finely tuned to fit observed data (i.e., highly peaked around 8
0

)

will have a higher complexity measure than a model that can

fit the data for a wide range of parameter values.

The number of parameters in a model is also represented in

H;(8
0

) ' For a sufficiently large sample size s, we obtain an ex

ponential function of parameters (n,) (see Raftery, 1993),

(A3)

where N is the data size. The more the number of parameters

in a model, the larger the complexity measure.

The complexity measure is also sensitive to the extension of

the parameter space, which is reflected through P(8
0IM i ) . To

see this, first note that the prior P( 8 IM,') denotes a regular

probability density, the integral ofwhich over the extension of

the parameter space must be equal to 1. In general, P(8
0IM,),

which refers to the value of the probability density evaluated

at 8
0

, will be smaller for a large extension of the parameter

space than for a small extension. Because P(8
0

IMi) is inversely

related to the complexity measure, a model defined with a

large extension of the parameter space is more complex than

one with a small extension. As a concrete example, suppose

that each element of the parameter vector 8 for Model i is de

fined on a real line of finite size R ik (e.g., 0 ~ 8k ~ R'k' k =
I, ... , ni , for some constant R'k < 00), and further, that the prior

density P(8IM i ) for 8is an independent, uniform distribution.

We then get

n,

P(80IMi ) = 11 Tl R'k'
k=l

If other things are equal, the wider the range Rik , the more

complex the model.

Finally, combing the result in Equation A4 with the defini

tion F;(8
0

) = IHi(80)l'IZ
in Equation A2 yields the approxima

tion in Equation 7b.

APPENDIXB

This appendix describes two additional methods for obtain

ing informative priors for P(8IMi ) .

Maximum entropy priors. Informative priors can be used

when information about 8 is available from past data. If infor

mation is given in terms of moment constraints, such as mean

and variance, then maximum entropy priors are a natural choice.

The principle of maximum entropy (Jaynes, 1957) is an infer

ence method for estimating a probability distribution used

when limited information is available in the form of the mo

ments of that distribution. For example, suppose that for a pa

rameter of the range 0 ~ 8 < 00 the mean of the probability dis

tribution is known and is equal to some positive value, A.. The

maximum entropy prior is the exponential density n( 8) =

e(-91A.)/A.. Jaynes provided theoretical justification for such a

maximum entropy prior as that which utilizes all information

contained in the moment constraints but which is maximally

noncommittal with respect to information not available. For

more comprehensive treatments of maximum entropy infer

ence, including solution methods, readers are directed to

Berger (1985, sec. 3.4), Cover and Thomas (1991), and Tribus

(1969). Kapur and Kesavan (1992, p. 359) have included a

comprehensive list of maximum entropy priors given various

moment constraints.

Partial and intrinsic priors. Another appealing method of

obtaining informative priors is the partial Bayes factor method,



which uses existing data (Berger & Perrichi, 1996; O'Hagan,
1995). Half of the data are used as a training sample to obtain

an informative posterior distribution of the parameters. This

distribution is then used to compute the Bayes factor with the
other half of the data. This method is particularly useful when

noninformative priors are not well justified or difficult to ob

tain. One obvious problem is that the results depend on the
choice ofthe training sample as well as the sample size. Berger

and Perrichi have proposed a new criterion, the intrinsic Bayes

factor method, to resolve the problem. It takes into account all
possible training samples when computing the posterior dis

tribution. That is, first an informative posterior distribution from

each training sample is estimated. These values are then aver

aged (arithmetically or geometrically) to obtain the posterior

distribution. This method is a sensible way to obtain "objec

tive" priors, though it may be computationally intensive when
numerical solutions are required.

APPENDIXC

This appendix describes a method for obtaining the informa
tive prior used in the application example described in the pres

ent paper.

Assume that the prior density is the same for all three mod
els (FLMP, LIM, and TSD), and further, that the parameters

belonging to the first factor are independent of those belong

ing to the second factor. These assumptions lead to

1r(81, · · · ,8nl,AI, .•• ,An) = 1r1(81, · · · ,8n)1riAI"" ,An)' (Cl)

The two probability densities, 1r1 and 1r2, are determined uti
lizing ordinal information about the parameters, which is avail

able from the experimental setup. That is, if the response prob

ability assumed by each of the three models in Equations 9a,

9b, and 9c is a monotonically and independently increasing

function of both parameters 8; and Ai' the following orderings
among parameters will hold: 12

8;:?: 8(, for i < i'; Ai:?: Ai' for} <j', (C2)

This ordinal information about the parameters was incorpo

rated into priors using order statistics. They were constructed

numerically as follows. To generate random samples of 81, ••• ,

8n l that follow 1r1( 81" .. , 8n l ) , first draw an independent ran-
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dom sample of VI' V2, .•. , Vn l from the uniform density on
[0,1]. Then let 8] :?: 8 2 :?:... :?: 8nl be the nl order statistics re

sulting from the sample {~, i = 1,... , nl}' For instance, for a

particular sample of (VI' V2, V3) = (0.43,0.27, 0.81) where
n l = 3, the order-statistic sample for the three parameters

would be (81,82,83) = (0.81,0.43,0.27). Similarly, 1r2(AI , ..• ,

An2) was constructed numerically from the n2 order statistics

resulting from an independent random sample {~, i = 1, ... ,

n2} drawn from the same uniform density. Alternatively and
equivalently acceptable, the Gibbs sampler can be used here to

generate ~s, since closed-form expressions for the multivari
ate priors, 1r1 and 1r2, are known (see, e.g., Balakrishnan &

Cohen, 1991).

APPENDIXD

Recall from Appendix A that for a sufficiently large sample

size, the Laplace method in Equation AI, along with the asymp
totic form in Equation A3 for the negative Hessian matrix, pro

vides an adequate approximation for the marginal likelihood
P(DIMJ. Combining these two, the following approximation

for twice the logarithm ofthe Bayes factor is obtained (Raftery,
1993):

21n [P(DIM I ) ] '" BlC(M ) - BIC(M ) + 2ln [P(8o IM I ) ] .

(P(0IM2) 2 I P(8o IM2)

(01)

Therefore, model selection based on the BIC can be viewed as

a simple but crude approximation to those based on the Bayes

factor. An important theoretical difference is that BIC ignores

priors; that is, P(8o IMI)IP(8oIM2) = 1.

As for the AlC, model selection using it is asymptotically

equivalent to that based on the Bayes factor if the amount of in
formation about 8 in the Kullback-Leibler sense (Kullback &

Leibler, 1951), supplied by the prior density P(8IM;), is com

parable to that supplied by the data in the form of the likeli

hood function P(018o,MJ (Kass & Raftery, 1995).
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