
Applying Parallel Computation Algorithms
in the Design of Serial Algorithms

NIMROD MEGIDDO

Tel Aviv University, Tel Aviv, Israel

Abstract. The goal of this paper is to point out that analyses of parallelism in computational problems
have practical implications even when multiprocessor machines are not available. This is true because, in
many cases, a good parallel algorithm for one problem may turn out to be useful for designing an efficient
serial algorithm for another problem. A d ~ e d framework for cases like this is presented. Particular cases,
which are discussed in this paper, provide motivation for examining parallelism in sorting, selection,
minimum-spanning-tree, shortest route, max-flow, and matrix multiplication problems, as well as in
scheduling and locational problems.

Categories and Subject Descriptors: F.l.l [Computation by Abstract Devices]: Models of Computation-
relations among models, F.1.2 [Computation by Abstract Devices]: Modes of Computation-parallelism;
F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems--
computations on discrete stmctures; geometrical problems and coqutations; routing and layout; sequencing
and scheduling; sorting and searching; G.2.1 mscrete Mathematics]: Combiiatorics-combinatorial algo-
rithms; G.2.2 piscrete Mathematics]: Graph Theory-networkproblems; path and circuit problems; trees

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Parallel algorithms, parametric computation, spanning tree, sched-
uling, min-ratio cycle, algorithms on trees, max-flow-related problems

f

1. Introduction

Numerous models have been proposed for parallel computation, and it is not clear
yet which of them will eventually be supported by technology. Thus some of the
models may at present be criticized as being unrealistic, since issues like synchroni-
zation and memory conflicts still have to be settled. In this paper, however, we
provide a new motivation for studying such models. An early model of parallel
computation, considered by Valiant [37], now seems unrealistic since it only counts
comparisons as time-consuming operations and also assumes synchronization. Val-
iant does obtain very nice theoretical results with respect to sorting, mq iag , and
maximum finding in parallel. On the other hand, in this paper we show that the
search for good parallel algorithms of Valiant's type is justified on practical grounds

Parts of this work were done while the author was Visiting Scientist of the National R e s e d Institute
for Mathematical Sciences, CSIR, Pretoria, South Africa and at Northwestern and Camqb-Mollon
Universities.
This work was partially supported by the National Science Foundation under grants ECS7909724,
ECS8121741, SOC7905900 and by a grant from Control Data.
Author's present address: Department of Computer Science, Stanford University, StanfarQ, CA 94305.
Permission to copy without fee all or part of this material is granted provided that the cop& are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the pubUertion
and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
@ 1983 ACM 0004-541 1/83/1000-0865 $00.75

Journal of the Association for Computing Mschinery, Vol. 30, No. 4, October 1983, pp. 852-865

Parallel Computation Algorithms 853

regardless of the state of technology for parallel computation. This is because, in
many cases, one may desire to have a good parallel algorithm for one problem in
order to design a good serial algorithm for another problem. In this paper we describe
a fairly large class of problems in which this phenomenon occurs.

The general idea is as follows. Suppose that a certain problem A is solved in T
time units on a P-processor machine. In a serial implementation this amounts to TP
time. Within the scope of serial computation we only wish to minimize the product
TP. The common examination of parallelism in problem A amounts, essentially, to
minimizing T, subject to keeping P at a reasonably low level. Now, suppose that an
algorithm for problem A could somehow be applied to designing an algorithm for
another problem B, so that a factor like Tlog P dominates the (serial) time bound for
problem B, provided P is not too large. This would certainly justify an examination
of parallelism in problem A, since minimizing Tlog P, subject to P's not being too
large, is very close to minimizing T. In a study of parallelism, P in many cases
depends on the input length n, so that n' I P I nk for some E > 0 and an integer k.
In other words, we have log P - logn in many cases.

In this paper we demonstrate situations like the one mentioned above. We start
here with an abstract example. A more concrete example is considered in the next
section. Suppose that F(A) is a monotone function of the real variable X and problem
A is to evaluate F at a given A. Suppose that problem B is to solve the equation
F(h) = 0. Assume that the variable X is involved throughout the evaluation of F only
in additions, comparisons, and multiplications by constants. Then, as we demonstrate
in the subsequent sections, in order to design a good serial algorithm for solving the
equation F(A) = 0, it is desirable to have a good parallel algorithm for evaluating F.

Particular cases of the general problem F(X) = 0, whicb are discussed later, are
minimax or maximin problems and ratio optimization problems. Another important
type of problem is finding the maximum or minimum value of a parameter h for
which a certain property holds. We discuss examples of this kind as well.

In the next section we describe a relatively simple example which is aimed at
explaining the general idea rather than presenting an optimal algorithm. Yet the
subsequent sections present cases in which the method does improve upon existing
algorithms and also motivates a more thorough study of parallelism. We claim that
almost every combinatorial problem in which numbers are involved should be
examined from the parallelism point of view, since this would probably lead to good
algorithms for related problems.

The idea suggested in [23] has been used for solving problems taken from different
fields (such as networks, scheduling, location, geometry, and statistics) 16, 7, 15-17,
2 1, 26-29]. Some of these papers already utilize the "parallel processing" principle as
suggested in the preliminary version of the present paper [25]. We expect, on the one
hand, additional applications to be discovered soon and, on the other hand, further
improvements in the efficiency of the algorithms as a result of developments in the
lively field of parallel computation.

2. A Preliminary Example

We start with a relatively simple example that demonstrates the general method.
Let&@) = a, + Ab,, i = 1, . . . , n, be pairwi'se distinct functions of X with all b,'s

positive. For every A, let F(X) denote the median of the set {fi(A), . . . , f,(h)).
Obviously F(A) is a piecewise-linear, monotone-increasing function with 0(n2)
breakpoints. Given A, F(X) can be evaluated in O(n) comparisons [l] (once the$(h)'s
have been computed). Consider the equation F(X) = 0. One possible way of solving

854 NIMROD MEGIDDO

this equation is first to identify the intersection points hi,, where ai + Xi,bi =

a; + Xijbj (i # j). Every breakpoint of F is equal to one of the Xiis. We can thus search
the set of Xij's for two values A', X2 such that F(A1) 5 0 5 F(h2) and such that there
is no Xi; in the open interval (A1, X2). Once X1 and X2 have been found, we can solve
the equation in one step since F is linear over [A1, X2]. The search for such an interval
requires O(1ogn) F-evaluations and (if we do not wish to presort the set of XGs)
finding medians of subsets of the set of Xij's whose cardinalities are n, n/2, n/4,
Thus, such an algorithm runs in 0(n2) time, which is dominated by the evaluation of
all the intersection points Xi,.

An alternative approach suggested by the author in a previous paper [23] is as
follows. Let us start the evaluation of F(A) with A not specified. Denote the solution
of the equation F(X) = 0 (which is, of course, not known at this point) by A*. The
outcome of the first comparison, performed by the algorithm for evaluating F,
depends, of course, on the numerical value of A. Specifically, if our median-finding
algorithm for evaluating F starts with comparingfi(X) andji(X), then the intersection
point XQ of these two lines is a critical value for this compa?.ison; namely, for X r Al2,
fl(A) r f2(X), whereas for A 5 Xlz,fi(A) sfi(A), or vice versa. Thus, we may find X12,
evaluate F(A12), and then decide whether A* r XE or A* 5 XI:! according to the sign
of F(X12). We can then proceed with the evaluation of F(X), where A is still not
specified but is now restricted either to (-m, hlz] or to [h , m). The same idea is
repeatedly applied at the following points of comparisons. In general, when we need
to compare5 withfi and X is currently restricted to an interval [Af, A"], if A" does not
lie in the interval, then the outcome of the comparison is uniform over the interval;
otherwise, by evaluating F&), we can restrict our interval to either [A', A"] or
[Xu, A"]. Since O(n) such comparisons have to be performed and each may require
an evaluation of F (which amounts to one median-finding), it follows that such an
algorithm runs in 0(n2) time.

At this point we are ready to see the role of parallelism. In the latter algorithm we
were running a "master" median-finding algorithm where at every comparison point
we had to test the sign of F(A) at a certain critical value of A. Now, suppose that
instead of using the linear-time median-finding algorithm [I], we employ a parallel
sorting algorithm such as Valiant's [37] or Preparata's [32]. Let P denote the number
of processors and let T(n, P) denote the number of comparison steps required on a
P-processor machine. Preparata's scheme uses P = nlogn and achieves T(n, P) =
Oflogn). A suitable special case of Valiant's scheme uses P = n and achikves
T(n, P) = O(1ogn log log n). We, of course, simulate these algorithms serially; that is,
we employ one "processor" at a time, according to some f ~ e d permutation, letting
each perform one step in every cycle. Thus, all potential difficulties related to
synchronization and memory conflicts are not present in our analysis. Recall that we
are trying to sort the set {fi(A*), . . . , f,(X*)); where A* is not known; however, for
any X it can be decided in O(n) time whether A* r X or A* s A. When two functions
fi,J have to be compared, the equationf,(h) =&(A) is solved and the solution Xi, is
declared a critical value. After one step of the "multiprocessor" we are provided with
P such critical values. The crucial point is that these values are produced independ-
ently of each other since the processors work "in parallel." Thus, the kth processor
does not have to know the outcome of the comparison for which processor k - 1 is
responsible, and, therefore, the critical value produced by processor k - 1 does not
have to be tested before processor k produces its own critical value.. We start the
testing only when all the P processors have produced critical values. Less informally,
let these critical values be A1 5 . . . 5 hp; we do not assume that these values are

Parallel Computation Algorithms 855

sorted. It can be seen that within O(1og P) F-evaluations, we can identify an interval
[A,, A,+l] (i = 0, 1, . . . , P; assuming A. = -GO, A P + ~ = GO) such that A, 5 A* 5 A,+1. This
is done by a binary search in the set of critical values, namely, testing the median of
the set and then one of the quartiles, etc. Once the parameter A is restricted to the
intersection of this interval with the previous interval of A, we can proceed since the
outcomes of all the comparisons so far are known for X's in the new interval. This
repeats T(n, P) times until we arrive at an interval over which our functions do not
intersect and the median function crosses the zero level. Then the equation can be
solved directly.

During each such "step" we evaluate P critical values and then perform a binary
search that requires O(P) time for median-findings in subsets of the set of critical
values, as well as O(1ogP) F-evaluations. These evaluations require O(n1og P) time
if the linear-time median-finding algorithm is used to test a fvred value of A. There
is also some additional overhead time which is, however, dominated by nlog P. The
proof of this is left to the reader. We remark that similar arguments regarding the
overheads have to be made for any parallel algorithm in Valiant's comparison model.
We should also remark that recently Borodin and Hopcroft [4] showed that results
similar to Valiant's and Preparata's sorting algorithms hold in parallel models of
computation that take all overheads into account. Thus the total amount of serial
time required is O((P + nlogP)T(n, P)). Preparata's scheme thus yields an
O(n(10gn)~) bound, while Valiant's yields O(n(1og n)210glogn), both bounds being
superior to the previous 0(n2).

We note that our simple problem can be solved directly by finding the median of
the set of values of A at which some function crosses the zero level, that is, the set
{-al/bl, . . . , -a,/b,). However, we present this example just as a simple demon-
stration of a general principle. In the subsequent sections we sketch some mpre
complicated examples where our method leads to the best known bounds.

3. Spanning Tree Problems

Consider a graph with edge-weights we that are themselves linear functions of a real
variable: we = we@) = a, + Ab,. We assume that the b,'s are either all nonnegative
or all nonpositive. Let F(A) denote the weight of the minimum spanning tree relative
to the weights we@). The minimum-ratio spanning-tree problem [5] can be formulated
as that of solving the equation F(A) = 0. Another related problem involving a
parametrized spanning tree can be described as follows. Suppose that a spanning
tree has to be constructed and the construction takes place in two time periods. Let
a, denote the cost of work to be done on arc e during the first period (if the arc e is
indeed selected for the spanning tree). Let be denote the estimated cost of work to be
done on arc e during the second period. All the costs of the type be are subject to an . increase by a currently unknown factor of A. Given a budget B, we wish to decide
which spanning tree to construct so as to allow for a maximum cost increase that
would still leave the total construction cost not greater than B.

.) The author [23] gave an algorithm for this problem which runs in
O(E(1og V)210glog V) time, where E and V are the numbers of edges and vertices,
respectively, in the graph. That algorithm exploited the relatively high degree of
parallelism involved in Sollin's algorithm [3] for the minimum-spanning-tree prob-
lem. There, the application of Sollin's algorithm was not exactly the same as suggested
in the present paper. Since Sollin's algorithm runs in O(V1og V) time on a
V-processor machine, it follows that it can solve the equation F(A) = 0 in
O((V + TFlog V) V log V) time, where TF is the amount of time required for a

856 NIMROD MEGIDDO

single minimum-spanning-tree computation. There are several ways [8,38] to achieve
TF = O(Elog1og V) so that we obtain a bound of O(EV(1og loglog log V) for our
problem. This is inferior to the previous bound.

We now describe an even simpler approach, which is also based on parallel
computation, yielding the O(E(1og V)210glog V) time bound. It is well known that
the minimum-spanning-tree solution depends only on the linear order which is
induced on the set of edges by the weights. As a function of the variable A, this linear
order changes only at values of X where at least two edges have equal weights. There
are o(E~) such values of A. By finding all of them in advance (as suggested by
Chandrasekaran [5]) , we may search for A* by employing a minimum-spanning-tree
algorithm O(1og V) times. This implies a time bound of o(E~). Now, suppose that
we start with a parallel sorting algorithm, repeatedly restricting the interval containing
A*, until the edges are sorted by the w,(A*)'s. Specifically, apply Preparata's sorting
scheme with Elog V processors to the set of w,(A)'s. The process works in O(1og V)
phases. During a single phase, O(E1og V) critical values are produced and then a
binary search, consisting of O(1og V) minimum-spanning-tree evaluations, is per-
formed. This implies a time bound of O((E1og V+ (Eloglog V)log V)log V)), which
is simply O(E(1og V)210glog V). Given the correct permutation of the edges, we can
find A* as well as the corresponding tree.

4. A Scheduling Problem

In the present section we describe another application of parallel sorting algorithms.
Consider a one-machine scheduling problem with n tasks. Denote the processing
times by tt . . . , t,, the finishing times (depending on the schedule) byfi, . . . , f,, and
the weighted mean-flow time by W = 1 c&, wher& cl, . . . , c, are the deferral costs
[9]. Suppose we seek to schedule a maximal fvred intermission between every two
consecutive tasks, subject to the condition that the weighted mean-flow time will not
be greater than a given bound b.

If the length of the intermission is A, then the weighted mean-flow time is
minimized by processing the tasks in order of increasing magnitude of (ti + A)/c~. Let
F(A) denote the minimum value when the length of the intermission is A. The
function F is piecewise linear monotone increasing and we have to solve F(A) = b.
The breakpoints of F are at values of A where (ti + A)/ci = (ti + A)/cj for some i # j.

One possible way of solving the problem, as in the case of the spanning tree, is to
evaluate all the intersection points in 0(n2) time and then to search for A* by testing
O(1ogn) values of A. Each test requires sorting of n ratios and hence takes O(n logn)
time.

An improvement upon the easily achieved 0(n2) bound is obtained by applying
Preparata's sorting scheme. In this case we have O(1ogn) phases. During each phase
we evaluate nlogn critical values of A and then search for A*. The search involves
O(1og n) F-evaluations, each requiring O(n logn) time. Thus, the problem is solvable
in O((n log n + (n log n)log n)log n) 0(n(log n)') time.

E. Lawler [21] has applied the general method presented in this paper to several
other scheduling problems.

5. Cost-EfSective Resource Allocation

In this section we mention one more application of parallel sorting. A more detailed
discussion of the example of this section is given elsewhere 1241.

The problem is to maximize1 a$(~i)) / (Cgi(~i)) subject to Exi 5 k and the xi's

' Summation in the present section is over i = 1, . . . , n.

Parallel Computation Algorithms 857

being nonnegative integers. The f,'s are concave and nonnegative, while the gi's are
convex and positive. For solving this problem we look at the regular resource
allocation problem; that is, maximize Cui(x,) subject to the same constraints, where
the ui's are concave. Defining F(A) to be the maximum of the regular problem with
ui(xi) =&(xL) - Agi(xi), i = 1, . . . , n, we need to solve the equation F(A) = 0. The
regular problem has been studied for a long time and fast algorithms, based on
selection in a set with presorted subsets, have been given by Frederickson and
Johnson [12] and Galil and Megiddo [14]. For solving the cost-effective problem,
one desires to have a good parallel algorithm for the main selection routine of the
regular resource allocation problem. On the basis of Valiant's algorithms and
Frederickson and Johnson's work, the author [24] has given an algorithm which runs
in ~(n(logn)~(logk)~loglogn) time. In this case, an interesting point is that the
number of "processors" may vary throughout. In particular, when k is very large, it
becomes beneficial to use large numbers of processors, even like P = n(n - 1)/2,
which enable "sorting" in one time unit. Thus, an even smaller bound may be
obtained when k is relatively large. Also, the loglogn factor may be eliminated if
Preparata's scheme is applied. Incidentally, the bound is sublinear in the input length,
which is O(nk), if the functions f,, gi are given in tabular form. The algorithm
actually uses only a small fraction of the function values, which may be supplied
interactively or computed by another routine.

6. Minimum Ratio Cycle

In this section we describe an application of parallel algorithms for the all-pair
shortest paths problem.

The minimum-ratio-cycle problem is to find a cycle in aknetwork with edge-costs
and edge-times, such that the ratio of the total cost to the total time of edges on the
cycle is minimized. This problem has been considered by several authors [lo, 20,
231, and the best previously known bound was [23] 0(EV210g V). This was achieved
as follows. Define F(A) to be the length of the shortest cycle relative to the distance
function that assigns to every edge a length that equals the cost of the edge less A
times the time of the edge. Then, solve the equation F(A) = 0. Essentially, this calls
for a negative-cycle detector, that is, an algorithm for deciding whether a network
contains a cycle of negative length. An algorithm by Karp [18], which runs in O(E V)
time, was applied by the author [23], and some part of its parallelism was exploited
to yield the ~ (~ i , ' ~ l o g V) bound.

In this paper we improve the latter bound in two different ways by further
exploiting parallelism. In the following procedures we use algorithms for the re-
nowned all-pair shortest paths problem as negative-cycle detectors. In other words,
we rely on the obvious observation [20] that a network contains a negative cycle if
and only if there is a vertex i such that the distance from i to itself is negative.

Let a$ denote the length of the shortest of all paths from i to j with no more than
k intermediate vertices. The existence of a negative cycle is thus equivalent to the
existence of a negative diagonal entry in the matrix aVp1 = (m$--'). The analogy
between matrix multiplication and the computation of a$ is well known [I]. The

k numbers a$ are of course given. The recursive relation = minr{mir + a$)
can be used for finding all the values n$ where k is of the form k = 2" - 1. It thus
enables us to detect a negative cycle in O(log V) steps which are analogous to matrix
squaring. This procedure has a high degree of parallelism which is exploited later.

When the edge-lengths are themselves linear functions of A, the quantities m$ are
piecewise-linear functions of A. However, throughout the computation, X always
belongs to an interval (which is repeatedly updated) over which those a$(A)'s

858 NIMROD MEGIDDO

currently under consideration are linear. We now describe two different approaches
to applying the algorithm implicit in the above-mentioned recursive -formula
for rck+'.

Approach 1: V~rocessors . We associate a processor with each ordered pair of
vertices (i, j). For a fixed k, all the rtk+' values are determined "simultaneously."
The processor associated with the pair (i, j) determines all the breakpoints of the
minimum function m?"(X) = min,{nt.(h) + rk,(h)) over the current interval. We
now rely on the fact that, given V linear functions fr(X), r = 1, . . . , V, the breakpoints
of the minimum function f(X) = min,. f,(h) can all be found in O(V log V) time. A
detailed algorithm is given in [23, Appendix] and is based on sorting the functions by
their slopes. The processor associated with (i, j) can therefore find all the breakpoints
of $+'(A) in O(V1og V) time, since all the nk(h)'s are linear over the current
interval. Thus, the total serial time for this step is 0(V310g V). At most 0(V3)
breakpoints are produced during this step and now a binary search takes place,
which amounts to O(1og V) negative-cycle detections. A single detection required
O(EV) time [18] and hence the search runs in O(EV1og V) time. Since the whole
process consists of O(log V) steps like this, it follows that the algorithm runs in
0(v3(log v) ~) time.

Approach 2: V2(V - 2) + V processors. In this case we associate a processor
with each triple (i, j, r) such that r # i, j . The fundamental iteration rtk+' =
min,{r?,. + nk,) is, again, carried out simultaneously for all (i, j). However, here the
minimum corresponding to each (i, j) is determined by a parallel algorithm with the
V - 2 processors associated with the triples (i, j, r), r # i, j, in case i # j (V - 1
processors if i = j). Valiant's parallel algorithm for finding the minimum performs
O(1og log V) comparisons. Recently Shiloach and Vishkin [33] developed an algo-
rithm which finds the minimum in O(log1og V) time, taking all overheads into
account. Thus, a single step (i.e., the computation of all nth+' for a fixed k) runs
in O(1og log V) stages. During a typical stage, each processor makes one comparison,
that is, it produces the critical value of X with respect to that comparison. Then a
binary search takes place in the set of critical values. The binary search requires
O(1og V) negative-cycle detections. Thus, a single stage takes 0(V3 + E V log V) time
and, since we have O(1og V) steps, each consisting of O(1og log V) stages, the overall
time bound with this approach is 0((V3 + EV log V)log V log log V). One of the
referees of this paper has suggested the following improvement. Allocate V/log log V
processors for each pair so that the minimum can be found in O(log1og V) parallel
time. This yields a serial time bound of 0(V310g V + EV log2vloglog V).

We should also note that under an infinite precision multiplication model Yuval
[39] finds the all-pair shortest distances in 0(V2.") time. Thus, under this model a
negative cycle can be detected in 0(v2.") time, so that the second approach leads to
an 0(v310g V log log V) algorithm.

7. Algorithms on Trees

Many problems that are NP-hard on general graphs turn out to be polynomially
solvable on trees. Among these are most of the location-theoretic problems. However,
in most of the cases the tree algorithms do not have a high degree of parallelism. In
particular, if an algorithm works from the leaves of the tree toward the root, or vice
versa, then its obvious parallel version runs in time which is at least proportional to
the radius of the tree. The radius may of course be linear in the size of the tree, while
it is conceivable that logarithmic-time parallel algorithms exist. As a representative

Parallel Computation Algorithms 859

case we discuss here the max-min tree k-partitioning problem by Perl and Schach
[3 11. Another problem which has been successfully attacked by the same method is
the continuous p-center problem on a tree [29].

The max-min tree k-partitioning problem is formulated as follows. Given a tree T
with n edges and a nonnegative weight associated with each vertex, delete k edges of
T so as to maximize the weight of the lightest of all the resulting subtrees (formed by
the remaining edges). To follow the general framework of the present paper, define
F(A) to be the maximal number of edges that can be deleted, so that the weight of
every subtree is at least A. We are interested in fhding the maximal A such that F(A)
r k, which is essentially solving the equation F(A) = k. As pointed out by Perl and
Schach, it takes O(n) time to evaluate F a t a given A. Specifically, the following rules
establish such an algorithm. (i) If a leaf has a weight greater than or equal to A, then
its linking edge should be deleted. (ii) If the "sons" of a certain vertex v are all leaves
with weight less than A, then replace v and its sons by a new vertex v' whose weight
equals the total weight of v together with the sons. It is straightforward to establish
an n-processor parallel version of this algorithm which runs in O(rd(T)) time, where
rd(T) is the radius of T. A processor is linked with each leaf. A typical step is as
follows. Each processor provides the weight of its respective leaf as a critical value of
A. Also, if v is a vertex all of whose sons are leaves, then the total weight of these sons
is considered a critical value of A at this point. It takes O(1ogn) time for O(n)
processors to establish O(n) such critical values of A during a single step. Then a
binary search for A* is performed over the set of critical values, which requires
O(1ogn) F-evaluations. This repeats O(rd(T)) times and hence we have an algorithm
which runs in O(nlognrd(T)) time. This algorithm, which is a straightforward
adaptation of our general method, is already bettei than Perl and Schach's
0(k2 rd(T) + kn) for certain values of k. We later, however, provide an even more
efficient algorithm. Also, note that by a more careful analysis of our previous
algorithm, a bound of O(nlog(n/rd(T))rd(t)) can be proved. This is because if ni is
the number of "processors" required during step i (i = 1, . . . , rd(T)), then Cni = n
and the algorithm actually runs in O(n C log ni) time.

As pointed out earlier, the key to improving the bound even further is by
developing a parallel algorithm for evaluating F(A) in o(n) time. We shall describe an
O(1og n) parallel algorithm for the special case of partitioning a sequence of numbers
(i.e., a linear tree). This algorithm will then be employed to establish an O((1ogn)')
algorithm for general trees.

Let (al, . . . , a,) be a sequence of real numbers, and let F(A) denote the max-
imal number of subsequences in a partition (a ~ , . . . , ail), (ai,+l, . . . , ai,),
. . . , . . . , a,), where each subsequence total is at least A. If all the partial sums
Ai = al + . . + ai (i = 1, . . . , n) are known, then it takes O(min(n, klogn)) time to
decide (for a given A) whether or not F(A) r k + 1. Thus, even without .exploiting
parallelism in the computation of F(A), we may solve the max-min problem in
0(min(n2, n + k2(logn)2) time in the' following way. First, compute all the partial
sums. Then, run that algorithm for F(A), testing every critical value encountered.

A good' parallel algorithm for evaluating F is as follows. First, evaluate all the Ai's,
recursively, in O(1ogn) time. Specifically, once we obtain Ai, i = 1, . . . , [n/2] and
Ai - AInln1 for i = [n/2] + 1, . . . , n, then it takes just one step to find all the A;. The
second phase consists of finding, for every i (i = 0, 1, . . . , n - l), an index j(i) such
that - Ai < A 5 Aici, - Ai (A0 = 0; if A, - Ai < A, then define j(i) = w). This
is easily carried out in O(1og n) time by letting each processor independently perform
a binary search for j(i) of a different i. Finally, we compute for every i, i = 0, 1,

860 NIMROD MEGIDDO

. . . , n - 1, two indices s(i), k(i), which are defined as follows. If ai+l + - . . + a,
< A, then let s(i) = i and k(i) = 0; otherwise, let s(i) = s(j(i)) and k(i) = k(j(i)) + 1.
Intuitively, k(i) is the maximal number of subsequences in a partition of (ai+l, . . . ,
a,) such that every subsequence total is at least A, while s(i) is the minimal index
such that (ai+l, . . . , aSci,) can also be partitioned into k(i) subsequences subject to the
same constraint. We are interested only in k(O), but all other values are required for
an efficient parallel computation. Let sf(i) and k'(i) denote the same type of indices,
determined relative to the sequence (al, . . . , aI,pl). Recursively, first find sf(i) and
kf(i) for i = 0, 1, . . . , [n/2] and s(i) and k(i) for i = [n/2], . . . , n. Now, for i = 0, 1,
. . . , [n/2], set s(i) = s(j(s'(i))) and k(i) = kf(i) + 1 + k(j(sf(i))) if j(sf(i)) # w, and
set s(i) = sf(i) and k(i) = kf(i) if j(sf(i)) = w. The inductive s ~ e p requires constant
time on [n/2] processors, and hence the entire computation takes only O(1og n) time.

The resulting time bound for max-min sequence partitioning is as follows.
We run in O(1ogn) steps, each of which requires O(1ogn) tests. The cost of
a test is O(min(n, klogn)) and we have n processors. Thus our bound is
O((n + rnin(n, k1ogn)logn)logn). On the other hand, the "correct" A* is of the form
A, - Ai. Since selection in a set of the form X - X can be carried out in O(n log n)
time [12], it follows that a direct binary search in the set of (Aj - Ai)'s yields an
~ (n (l o ~ n) ~) bound. In fact, the special structure of this set implies that an O(n logn)
algorithm can be constructed following the ideas of Frederickson and Johnson [13].
These, however, do not seem to generalize to general trees. This is because the sets
Ai generalize to total weights of subtrees and hence the number of potential values
for A grows exponentially.

We now consider the general case of a tree. We shall develop an O((1og n)2) parallel
algorithm for partitioning a tree into a maximal number of components so that every
component weighs at least A. Let the tree be rooted at"n arbi t ra~ vertex u. First,
consider the recursive function g(v), defined on the vertices. If v is a leaf, then let
g(v) = w, if w, < A and let g(v) = 0 if w, r A. If v is not a leaf and vl, . . . , v, are the
sons of v, then let g(v) = wu + Cg(vi) if the right-hand side is less than A; otherwise,
let g(v) = 0. Intuitively, if g(v) = 0, then the edge linking v to its father is deleted
(except for one case discussed later); otherwise, g(v) is the "residue" of weight which
v passes to its father. At the root u, if g(u) = 0, then the deleted edges partition the
tree properly; otherwise, the root is currently contained in a component whose total
weight is less than A, while all other components weigh at least A. In the latter case
we restore one of the previously deleted edges so that the component containing the
root unites with another component. Our algorithm will compute g at all vertices in
O((1og n)') parallel time. The algorithm can easily keep track of the deleted edges.

Our algorithm utilizes the notion of "centroid decomposition" of a tree [13, 301.
The centroid is a vertex vo which minimizes the size of the maximal subtree in the
forest generated when vo is deleted from the tree. Obviously, the size of the maximal
subtree at the centroid is less than or equal to n/2. Now, let tht. path from the
centroid vo to the root u be VO, vl, . . . , v, = u. Consider all the subtrees TI, . . . , Tt
which are rooted at sons of vertices along this path but not containing any v,. Thus,
a typical subtree consists of a vertex vj, which is a son of v, (0 s j a r; vj # V,-I if
j > 0), together with all the vertices v such that vf lies on the path from the root u to
v. We allocate to the tree Ti as many processors as there are vertices in Ti. Recursively,
we evaluate the function g over all the subtrees TI, . . . , T, in parallel. Then, the
following is evaluated in parallel for all j, j = 0, 1, . . . , r. Let a, equal w,, plus the sum
of g-values taken over the sons of v, (except for vj-I in case j m 0). Obviously, all the
aj's are found in O(1og n) parallel time. The problem is now reduced to evaluating the
function g along the sequence ao, al, . . . , a,. This can be carried out in O(1og r) time,

Parallel Computation Algorithms 86 1

as indicated earlier in the present section. If H(n) is the amount of parallel time that
this procedure requires on a tree with n vertices, then H(n) 5 H(n/2) + clog n so that
H(n) = ~((logn)~) .

When the latter parallel algorithm is applied to designing a serial algorithm
for the max-min k-partitioning problem on a tree, we obtain a bound of
O((n + nl~gn)(logn)~) = O(n(10gn)~). Analogous ideas can be applied to the
min-max problem [2].

8. Max-Flow-Related Problems

The renowned max-flow problem is presently solvable in 0(V3) time by Karzanov's
algorithm [19] or O(EV1og V) time by Sleator's algorithm [36]. The best parallel
algorithm known for max-flow is that of Shiloach and Vishkin, which runs in
O (p log V) time if V processors are employed. This is not very satisfactory for our
needs in this paper. The main difficulty with the good max-flow algorithms is that
they all build upon Dinic's [l l] basic idea which leads to O(V) phases. In fact, all
the improvements upon Dinic's work regard the solution of a single phase. Thus, we
do not expect a parallel max-flow algorithm to run in o(V) time.

A good parallel algorithm for max-flow (even with as many as EV processors)
would be helpful for the following kind of problems. Suppose that cu is the capacity
of the edge (i, j) but it is desirable not to use an edge at its full capacity. Less
informally, suppose that every edge (i, j) has some safety level su such that the ratio
filsii (whereJ, is the flow through (i, j)) is sought to be minimized. A closely related
problem which can also be solved by the same methods is that of maximizing the
minimal ratio. Consider the problem of sending a certain amount of flow v (or, more
generally, any flow with lower bounds [20]) through the network so that the maximal
ratiofii/su is minimized. This can be solved by defining F(X) to be the value of the
maximum flow, subject to additional capacity constraints of the formf;, 5 As,,. We
then solve the equation F(X) = v.

For a demonstration of the method in this case, consider Dinic's [l 11 algorithm for
max-flow. Like most of the other efficient algorithms for max-flow, Dinic's algorithm
works in O(V) phases, where during a single phase a maximal (rather than maximum)
flow is sought through a "layered" network with modified capacities. In the para-
meterized version these capacities become nonnegative linear functions of h over a
certain interval. In Dinic's algorithm we repeatedly look for paths through this
layered network. The bottleneck of a path, that is, the minimum of (modified)
capacities along the path, determines the amount by which the flow may be increased.
This minimum is in fact a piecewise-linear function of A. Thus, breakpoints of this
minimum function are critical values of A, Recall that, in general, a critical value of
X arises at a point where the algorithm has to compare two linear functions of A.
Now, an augmenting path can be found by V + 2E processors in O(1og V) time
[34]. The bottleneck is found in O(log1og V) time. Each phase of Dink's algorithm
finds an augmenting path at most E times. A parallel algorithm for max-flow which
is suitable for our needs can now be devised to run in O(EV1og V) time. This,
however, does not justify utilizing parallelism, since Sleator's serial algorithm runs in
the same time. On the other hand, Shiloach and Vishkin's parallel max-flow
algorithm [35] runs in 0(V210g V) time if V processors are employed. Using their
algorithm, we run in O(plog V) phases, where in each phase we run O(1og V)
regular max-flow problems. Since the max-flow problem can be solved in
O(Vmin(E1og V, v2)) time, it follows that the corresponding parametric problem
can be solved in 0 (v 3 log2 V. min(~1og V, p)) time. This readily applies to improving

862 NIMROD MEGIDDO

the bound obtained by Gusfield in [16], where the parametric method [23] was
applied without exploiting parallelism in max-flow for solving a problem of program
module distribution.

Another related problem was presented at the recent Israeli-South African Sym-
posium on Operations Research (February 198 1) by Dr. Eiselt of Concordia Univer-
sity. Given is a directed graph together with weights wi associated with the vertices.
The weight is interpreted as the number of customers located at vertex i. We have to
select a vertex u at which a facility will be established. We then route the customers
to the facility, minimizing the maximal number of customers using any single edge.
Our method in the present paper is also applicable to this problem and does improve
significantly the previously known bounds. We note that in this case one F-evaluation
amounts to solving n max-flow problems (corresponding to the n potential locations
of the facility). Thus, one obvious aspect of parallelism that should be exploited is
the fact that these n problems can be solved by n machines in parallel. This is, of
course, independent of the issue of parallelism within the max-flow problem itself.

A good parallel algorithm for the max-flow problem should also be helpful for
solving problems related to the min-cost flow problem, like minimizing certain edge-
flows subject to a budget constraint together with a total flow requirement (or lower
bounds). This, of course, suggests further research toward a parallel algorithm for
the min-cost flow problem.

9. "Second-Order" Applications

The importance of parallelism may be "doubled" when we imagine problems in
which the basic principle presented in this paper is applied more than once to the
same problem. Consider, for example, the following parametric variant of the
minimum-ratio-cycle problem. Suppose that the edge-costs are themselves increasing
linear functions of a parameter A, with an interpretation similar to that discussed in
the section on spanning trees. Now, suppose that we wish to find the maximum h
such that the minimum cost-to-time ratio of a cycle is less than or equal to a given
bound b. Here, we define F(X) to be the minimum ratio relative to the cost evaluated
at A. We would therefore like to have a goodparallel algorithm for finding minimum-
ratio cycles.

A parallel version of the algorithm of the kind presented here would work as
follows. Suppose that we can detect a negative cycle on a P-processor machine in
T(n, P) time. The evaluation of F(h) on a P-processor machine will work as follows.
There will be T(n, P) stages. During each stage, P critical values (of the parameter
used for the minimum-ratio computation) will be produced in one time unit. Then,
a binary search will take O(1og P) detection^,^ that is, O(T(n, P)logP) time. Thus
F(A) is evaluated in O((T(n, log P) parallel time. The solution of F(A) = b will be
as follows. The procedure will run in O((T(n, ~)) ~ l o g P) stages. Drsing a stage, P
critical values of X will be produced in P time units (serially). Then the search
requires O(1ogP) F-evaluations. A single evaluation takes O((P + Tslog P)T(n, P))
time, where TS is the serial time bound for detecting negative cycles. Thus, altogether,
our algorithm runs in O((P + (P + Tslog P)T(n, P)log P)(T(n, ~)) ~ l o g P) time.
Assuming P = O(Ts1og P), this reduces to log P) ~ (T (~ , P))3), where the signif-
icance of reducing T(n, P) is amplified considerably. Typical values in our example
here would be TS = 0(n3), P = 0(n3), and T(n, P) = O(lognlog1ogn) so that we
obtain a bound of 0(n3(log n)6(log log r ~) ~) . Without exploiting any parallelism the
algorithm would only have an 0(n12) bound.

In general, it may sometimes be beneficial to perform detections in parallel, as we show later.

Parallel Computation Algorithms 863

A modification which yields a further improvement is as follows. Employ P =

n310gn processors. Thus, there will be 0(n310gn) critical values produced. Now,
instead of detecting negative cycles at one value at a time, let us select logn values
which are equally spaced in the set of critical values. By allocating n3 processors to
each of the selected values, we can detect negative cycles at all of them in
O(lognlog1ogn) parallel time. The binary search takes O(log1ogn) time (but no
detections) and results in reducing the set of remaining critical values to a size of
0(n3). We then, again, select logn values and repeat the same idea. The search
thus takes 0((log(n310g n))/log log n) = O(1og n/log log n) steps, each requiring
O(1og n log log n) time. Thus, the entire search takes O((1og n)2) time, which means
that a minimum-ratio cycle is found in O((10gn)~) parallel time. The solution of
F(h) = b is as follows. There will be O((10gn)~) stages. During each stage, O(1ogn)
values will be tested, requiring 0(n3(logn)2) time if we use approach 1 for finding
minimum-ratio cycles. Thus, the algorithm runs in 0(n3(log n)6) time.

The idea of using the basic technique more than once in the same problem has
also been used by the author very successfully for solving the weighted Euclidean
1-center problem [26]. In that problem we are given n points (ai, bi), i = 1, . . . , n in
the plane, together with positive weights wi and we seek a point (x , y) so as to
minimize max(wi-[(x - ai)2 + (y - bi)2]1'2 : i = 1, . . . , n). By viewing the variables
x , y themselves as parameters playing the role of A, as throughout the present paper,
a "second-order" application of our basic idea was obtained. The resulting bound
was O(n(1og n)3(log log n)2), a significant improvement over the previously known
bound of 0(n3) (see [26]).

10. Conclusion

The application of parallel algorithms to serial computation does not necessarily
have to follow exactly the general scheme developed in this paper. It has been shown
throughout that, very often, deviations from the general principle result in further
improvements. Nevertheless, all these secondary improvements are themselves due
to parallelism in one way or another and hence conform with the general spirit of
what we have been trying to indicate. We prefer not to formalize our claims in the
form of a general theory, since it is likely that the basic idea may be applicable in
cases that do not presently seem to conform with our general framework.

The results in this paper motivate further research in parallelism in combinatorial
algorithms. It turns out that there are interesting problems with any number of
processors. Sometimes it may even be useful to have a number of processors which
is much larger than the serial time complexity of the problem. Also, it may happen
that a variable number of processors becomes useful when applied in serial compu-
tation, as indicated in this paper. Particularly stimulating are the so-called second-
order applications. When we have several parameters involved, there is an interesting
variety of ways to apply parallelism, as shown in Section 9.

ACKNOWLEDGMENTS. Discussions with and comments made by G. Lev, Z. Galil, N.
Pippenger, M. Sniedovich, A. Tamir, and E. Zemel are gratefully acknowledged. A
contribution of one of the referees to the section on minimum-ratio cycles is also
gratefully acknowledged.

REFERENCES

1. AHO, A.V., HOPCROFT, J.E., AND ULLMAN, J.D. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Mass., 1976.

2. BECKER, R.I., PERL, Y., AND SCHACH, S.R. A shifting algorithm for min-max tree partitioning.
J. ACM 29, 1 (Jan. 1982), 58-67.

864 NIMROD MEGIDDO

3. BERGE, C., AND GHOUILA-HOURI, A. Programming, Games and Transportation Networks. Wiley,
New York, 1965.

4. BORODIN, A,, AND HOPCROFT, J.E. Routing, merging and sorting on parallel models of computation.
In Proc. 14th Annual ACM Symp. Theory of Computing (San Francisco, May 5-7, 1982), ACM, New
York, 1982, pp. 338-344.

5. CHANDRASEKARAN, R. Minimum ratio spanning trees. Networks 7 (1977), 335-342.
6. CHANDRASEKARAN, R., AND DAUGHETY, A. Problems of location on trees. Discussion Paper No.

357, The Center for Mathematical Studies in Economics and Management Sclence, Northwestern
Univ., Evanston, Ill., 1978.

7. CHANDRASEKARAN, R., AND DAUGHETY, A. Location on tree networks: p-center and n-dispersion
problems. Math. Oper. Res. 6 (1981), 50-57.

8. CHERITON, D., AND TARJAN, R.E. Finding minimum spanning trees. SIAM J. Comput. 5 (1976),
724-742.

9. COFFMAN, E.G., JR. Computer and Job-Shop Scheduling. Wiley, New York, 1976.
10. DANTZIG, G.B., BLATTNER, W., AND RAO, M.R. Finding a cycle in a graph with minimum cost to

time ratio with application to a ship routing problem. In Theory of Graphs, P. Rosentiehl (Ed.) Gordon
and Breach, New York, 1967, pp. 77-84.

11. DINIC, E.A. Algorithm for solution of a problem of maximal flow in a network with power
estimation. Sov. Math. Dokl. 11 (1970), 1277-1280.

12. FREDERICKSON, G.N., AND JOHNSON, D.B. Optimal algorithms for generating quantile information
in X + Y and matrices w~th sorted columns. In Proc. 13th Conf: Information Science and Systems, The
Johns Hopkins University, 1979, pp. 47-52.

13. FREDERICKSON, G.N., AND JOHNSON, D.B. Generating and searching sets induced by networks. In
Proc. 7th Int. Colloq. on Automata, Languages and Programming, Lecture Notes in Computer Science
85, Springer-Verlag, Berlin, 1981, pp. 221-233.

14. GALIL, Z., AND MEGIDDO, N. A fast selection algorithm and the problem of optimum distribution
of effort. J. ACM 26, 1, (Jan. 1979), 58-64.

15. GUSPIELD, D. Sensitivity analysis for combinatorial optimization, Ph.D. dissertation, Memor.
YUCB/ERL M80/22, Electronics Research Lab., Univ. of California, Berkeley, May 1980.

16. GUSFIELD, D. Parametric combinatorial computing and a problem of program module distribution.
J. ACM 30, 3 (July 1983), 551-563.

17. ICHIMORI, T., ISHII, H., AND NISHIDA, T. Weighted minimax real-valued flows. J. Oper. Res. Soc.
Jpn. 24 (1981), 52-59.

18. KARP, R.M. A characterization of the minimum cycle mean in a digraph. Discrete Math. 23 (1978),
309-3 11.

19. KARZANOV, A.V. Determining the maximal flow in a network by the method of preflows. Sov. Math.
Dokl. 15 (1974), 434437.

20. LAWLEP, E.L. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart & Winston, New
York, 1976.

21. LAWLER, E.L. Private communication.
22. MALHQRA, V.M., PRAMODHKUMAR, M., AND MAHESHWARI, S.N. An O() VI3) algorithm for finding

maximum flows in networks. Computer Science Program, Indian Inst. of Technology, Kanpur 208016,
India, 1978.

23. MEGIDDO, N. Combinatorial optimization with rational objective functions. Math. Oper. Res. 4
(1979), 414-424.

24. MEGIDDO, N. An application of parallel computation to sequential computation: The problem of
cost-effective resource allocation. TWISK 202, CSIR-NRIMS, Pretoria, South Africa, Mar. 1981.

25. MEGIDDO, N. Applying parallel computation algorithms in the design of serial algorithms. In Proc.
ZZnd IEEE Sywp. Foundations of Computer Science, IEEE, New York, 1981, pp. 399-408.

26. MEGIDDO, N. The weighted Euclidean 1-center problem. Math. Oper. Res. 8, 4 (Nov. 1983), to
appear.

27. MEGIDDO, N. Towards a genuinely polynomial algorithm for linear programming. SIAM J. Comput.
12,2 (May 1983), 347-353.

28. MEGIDDO, N., AND TAMIR, A. Finding least-distances lines. SIAM J. Algebraic Discrete Methods 4,
2 (June 1983), 207-21 1.

29. MEGIDDO, N., AND TAMIR, A. New results on the complexity ofp-center problems. SIAM J. Comput.
12,4 (Nov. 1983), to appear.

30. MEGIDDO, N., TAMIR, A,, ZEMEL, E., AND CHANDRASEKARAN, R. An O(nlogzn) algorithm for the
K-th nearest pair in a tree with applications to location problems. SIAM J. Comput. 10 (1981),
328-337.

3 1. PERL, Y., AND SCHACH, S.R. Max-min tree partitioning. J. ACM 28, 1 (Jan. 1981), 5-15.

Parallel Computation Algorithms 865

32. PREPARATA, F.P. New parallel-sorting schemes. ZEEE Trans. Comput. C-27 (1978), 669-673.
33. SHILOACH, Y., AND VISHKIN, U. Finding the maximum, merging and sorting in a parallel compu-

tation model. J. Algorithms 2 (1981), 88-102. 1
34. SHILOACH, Y., AND VISHKIN, U. An O(1ogn) parallel connectivity algorithm. J. Algorithms 3 (1982),

57-67.
35. SHILOACH, Y., AND VISHKIN, U. An O(nzlogn) parallel MAX-FLOW algorithm. J. Algorithms 3

(1982), 128-146.
36. SLEATOR, D.D. An O(nm logn) algorithm for maximum network flow. Ph.D. dissertation, Computer

Science Dept., Stanford Univ., Stanford, Calif., 1980.
37. VALIANT, L.G. Parallelism in comparison problems. SIAM J. Comput. 4 (1975), 348-355.
38. YAO, A.C. An O(I E lloglogl VI) algorithm for finding minimum spanning trees. Znf: Process. Lett.

4 (1975), 21-23.
39. YUVAL, G. An algorithm for finding all the shortest paths using N2.8' infinite-precision multiplica-

tions. Znf: Process. Lett. 4 (1976), 155-156.

Journal of the Association for Computing Machinery, Vol. 30, No. 4, October 1983.

