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Abstract. Training structures in flow stream play an important role in shaping flow and bed properties. 

Planning to introduce such training elements like groins or dikes into the river stream one need to know 

consequences they may introduce into flow field and bed shear stresses. These consequences can be 

investigated by laboratory experiments on hydraulic models or by numerical modelling using hydrodynamic 

simulation models. In the paper the second possibility is exploited by applying two-dimensional depth-

averaged model for straight rectangular channel with a groyne. This paper contains the first part of the 

research results and it describes hydrodynamic background of the flow phenomenon, concentrating on 

hydrodynamic equations for depth-averaged flow, types of eddy viscosity method used and kind of 

boundary conditions applied. Based on the hydrodynamic descriptions, different simulation experiments 

have been conducted for the flow problem and the whole analysis of simulation results for flow in channel 

near groyne is contained in the second part of  the research activity (Part II = Analysis of simulation). 

1 Introduction  

Engineering structures for controlling river flow, such as 

spur dikes or groins, are effective methods for protecting 

river banks, stabilizing its navigation capacity and 

enhancing aquatic habitat. 

Restorations of good flow conditions in natural channels 

often contain building of construction of spur dikes or 

groins, which extend from the bank projecting into the 

flow stream with different angles, usually in normal 

direction to the expected flow. The dikes should redirect 

flow into the main part of channel cross-section, 

protecting the riverbank from erosion and making stable 

pools for aquatic live with deposition of suspended 

sediment in recirculation areas behind groynes. 

Deep view into the processes ongoing in space and time 

around such structures requires applying effective 

numerical models for simulation hydrodynamics and 

sediment transport,   accompanied with some field 

measurements. 

Flow in open channels around a training structure like 

groin or dike has a three-dimensional (3D) nature 

because of: 

• Irregular bed stresses – due to exchange of mass 

and transport phenomena in bed layer. 

• Curvilinear flow path and the secondary flow – 

circulation of water in transverse direction due to activity 

of the centrifugal force (near the water surface it moves 

toward the channel axis, and that near the bed moves 

toward the bank line). Consequently, the shear force, 

which has the same direction as the local flow close to 

the bed, deviates slightly from the direction of the mean 

flow ([1], [2]). 

For simulation such complicated flow phenomenon 

a full, good quality 3D hydrodynamic model would be 

the best choice, and, recently, several 3D models have 

been worked out in leading research centres. One of 

relatively advanced method of 3D simulation was 

presented by Kuhnle at al.  in [3] for 3D flows near spur 

dikes. They confirmed results of simulations with 

measurements for physical test channel with the 

exception of significant discrepancy between simulation 

and measurement in the recirculation region downstream 

the groyne location. An interesting example of applying 

Large Eddy Simulation (LES) for turbulent flow around 

obstacles in the river flow path was work [4] of Teruzzi 

and Ballio, where they presented qualitative results for 

flow around the bridge abutment with complex highly 

3D of vortex structures and shear stress fields tightly 

connected with scour shape around the abutment being 

formed.  Also, satisfactory results for the similar 

technique, large eddy turbulence model, were presented 

by Shahrokhi and Serveram in [5] for 3D simulation of 

flow around a groyne. Results of their simulation 

allowed for precise estimation of separation region 

behind the groyne in dependency on the groyne length 

and its inclination angle. 

However, enormous efforts and costs are to be paid off 

to implement 3D models for real situations.  Often, for 
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practical engineering problems, such as maintaining 

navigational depths in rivers and channels, investigation 

of geomorphic processes in alluvial beds, estimating 

circulation zones behind spur dikes and similar, it is not 

effective and efficient applying the 3D models with very 

time consuming preparation of their numerical 

bathymetry, quality-degree computational meshes and 

substantial amount of input data. Much more effective is 

applying 2D versions of full Reynolds equations or other 

approximated methods of turbulence phenomenon 

treatment.  Several papers documented that it is 

profitable and sufficiently adequate to use 2D depth-

averaged models to find solutions of practical problems 

with acceptable correctness. Results of numerical 

simulations based on CCHE2D model, reported in [6], 

showed good approximation of cross-sectional depth-

averaged velocity with measured 3-D profiles made in 

laboratory hydraulic model. Another paper, [7], showed 

that this kind of CFD modelling can be successfully 

utilized for analysis of complicated flow fields in settling 

basins that in turn influenced sedimentation patterns at 

the bed of that basins. 

But, the depth-averaged flow models should be applied 

with a deep cautiousness – they cannot properly transfer 

the momentum of flow because  they are not able to 

include the secondary flow and the transfer should be 

corrected by some empirical functions. In several 2D 

hydrodynamic models some different solutions for the 

problem have been introduced, e.g. the prediction of the 

transverse component of velocity near the bed and 

surface, the use of dispersion terms in the momentum 

equations, the application of dispersion terms obtained 

from the streamwise and transverse velocity profiles in 

the curvilinear coordinate system. 

One of pioneering researches in the applying numerical 

methods for solution flow field around spur dike was 

paper [7], where authors prepared depth-averaged 

hydrodynamic model with constant closure of turbulence 

and applied it to the flow near spur-dike. Also Duan and 

Nanda in [9] dealt with depth-averaged simulation of 

hydrodynamic flow field in a groyne proximity. For 

calculations they applied the mixed-length turbulence 

model for eddy viscosity (EV) both in the case of flow 

near spur dikes and in the case of suspended sediment 

concentration simulation in the area of groyne influence. 

Earlier, Duan applied the depth-averaged HD model with 

dispersion terms for momentum equations and parabolic 

EV closure for simulation of steady flow in natural 

meandering channels [10]. Their simulations compared 

to available measurements showed that the 2D solution 

should be used for real flow situations but in some cases 

(where vertical velocity profiles are significant) the need 

of 3D solutions became evident. An interesting example 

of depth-averaged flow-with-obstacle model is described 

in [11], where the concept of ‘quadtree’ grid for 

computational domain near obstacles (inlets, groins, etc.) 

was applied. In their description of hydrodynamic 

equations they introduced two different methods for the 

turbulence closure - the depth-averaged parabolic EVM 

and modified mixed-length model but they did not make 

any comparison between solutions based on that 

turbulence models. Instead of that, they showed (in the 

model testing part) results for steady flow around a spur-

dike (flow patterns, crosswise velocity profiles, velocity 

and water depth contours) that are similar to the results 

presented in this paper and can be used for comparison. 

One of the newer and more advanced applications of 2D 

depth-averaged hydrodynamic model is work done by 

Lee at al. [12] for the river flow with series of permeable 

pile groins where they applied k-e eddy viscosity model 

with Rodi formulation [13]. They successfully compared 

obtained numerical results with measurements in one 

selected case of flow but they did not utilize other 

descriptions of eddy viscosity field. 

Reviewing sources connected with flow simulation fields 

near flow obstacles one can notice that small if none 

efforts were made in the scope of the influence of 

different closure method of eddy viscosity in depth-

averaged Reynolds equations on the simulation results 

obtained. Only one paper [14], available to the author, 

linked the quality of numerical solutions with the 

turbulence model applied. Their authors considered five 

different EV closure models ( depth-averaged parabolic, 

modified mixing-length, standard k-e, non-equilibrium 

k-e and RNG k-e models) and investigated their inflows 

on solutions for three cases of flow: around a spur-dyke, 

in sudden-expanded flume and in natural Fall River 

meandering reach. Their conclusions differed 

substantially on which model is preferable for each of 

the three cases, and, especially in the case of spur-dyke, 

it seems that further research and comparisons would be 

profitable.  

The work presented here is an attempt for preparation 

some hydraulic background for questions arisen while 

trying to achieve the following goals: 

• Investigating the influence of different turbulence 

closure models on simulation results obtained from 2D 

hydrodynamic model for mean steady flow conditions. 

• Choosing of such a turbulence model that would be 

possible to get flow velocities fulfilled in some 

determined limits, prescribed for given bathymetry and 

bed slope. That EV model should retrieve real 

circulation patterns in the regions determined 

geometrically and physically, such as areas near spur 

dikes, along stream bends, steady pools and sediment 

traps near the shorelines. 

• Estimation of 2D HD model performance about the 

capability of smoothly treating dry and wet nodes in the 

mesh of active flow area in order to produce velocity 

fields well fitted to actual morphometric and geometric 

conditions near flow training structures.  

2  Hydrodynamic background  

This study employed the solutions of the depth-averaged 

Reynolds equations in Cartesian coordinate, proposed in 

the CCHE2D model [15]. To include in some degree the 

effects of real-world secondary flow, the dispersion 

terms have been added for each momentum equations. 

They are obtained from assumed streamwise and 

transverse velocity profiles and they are transformed to 
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Cartesian coordinates. Additionally, the hydrodynamic 

model can adopt easily (in the momentum equations) the 

variable density of flow allowing for coupling  the 

hydrodynamic model with model of sediment transport 

model in the next step of research program (mobile bed 

with mass entrainment and deposition). 

The governing equations are the two momentum 

equations (in [kg/(ms
2
)] = [Pa]): 

     

   

2

1 1

1

x yx x
u ux yx u ux

xyxx w

bx

Dhu uhu Dhu

t x x y y

hh Z
gh

x y x

 






 
    

    

 
  

  

  (1) 

     

   

2

1 1

1

x y y yu u u uy x y y

yx yy w

by

D Dhu hu u hu

t x x y y

h h Z
gh

x y y

 

 




   
    

    

  
  

  

  (2) 

          0





































y

h
u

x

h
u

y

u

x

u
h

t

Z
yx

yxw   (3) 

where: ux and uy =depth-averaged flow velocity 

components in x and y directions; t=time; =density of 

clear water; Zw= elevation of water surface; h=depth of 

flow; g=acceleration of gravity; bx and by=bottom 

friction shear stress components in x and y directions (in 

[Pa]);  xy, xx, yx, yy=depth-averaged Reynolds stress 

terms [m
2
/s

2
]. 

The bed shear stress term in (1) and (2) can be 

prescribed by two methods. 

First method defines  the components bx, by using 

Manning “n” roughness coefficient: 
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where: n – Manning’s roughness coefficient [s/m
1/3

], U – 

depth-averaged total velocity (velocity magnitude). 

Knowing the stress components one can calculate the 

dynamic  (shear) velocity: 
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One can note that in practical problems the coefficient n 

contains in its value the effects of bed irregularities, bed 

forms, channel geometry, sediment particles size, 

vegetation, etc. 

Second method comes from the depth-integrated 

logarithmic law for velocity distribution [16]: 
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Here, z0 is the smoothness parameter of the depth, 

depending on different flow conditions, ks is the height 

of bed roughness and v – the kinematic viscosity.  

The relationship for shear velocity u is implicit and its 

value must be calculated iteratively. Then, one can 

directly determine the Darcy-Weisbach’s  fc coefficient, 

needed to the stresses calculation. Formulas given by 

Van Rijn in [16] are used for these calculations: 
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Using values of fc , one can evaluate finally the bed 

stress components : 

       Uuf,Uuf ycbyxcbx 
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In case of detailed simulation and model verification 

based on measured data, the second method seems to be 

more “physically profound” (provided the ks data are 

available). On the other hand, the ks parameter will also 

contain the effects of sediment movement and bed 

properties. 

When the necessity exists one can attempt to convert 

values of  n and ks using the Strickler’s formula: 

                               
A

k
n s

6/1

   (4c) 

Value of A oscillates around 20 but is depended on the 

size of sediment particles, bed forms, vegetation, and 

channel morphology. 

Dispersion terms in eqs. (1), (2), which describe effects 

of difference between the vertically averaged velocity 

and the actual velocity on momentum transport, are 

formally given by the following expressions: 
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There is no way to calculate values of dispersion terms 

from (5) – actual temporal velocities are unknown. In 

order to make some practical approximations for these 

terms, it is necessary to utilize empirical relationships 

between depth-averaged and local variables. For the 

streamwise velocity ul one can assume that it satisfies the 

logarithmic law along vertical coordinate: 
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where: z – coordinate in vertical direction from bed to 

surface, ul(z) – component of velocity vector  in stream 

direction, u - shear velocity, z0 – near-bed level 

calculated for bed stresses. 

The profile of  transverse component ur of the secondary 

flow velocity is taken as linear one accordingly to the 

following form: 
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Here ur(z) is transverse velocity component along the 

water depth column,  ur means its depth-averaged value 

and us means its value at the water surface. 

Based on the empirical relationships (5a) and  (5b), an 

estimation of the dispersion terms in (5) is performed 

here using the procedure formulated by Duan and Nanda 

in [9] Finally, the dispersion terms (5)  in Cartesian 

system of coordinates are expressed in the following 

way: 
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where 
l l

c
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D , 

r r
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D , 

l r

c

u u
D are analytical expressions 

(vertically integrated) for  the dispersion terms in local 

stream coordinates  and l – an angle created by the 

streamwise line and the positive x-axis, r – an angle 

created by the transverse direction to the streamline and 

the positive x-axis, going out of the channel bank. 

Reynold’s stress terms in eqs. (1) and (2) are expressed 

by Bousinesque assumptions: 
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where: t – Eddy Viscosity (EV) coefficient [m
2
/s]. 

EV is not a constant – it is very complicated function of 

flow field variables, subjected to different theories of 

approximation.  Several of them have been chosen in this 

study as a one of major factor in the estimation of the 

influence of the turbulence model on properties of the 

flow field obtained from simulation. 

3  Conceptions of Eddy Viscosity 

modeling for 2D simulation  

Three methods for depth-averaged eddy viscosity 

calculation were applied in this study: 

• Parabolic Eddy Viscosity (EV) model 

• Mixing-Length EV model 

• k- (k-e) EV model. 

The parabolic model is the simplest one with the direct 

implementation into the calculation modules of HD 

model. It allows rather a general pattern of turbulence to 

include into the hydrodynamic solution of flow field. 

Several papers ([4], [14], [15] induced that using the 

more advanced mixed-length model gives best solutions 

for more complex flow fields. 

Smagorinsky model is an option of closure the Reynolds 

2-D equations promising more adequate simulation of 

real flows, although this model of EV is more often used 

for 3D simulation techniques based on LES concept [5], 

and it is not used in this paper. 

For applications where more detailed and precise 

treatment of the turbulence is required, the two-equation 

k-ε model for depth-integrated flows can be applied. But, 

it is the most expansive and prone to any nonlinear 

behaviour of basic flow parameters. 

The goals of this study comprised incorporation all these 

models into hydrodynamic simulation, investigation of 

the influence of the model applied on results of 

simulation and deduction which of the models will be 

the most appropriate for flow field calculations in 

channels with bed and bank obstacles. 

The simplest way of modeling eddy viscosity is given by 

parabolic model of EV: 

                  huDA sxyt  * ,   (7) 
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where: u - shear dynamic velocity, κ – von Karman 

constant (0.41), Axy – a coefficient in range 1.0 - 10.0, ς - 

relative depth of the flow. 

Near the actual river bank parabolic model can produce 

very high eddy viscosity values and it needs some 

improvement in that areas. The improvement consists of 

applying a distance to the wall instead of depth of flow 

as the length scale. Here, Fig. 1 shows how the normal 

distance from a node to the wall (dw) is taken into 

calculation in the CCHE 2D model – the ratio of dw/h < 

0.21 (= relative distance where the parabolic profile is 

equal to its depth-averaged value) should be fulfilled to 

use the dw value as the length scale. Other HD models 

utilize similar procedures with slightly different ratio 

value. 

 

Fig. 1. Eddy viscosity approximation near the bank of channel 

in CCHE 2D, [17]. 

The mixing-length model calculates the eddy viscosity 

as a product of mixing length and gradients of 2D 

velocities in X-Y space ([9], [11]): 
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The mean mixing length L in eq. 8  is taken as an 

integral of its 3D distribution along depth of water 

column: 
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The vertical gradient of mean-in-depth velocity 

magnitude (U) in eq. 8 has been introduced in [9] in 

order to include the influence of turbulence generated on 

bed surface (for uniform flow, eddy viscosity given by 

(8) would be zero in absence of that term). Assuming 

that eddy viscosity should be the same like in uniform 

flow and taking into account the logarithmic velocity 

profile , the gradient will be equal to: 
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Thus, the mean-in-depth gradient of U  is given by: 
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Here Cm is constant parameter, approximately equal to 

2.344. 

Mixing-length model needs similar correction near the 

actual river bank like the parabolic one. In the proximity 

of the wall, where the ratio dw/h < 0.3245 , the normal 

distance from a node to the wall (dw) is taken to 

calculate: 
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The most complicated model of eddy viscosity used in 

this study is the k-e model, which deals with two 

additional variables:  k - turbulent kinetic energy, ε - rate 

of dissipation of turbulent energy. 

According to Rodi’s concept [13] for depth-averaged 

flows, the standard k-e model comprises the equation for 

k in the following form: 
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and the equation for turbulence dissipation  : 
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  

     

 

 

         
       

         

  
2

1 2

,   (10b) 

In above equations Pkm means the production of kinetic 

energy k from mean flow and it is calculated from the 

following formula: 

y yx x

km t t

u uu u
P S

x y x y
 
       
          

          

2 22
2

2 2
 

In eqs. 10a, 10b additional terms of turbulent energy 

production and dissipation of the energy are present – 

from bed friction, valid in case of uniform flow. That 

production of k (PkV) and  (PeV) is given by the 

following expressions: 

             
2

4

*

3

* ,
h

U
CP

h

U
CP VkkV    

where other variables are defined as:: 




 c
c

c
.C,

c
C

/

ff

k 43

263
1

 ,  22
vucU f*   

with model constants, according to Rodi [13] equal to: 

3101090921441 21 .,.,.C,.C,.C k   

Finally, the eddy viscosity (EV) is calculated from the 

following equation: 

                            


 

2
k

Ct  ,   (10c) 
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4  Boundary and initial conditions 

for the hydrodynamic model 

To start hydrodynamic simulation, it is required to 

prepare and input into the model all necessary boundary 

conditions – along inlet boundary velocity vectors are to 

be prescribed, along outlet boundary water level 

hydrograms should be described and along solid wall 

boundaries condition of slip or no slip velocity and 

initial water surface elevation in the computational 

domain are necessary. 

At the inlet boundary one can prescribed the following 

conditions: 

Total discharge, discharge per unit width, flow 

velocity, hydrograph Q(t), hydrograph formula, 

water surface elevation. 

At the outlet boundary the following conditions are 

possible: 

Constant water surface elevation, Free surface 

elevation, digitized rating curve, hydrograph Zw(t), 

hydrograph formula. For steady flow simulation the 

conservation of fluid mass should be achieved and 

controlled, allowing to determine the velocity field  

at the outlet boundary. 

On solid boundaries: 

For water surface elevation the following is 

assumed: no pressure gradients normal to the wall 

are present. 

For velocity components along that boundaries it is 

possible to apply one of the three possibilities: non-slip 

condition,  partial slip condition or condition of full 

slippery. In case where more detailed solution is needed 

near the wall, one can  use the logarithmic law of 

velocity distribution, provided that the quality and 

density of mesh near the wall is sufficient. 

Additionally, in case of using k-e model for calculating 

eddy viscosity, it is necessary to provide another set of 

boundary conditions – for inlet, outlet and along solid 

boundaries, respectively. They are indispensable, 

because the k-e model solves its own transport 

equations. 

In order to estimate energy of incoming turbulence, 

according to [18[, one can use the following depth-

averaged expressions along the inlet boundary: 

                 









222

2

1 '''

zyx uuuk ,  

   
   

 

' '

* *

'

*

2.3 exp , 1.63 exp ,

1.27 exp

x y

z

u u u u

u u

 



   

 
  (11) 

Here flow is uniform without wall effect and  is the 

dimensionless depth of flow along the inlet line. 

Afterwards, the eddy viscosity along the inlet is 

calculated by using the following expression: 

                          hut *
6

1
   

Then, the value of dissipation ε along the inlet boundary 

is taken from transformation of eq. (10c): 

                          
t

k
C


 

2

  

Along the outlet boundary it is assumed that the 

turbulence energy is streaming out freely, accordingly to 

the following conditions 

                         00 









n
,

n

k 
 

These gradients should be equal to zero along the normal 

direction n pointing out the model domain along the 

outlet boundary. 

Along the solid boundary values of k and  are estimated 

based on the assumption that for every mesh node 

closest to the actual wall its velocity behaves accordingly 

to the velocity law for  boundary layer. Thus, production 

of turbulence energy and its dissipation balances each 

other: 

                          
y

u
,

c

u
k **






3

  

where:  u - shear velocity, y -  the distance between the 

current wall line  and the closest mesh node in the actual 

calculation domain. 

Besides the boundary conditions defined, another set of 

input data about all flow variables (ux, uy, Zw) is required 

at the beginning of simulation period (initial time). This 

initial condition can either be prescribed externally (Cold 

Start) or adopted from previous solutions of the same 

case (as Hot Start). Using Hot Start method substantially 

advances the process of reaching final stable, correct and 

balanced solution of the given problem.  

Computationally, each hydrodynamic model must 

iteratively solve a huge non-linear set of algebraic 

equations, that arises from time and space discretization 

of the governing equations, boundary conditions and 

other relationships at ever time step of simulation period. 

Thus, checking of the  convergence process at each step 

of simulation is required and it can be done successfully 

by observing and controlling the variations of increments 

of the computed flow variables ux, uy, Zw and h. 

The following relative  maximum increments can be 

investigated across the whole modelling domain for 

every iteration and every time step: 
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here: Uij, hij – values of velocity module and water depth 

in node ij of calculation domain at active time/iteration 

step, ux,ij, uy,ij, Zw,ij – increments of velocity 

components and water surface level between the active 

and the previous time step. 

Convergence of solution at each time step will be 

satisfied if the maximum relative increments of velocity 

and water level are less than the accuracy limits assumed  

for the given run.  

For real situations, the physical domain of modelling can 

shrink or enlarge, depending on boundary conditions 

applied and the convergence process being worked out 

and lots of dry nodes may appear or disappear. In such 

cases values Max utot and Max Ztot  in (12) could not 

reach the presumed accuracy limits but, usually, the 

convergence of the main flow will be satisfied. 

Another way for checking the quality of solution 

obtained from such kind of numerical calculations is the 

condition of preservation the mass balance along some 

selected cross-sections of computational domain. This is 

especially helpful for steady flow cases where the 

discharge balance preservation is theoretically 

predominant condition. This rule is utilized in the next 

part of the research for simulation steady flow in 

a channel with groyne using the presented above 

theoretical descriptions of the numerical model, based on 

the CCHE 2D FEM solution. This model will be adopted 

to the following channel finite element mesh (Fig.2): 

 

 

 

Fig. 2. Mesh domain for channel with a groyne installed. 

Steady flow in the channel given in Fig.2 will be 

calculated using the numerical counterparts of the 

equations presented here and an analysis of results 

obtained will be conducted in the Part II of the research.  

5  Conclusions 

Depth-averaged two-dimensional horizontally set of 

hydrodynamic equations have been characterized as 

a calculation model for channel flow with a groyne in its 

bathymetry. 

Three turbulence models for depth-averaged 2-D 

Reynolds equations  – parabolic, mixed-length and k-e 

models - have been considered in this study for 

simulation of steady flow in the test channel with 

groyne. 

Short discussion of kinds of advisable and necessary 

boundary and initial conditions has been given in the 

paper. They will be practically utilized during 

preparation of input data for hydrodynamic model of 

channel with groyne in the second part of the research. 

The basic checking criteria, relative maximum 

increments (12) and the balance of mass (discharge) 

have been suggested for checking the performance of 

each turbulence model.  

The findings from this simple analysis may have 

practical value regarding the quality of simulation results 

for any hydrodynamic model – checking the model 

quality should be often performed with suitable and 

simple criterion. 

Finally, one can underline that the quality of simulation 

of flow parameters is essential for other research 

activities e.g. in the field of fluid-sediment dynamics, 

due to importance of bed shear stresses and any effort for 

better understanding the obtained HD solutions would 

probably pay off with better sediment movement 

simulation. 
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