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1. Introduction 

Numerous models have been proposed for parallel computation, and it is not clear 
yet which of them will eventually be supported by technology. Thus some of the 
models may at present be criticized as being unrealistic, since issues like synchroni- 
zation and memory conflicts still have to be settled. In this paper, however, we 
provide a new motivation for studying such models. An early model of parallel 
computation, considered by Valiant [37], now seems unrealistic since it only counts 
comparisons as time-consuming operations and also assumes synchronization. Val- 
iant does obtain very nice theoretical results with respect to sorting, mq iag ,  and 
maximum finding in parallel. On the other hand, in this paper we show that the 
search for good parallel algorithms of Valiant's type is justified on practical grounds 
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regardless of the state of technology for parallel computation. This is because, in 
many cases, one may desire to have a good parallel algorithm for one problem in 
order to design a good serial algorithm for another problem. In this paper we describe 
a fairly large class of problems in which this phenomenon occurs. 

The general idea is as follows. Suppose that a certain problem A is solved in T 
time units on a P-processor machine. In a serial implementation this amounts to TP 
time. Within the scope of serial computation we only wish to minimize the product 
TP. The common examination of parallelism in problem A amounts, essentially, to 
minimizing T, subject to keeping P at a reasonably low level. Now, suppose that an 
algorithm for problem A could somehow be applied to designing an algorithm for 
another problem B, so that a factor like Tlog P dominates the (serial) time bound for 
problem B, provided P is not too large. This would certainly justify an examination 
of parallelism in problem A, since minimizing Tlog P, subject to P's not being too 
large, is very close to minimizing T. In a study of parallelism, P in many cases 
depends on the input length n, so that n' I P I nk for some E > 0 and an integer k. 
In other words, we have log P - logn in many cases. 

In this paper we demonstrate situations like the one mentioned above. We start 
here with an abstract example. A more concrete example is considered in the next 
section. Suppose that F(A) is a monotone function of the real variable X and problem 
A is to evaluate F at a given A. Suppose that problem B is to solve the equation 
F(h) = 0. Assume that the variable X is involved throughout the evaluation of F only 
in additions, comparisons, and multiplications by constants. Then, as we demonstrate 
in the subsequent sections, in order to design a good serial algorithm for solving the 
equation F(A) = 0, it is desirable to have a good parallel algorithm for evaluating F. 

Particular cases of the general problem F(X) = 0, whicb are discussed later, are 
minimax or maximin problems and ratio optimization problems. Another important 
type of problem is finding the maximum or minimum value of a parameter h for 
which a certain property holds. We discuss examples of this kind as well. 

In the next section we describe a relatively simple example which is aimed at 
explaining the general idea rather than presenting an optimal algorithm. Yet the 
subsequent sections present cases in which the method does improve upon existing 
algorithms and also motivates a more thorough study of parallelism. We claim that 
almost every combinatorial problem in which numbers are involved should be 
examined from the parallelism point of view, since this would probably lead to good 
algorithms for related problems. 

The idea suggested in [23] has been used for solving problems taken from different 
fields (such as networks, scheduling, location, geometry, and statistics) 16, 7, 15-17, 
2 1, 26-29]. Some of these papers already utilize the "parallel processing" principle as 
suggested in the preliminary version of the present paper [25]. We expect, on the one 
hand, additional applications to be discovered soon and, on the other hand, further 
improvements in the efficiency of the algorithms as a result of developments in the 
lively field of parallel computation. 

2. A Preliminary Example 

We start with a relatively simple example that demonstrates the general method. 
Let&@) = a, + Ab,, i = 1, . . . , n, be pairwi'se distinct functions of X with all b,'s 

positive. For every A, let F(X) denote the median of the set {fi(A), . . . , f,(h)). 
Obviously F(A) is a piecewise-linear, monotone-increasing function with 0(n2) 
breakpoints. Given A, F(X) can be evaluated in O(n) comparisons [l] (once the$(h)'s 
have been computed). Consider the equation F(X) = 0. One possible way of solving 



854 NIMROD MEGIDDO 

this equation is first to identify the intersection points hi,, where ai + Xi,bi = 

a; + Xijbj ( i  # j). Every breakpoint of F is equal to one of the Xiis. We can thus search 
the set of Xij's for two values A', X2 such that F(A1) 5 0 5 F(h2) and such that there 
is no Xi; in the open interval (A1, X2). Once X1 and X2 have been found, we can solve 
the equation in one step since F is linear over [A1, X2]. The search for such an interval 
requires O(1ogn) F-evaluations and (if we do not wish to presort the set of XGs) 
finding medians of subsets of the set of Xij's whose cardinalities are n, n/2, n/4, . . . . 
Thus, such an algorithm runs in 0(n2) time, which is dominated by the evaluation of 
all the intersection points Xi,. 

An alternative approach suggested by the author in a previous paper [23] is as 
follows. Let us start the evaluation of F(A) with A not specified. Denote the solution 
of the equation F(X) = 0 (which is, of course, not known at this point) by A*. The 
outcome of the first comparison, performed by the algorithm for evaluating F, 
depends, of course, on the numerical value of A. Specifically, if our median-finding 
algorithm for evaluating F starts with comparingfi(X) andji(X), then the intersection 
point XQ of these two lines is a critical value for this compa?.ison; namely, for X r Al2, 
fl(A) r f2(X), whereas for A 5 Xlz,fi(A) sfi(A), or vice versa. Thus, we may find X12, 
evaluate F(A12), and then decide whether A* r XE or A* 5 XI:! according to the sign 
of F(X12). We can then proceed with the evaluation of F(X), where A is still not 
specified but is now restricted either to (-m, hlz] or to [ h ,  m). The same idea is 
repeatedly applied at the following points of comparisons. In general, when we need 
to compare5 withfi and X is currently restricted to an interval [Af, A"], if A" does not 
lie in the interval, then the outcome of the comparison is uniform over the interval; 
otherwise, by evaluating F&), we can restrict our interval to either [A', A"] or 
[Xu, A"]. Since O(n) such comparisons have to be performed and each may require 
an evaluation of F (which amounts to one median-finding), it follows that such an 
algorithm runs in 0(n2) time. 

At this point we are ready to see the role of parallelism. In the latter algorithm we 
were running a "master" median-finding algorithm where at every comparison point 
we had to test the sign of F(A) at a certain critical value of A. Now, suppose that 
instead of using the linear-time median-finding algorithm [I], we employ a parallel 
sorting algorithm such as Valiant's [37] or Preparata's [32]. Let P denote the number 
of processors and let T(n, P) denote the number of comparison steps required on a 
P-processor machine. Preparata's scheme uses P = nlogn and achieves T(n, P) = 
Oflogn). A suitable special case of Valiant's scheme uses P = n and achikves 
T(n, P) = O(1ogn log log n). We, of course, simulate these algorithms serially; that is, 
we employ one "processor" at a time, according to some f ~ e d  permutation, letting 
each perform one step in every cycle. Thus, all potential difficulties related to 
synchronization and memory conflicts are not present in our analysis. Recall that we 
are trying to sort the set {fi(A*), . . . , f,(X*)); where A* is not known; however, for 
any X it can be decided in O(n) time whether A* r X or A* s A. When two functions 
fi,J have to be compared, the equationf,(h) =&(A) is solved and the solution Xi, is 
declared a critical value. After one step of the "multiprocessor" we are provided with 
P such critical values. The crucial point is that these values are produced independ- 
ently of each other since the processors work "in parallel." Thus, the kth processor 
does not have to know the outcome of the comparison for which processor k - 1 is 
responsible, and, therefore, the critical value produced by processor k - 1 does not 
have to be tested before processor k produces its own critical value.. We start the 
testing only when all the P processors have produced critical values. Less informally, 
let these critical values be A1 5 . . . 5 hp; we do not assume that these values are 
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sorted. It can be seen that within O(1og P) F-evaluations, we can identify an interval 
[A,, A,+l] (i = 0, 1, . . . , P; assuming A. = -GO, A P + ~  = GO) such that A, 5 A* 5 A,+1. This 
is done by a binary search in the set of critical values, namely, testing the median of 
the set and then one of the quartiles, etc. Once the parameter A is restricted to the 
intersection of this interval with the previous interval of A, we can proceed since the 
outcomes of all the comparisons so far are known for X's in the new interval. This 
repeats T(n, P) times until we arrive at an interval over which our functions do not 
intersect and the median function crosses the zero level. Then the equation can be 
solved directly. 

During each such "step" we evaluate P critical values and then perform a binary 
search that requires O(P) time for median-findings in subsets of the set of critical 
values, as well as O(1ogP) F-evaluations. These evaluations require O(n1og P) time 
if the linear-time median-finding algorithm is used to test a fvred value of A. There 
is also some additional overhead time which is, however, dominated by nlog P. The 
proof of this is left to the reader. We remark that similar arguments regarding the 
overheads have to be made for any parallel algorithm in Valiant's comparison model. 
We should also remark that recently Borodin and Hopcroft [4] showed that results 
similar to Valiant's and Preparata's sorting algorithms hold in parallel models of 
computation that take all overheads into account. Thus the total amount of serial 
time required is O((P + nlogP)T(n, P)). Preparata's scheme thus yields an 
O(n(10gn)~) bound, while Valiant's yields O(n(1og n)210glogn), both bounds being 
superior to the previous 0(n2). 

We note that our simple problem can be solved directly by finding the median of 
the set of values of A at which some function crosses the zero level, that is, the set 
{-al/bl, . . . , -a,/b,). However, we present this example just as a simple demon- 
stration of a general principle. In the subsequent sections we sketch some mpre 
complicated examples where our method leads to the best known bounds. 

3. Spanning Tree Problems 

Consider a graph with edge-weights we that are themselves linear functions of a real 
variable: we = we@) = a, + Ab,. We assume that the b,'s are either all nonnegative 
or all nonpositive. Let F(A) denote the weight of the minimum spanning tree relative 
to the weights we@). The minimum-ratio spanning-tree problem [5] can be formulated 
as that of solving the equation F(A) = 0. Another related problem involving a 
parametrized spanning tree can be described as follows. Suppose that a spanning 
tree has to be constructed and the construction takes place in two time periods. Let 
a, denote the cost of work to be done on arc e during the first period (if the arc e is 
indeed selected for the spanning tree). Let be denote the estimated cost of work to be 
done on arc e during the second period. All the costs of the type be are subject to an . increase by a currently unknown factor of A. Given a budget B, we wish to decide 
which spanning tree to construct so as to allow for a maximum cost increase that 
would still leave the total construction cost not greater than B. 

.) The author [23] gave an algorithm for this problem which runs in 
O(E(1og V)210glog V) time, where E and V are the numbers of edges and vertices, 
respectively, in the graph. That algorithm exploited the relatively high degree of 
parallelism involved in Sollin's algorithm [3] for the minimum-spanning-tree prob- 
lem. There, the application of Sollin's algorithm was not exactly the same as suggested 
in the present paper. Since Sollin's algorithm runs in O(V1og V) time on a 
V-processor machine, it follows that it can solve the equation F(A) = 0 in 
O((V + TFlog V) V log V) time, where TF is the amount of time required for a 
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single minimum-spanning-tree computation. There are several ways [8,38] to achieve 
TF = O(Elog1og V) so that we obtain a bound of O(EV(1og  loglog log V) for our 
problem. This is inferior to the previous bound. 

We now describe an even simpler approach, which is also based on parallel 
computation, yielding the O(E(1og V)210glog V) time bound. It is well known that 
the minimum-spanning-tree solution depends only on the linear order which is 
induced on the set of edges by the weights. As a function of the variable A, this linear 
order changes only at values of X where at least two edges have equal weights. There 
are o(E~) such values of A. By finding all of them in advance (as suggested by 
Chandrasekaran [5 ] ) ,  we may search for A* by employing a minimum-spanning-tree 
algorithm O(1og V) times. This implies a time bound of o(E~). Now, suppose that 
we start with a parallel sorting algorithm, repeatedly restricting the interval containing 
A*, until the edges are sorted by the w,(A*)'s. Specifically, apply Preparata's sorting 
scheme with Elog V processors to the set of w,(A)'s. The process works in O(1og V) 
phases. During a single phase, O(E1og V) critical values are produced and then a 
binary search, consisting of O(1og V) minimum-spanning-tree evaluations, is per- 
formed. This implies a time bound of O((E1og V+ (Eloglog V)log V)log V)), which 
is simply O(E(1og V)210glog V). Given the correct permutation of the edges, we can 
find A* as well as the corresponding tree. 

4. A Scheduling Problem 

In the present section we describe another application of parallel sorting algorithms. 
Consider a one-machine scheduling problem with n tasks. Denote the processing 
times by tt . . . , t,, the finishing times (depending on the schedule) byfi, . . . , f,, and 
the weighted mean-flow time by W = 1 c&, wher& cl, . . . , c, are the deferral costs 
[9]. Suppose we seek to schedule a maximal fvred intermission between every two 
consecutive tasks, subject to the condition that the weighted mean-flow time will not 
be greater than a given bound b. 

If the length of the intermission is A, then the weighted mean-flow time is 
minimized by processing the tasks in order of increasing magnitude of (ti + A)/c~. Let 
F(A) denote the minimum value when the length of the intermission is A. The 
function F is piecewise linear monotone increasing and we have to solve F(A) = b. 
The breakpoints of F are at values of A where (ti + A)/ci = (ti + A)/cj for some i # j. 

One possible way of solving the problem, as in the case of the spanning tree, is to 
evaluate all the intersection points in 0(n2) time and then to search for A* by testing 
O(1ogn) values of A. Each test requires sorting of n ratios and hence takes O(n logn) 
time. 

An improvement upon the easily achieved 0(n2) bound is obtained by applying 
Preparata's sorting scheme. In this case we have O(1ogn) phases. During each phase 
we evaluate nlogn critical values of A and then search for A*. The search involves 
O(1og n) F-evaluations, each requiring O(n logn) time. Thus, the problem is solvable 
in O((n log n + (n log n)log n)log n) 0(n(log n)') time. 

E. Lawler [21] has applied the general method presented in this paper to several 
other scheduling problems. 

5. Cost-EfSective Resource Allocation 

In this section we mention one more application of parallel sorting. A more detailed 
discussion of the example of this section is given elsewhere 1241. 

The problem is to maximize1 a$(~i) ) / (Cgi(~i) )  subject to Exi 5 k and the xi's 

' Summation in the present section is over i = 1, . . . , n. 
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being nonnegative integers. The f,'s are concave and nonnegative, while the gi's are 
convex and positive. For solving this problem we look at the regular resource 
allocation problem; that is, maximize Cui(x,) subject to the same constraints, where 
the ui's are concave. Defining F(A) to be the maximum of the regular problem with 
ui(xi) =&(xL) - Agi(xi), i = 1, . . . , n, we need to solve the equation F(A) = 0. The 
regular problem has been studied for a long time and fast algorithms, based on 
selection in a set with presorted subsets, have been given by Frederickson and 
Johnson [12] and Galil and Megiddo [14]. For solving the cost-effective problem, 
one desires to have a good parallel algorithm for the main selection routine of the 
regular resource allocation problem. On the basis of Valiant's algorithms and 
Frederickson and Johnson's work, the author [24] has given an algorithm which runs 
in ~(n(logn)~(logk)~loglogn) time. In this case, an interesting point is that the 
number of "processors" may vary throughout. In particular, when k is very large, it 
becomes beneficial to use large numbers of processors, even like P = n(n - 1)/2, 
which enable "sorting" in one time unit. Thus, an even smaller bound may be 
obtained when k is relatively large. Also, the loglogn factor may be eliminated if 
Preparata's scheme is applied. Incidentally, the bound is sublinear in the input length, 
which is O(nk), if the functions f,, gi are given in tabular form. The algorithm 
actually uses only a small fraction of the function values, which may be supplied 
interactively or computed by another routine. 

6. Minimum Ratio Cycle 

In this section we describe an application of parallel algorithms for the all-pair 
shortest paths problem. 

The minimum-ratio-cycle problem is to find a cycle in aknetwork with edge-costs 
and edge-times, such that the ratio of the total cost to the total time of edges on the 
cycle is minimized. This problem has been considered by several authors [lo, 20, 
231, and the best previously known bound was [23] 0(EV210g V). This was achieved 
as follows. Define F(A) to be the length of the shortest cycle relative to the distance 
function that assigns to every edge a length that equals the cost of the edge less A 
times the time of the edge. Then, solve the equation F(A) = 0. Essentially, this calls 
for a negative-cycle detector, that is, an algorithm for deciding whether a network 
contains a cycle of negative length. An algorithm by Karp [18], which runs in O(E V) 
time, was applied by the author [23], and some part of its parallelism was exploited 
to yield the ~ ( ~ i , ' ~ l o g  V) bound. 

In this paper we improve the latter bound in two different ways by further 
exploiting parallelism. In the following procedures we use algorithms for the re- 
nowned all-pair shortest paths problem as negative-cycle detectors. In other words, 
we rely on the obvious observation [20] that a network contains a negative cycle if 
and only if there is a vertex i such that the distance from i to itself is negative. 

Let a$ denote the length of the shortest of all paths from i to j with no more than 
k intermediate vertices. The existence of a negative cycle is thus equivalent to the 
existence of a negative diagonal entry in the matrix aVp1 = (m$--'). The analogy 
between matrix multiplication and the computation of a$ is well known [I]. The 

k numbers a$ are of course given. The recursive relation = minr{mir + a$) 
can be used for finding all the values n$ where k is of the form k = 2" - 1. It thus 
enables us to detect a negative cycle in O(log V) steps which are analogous to matrix 
squaring. This procedure has a high degree of parallelism which is exploited later. 

When the edge-lengths are themselves linear functions of A, the quantities m$ are 
piecewise-linear functions of A. However, throughout the computation, X always 
belongs to an interval (which is repeatedly updated) over which those a$(A)'s 



858 NIMROD MEGIDDO 

currently under consideration are linear. We now describe two different approaches 
to applying the algorithm implicit in the above-mentioned recursive -formula 
for rck+'. 

Approach 1: V~rocessors .  We associate a processor with each ordered pair of 
vertices (i, j). For a fixed k, all the rtk+' values are determined "simultaneously." 
The processor associated with the pair (i, j )  determines all the breakpoints of the 
minimum function m?"(X) = min,{nt.(h) + rk,(h)) over the current interval. We 
now rely on the fact that, given V linear functions fr(X), r = 1, . . . , V, the breakpoints 
of the minimum function f(X) = min,. f,(h) can all be found in O(V log V) time. A 
detailed algorithm is given in [23, Appendix] and is based on sorting the functions by 
their slopes. The processor associated with (i, j )  can therefore find all the breakpoints 
of $+'(A) in O(V1og V) time, since all the nk(h)'s are linear over the current 
interval. Thus, the total serial time for this step is 0(V310g V). At most 0(V3) 
breakpoints are produced during this step and now a binary search takes place, 
which amounts to O(1og V) negative-cycle detections. A single detection required 
O(EV) time [18] and hence the search runs in O(EV1og V) time. Since the whole 
process consists of O(log V )  steps like this, it follows that the algorithm runs in 
0(v3(log v ) ~ )  time. 

Approach 2: V2(V - 2) + V processors. In this case we associate a processor 
with each triple (i, j, r) such that r # i, j .  The fundamental iteration rtk+' = 
min,{r?,. + nk,) is, again, carried out simultaneously for all (i, j). However, here the 
minimum corresponding to each (i, j )  is determined by a parallel algorithm with the 
V - 2 processors associated with the triples (i, j, r), r # i, j, in case i # j (V - 1 
processors if i = j). Valiant's parallel algorithm for finding the minimum performs 
O(1og log V) comparisons. Recently Shiloach and Vishkin [33] developed an algo- 
rithm which finds the minimum in O(log1og V) time, taking all overheads into 
account. Thus, a single step (i.e., the computation of all nth+' for a fixed k) runs 
in O(1og log V) stages. During a typical stage, each processor makes one comparison, 
that is, it produces the critical value of X with respect to that comparison. Then a 
binary search takes place in the set of critical values. The binary search requires 
O(1og V) negative-cycle detections. Thus, a single stage takes 0(V3 + E V  log V) time 
and, since we have O(1og V) steps, each consisting of O(1og log V) stages, the overall 
time bound with this approach is 0((V3 + EV log V)log V log log V). One of the 
referees of this paper has suggested the following improvement. Allocate V/log log V 
processors for each pair so that the minimum can be found in O(log1og V) parallel 
time. This yields a serial time bound of 0(V310g V + EV log2vloglog V). 

We should also note that under an infinite precision multiplication model Yuval 
[39] finds the all-pair shortest distances in 0(V2.") time. Thus, under this model a 
negative cycle can be detected in 0(v2.") time, so that the second approach leads to 
an 0(v310g V log log V) algorithm. 

7. Algorithms on Trees 

Many problems that are NP-hard on general graphs turn out to be polynomially 
solvable on trees. Among these are most of the location-theoretic problems. However, 
in most of the cases the tree algorithms do not have a high degree of parallelism. In 
particular, if an algorithm works from the leaves of the tree toward the root, or vice 
versa, then its obvious parallel version runs in time which is at least proportional to 
the radius of the tree. The radius may of course be linear in the size of the tree, while 
it is conceivable that logarithmic-time parallel algorithms exist. As a representative 
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case we discuss here the max-min tree k-partitioning problem by Perl and Schach 
[3 11. Another problem which has been successfully attacked by the same method is 
the continuous p-center problem on a tree [29]. 

The max-min tree k-partitioning problem is formulated as follows. Given a tree T 
with n edges and a nonnegative weight associated with each vertex, delete k edges of 
T so as to maximize the weight of the lightest of all the resulting subtrees (formed by 
the remaining edges). To follow the general framework of the present paper, define 
F(A) to be the maximal number of edges that can be deleted, so that the weight of 
every subtree is at least A. We are interested in fhding the maximal A such that F(A) 
r k, which is essentially solving the equation F(A) = k. As pointed out by Perl and 
Schach, it takes O(n) time to evaluate F a t  a given A. Specifically, the following rules 
establish such an algorithm. (i) If a leaf has a weight greater than or equal to A, then 
its linking edge should be deleted. (ii) If the "sons" of a certain vertex v are all leaves 
with weight less than A, then replace v and its sons by a new vertex v' whose weight 
equals the total weight of v together with the sons. It is straightforward to establish 
an n-processor parallel version of this algorithm which runs in O(rd(T)) time, where 
rd(T) is the radius of T. A processor is linked with each leaf. A typical step is as 
follows. Each processor provides the weight of its respective leaf as a critical value of 
A. Also, if v is a vertex all of whose sons are leaves, then the total weight of these sons 
is considered a critical value of A at this point. It takes O(1ogn) time for O(n) 
processors to establish O(n) such critical values of A during a single step. Then a 
binary search for A* is performed over the set of critical values, which requires 
O(1ogn) F-evaluations. This repeats O(rd(T)) times and hence we have an algorithm 
which runs in O(nlognrd(T)) time. This algorithm, which is a straightforward 
adaptation of our general method, is already bettei than Perl and Schach's 
0(k2 rd(T) + kn) for certain values of k. We later, however, provide an even more 
efficient algorithm. Also, note that by a more careful analysis of our previous 
algorithm, a bound of O(nlog(n/rd(T))rd(t)) can be proved. This is because if ni is 
the number of "processors" required during step i (i = 1, . . . , rd(T)), then Cni = n 
and the algorithm actually runs in O(n C log ni) time. 

As pointed out earlier, the key to improving the bound even further is by 
developing a parallel algorithm for evaluating F(A) in o(n) time. We shall describe an 
O(1og n) parallel algorithm for the special case of partitioning a sequence of numbers 
(i.e., a linear tree). This algorithm will then be employed to establish an O((1ogn)') 
algorithm for general trees. 

Let (al, . . . , a,) be a sequence of real numbers, and let F(A) denote the max- 
imal number of subsequences in a partition ( a ~ ,  . . . , ail), (ai,+l, . . . , ai,), 
. . . , . . . , a,), where each subsequence total is at least A. If all the partial sums 
Ai = al + . . + ai (i = 1, . . . , n) are known, then it takes O(min(n, klogn)) time to 
decide (for a given A) whether or not F(A) r k + 1. Thus, even without .exploiting 
parallelism in the computation of F(A), we may solve the max-min problem in 
0(min(n2, n + k2(logn)2) time in the' following way. First, compute all the partial 
sums. Then, run that algorithm for F(A), testing every critical value encountered. 

A good' parallel algorithm for evaluating F is as follows. First, evaluate all the Ai's, 
recursively, in O(1ogn) time. Specifically, once we obtain Ai, i = 1, . . . , [n/2] and 
Ai - AInln1 for i = [n/2] + 1, . . . , n, then it takes just one step to find all the A;. The 
second phase consists of finding, for every i (i = 0, 1, . . . , n - l), an index j(i) such 
that - Ai < A 5 Aici, - Ai (A0 = 0; if A, - Ai < A, then define j(i) = w). This 
is easily carried out in O(1og n) time by letting each processor independently perform 
a binary search for j(i) of a different i. Finally, we compute for every i, i = 0, 1, 
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. . . , n - 1, two indices s(i), k(i), which are defined as follows. If ai+l + - . . + a, 
< A, then let s(i) = i and k(i) = 0; otherwise, let s(i) = s(j(i)) and k(i) = k(j(i)) + 1. 
Intuitively, k(i) is the maximal number of subsequences in a partition of (ai+l, . . . , 
a,) such that every subsequence total is at least A, while s(i) is the minimal index 
such that (ai+l, . . . , aSci,) can also be partitioned into k(i) subsequences subject to the 
same constraint. We are interested only in k(O), but all other values are required for 
an efficient parallel computation. Let sf(i) and k'(i) denote the same type of indices, 
determined relative to the sequence (al, . . . , aI,pl). Recursively, first find sf(i) and 
kf(i) for i = 0, 1, . . . , [n/2] and s(i) and k(i) for i = [n/2], . . . , n. Now, for i = 0, 1, 
. . . , [n/2], set s(i) = s(j(s'(i))) and k(i) = kf(i) + 1 + k(j(sf(i))) if j(sf(i)) # w, and 
set s(i) = sf(i) and k(i) = kf(i) if j(sf(i)) = w. The inductive s ~ e p  requires constant 
time on [n/2] processors, and hence the entire computation takes only O(1og n) time. 

The resulting time bound for max-min sequence partitioning is as follows. 
We run in O(1ogn) steps, each of which requires O(1ogn) tests. The cost of 
a test is O(min(n, klogn)) and we have n processors. Thus our bound is 
O((n + rnin(n, k1ogn)logn)logn). On the other hand, the "correct" A* is of the form 
A, - Ai. Since selection in a set of the form X - X can be carried out in O(n log n) 
time [12], it follows that a direct binary search in the set of (Aj - Ai)'s yields an 
~ ( n ( l o ~ n ) ~ )  bound. In fact, the special structure of this set implies that an O(n logn) 
algorithm can be constructed following the ideas of Frederickson and Johnson [13]. 
These, however, do not seem to generalize to general trees. This is because the sets 
Ai generalize to total weights of subtrees and hence the number of potential values 
for A grows exponentially. 

We now consider the general case of a tree. We shall develop an O((1og n)2) parallel 
algorithm for partitioning a tree into a maximal number of components so that every 
component weighs at least A. Let the tree be rooted at"n arbi t ra~ vertex u. First, 
consider the recursive function g(v), defined on the vertices. If v is a leaf, then let 
g(v) = w, if w, < A and let g(v) = 0 if w, r A. If v is not a leaf and vl, . . . , v, are the 
sons of v, then let g(v) = wu + Cg(vi) if the right-hand side is less than A; otherwise, 
let g(v) = 0. Intuitively, if g(v) = 0, then the edge linking v to its father is deleted 
(except for one case discussed later); otherwise, g(v) is the "residue" of weight which 
v passes to its father. At the root u, if g(u) = 0, then the deleted edges partition the 
tree properly; otherwise, the root is currently contained in a component whose total 
weight is less than A, while all other components weigh at least A. In the latter case 
we restore one of the previously deleted edges so that the component containing the 
root unites with another component. Our algorithm will compute g at all vertices in 
O((1og n)') parallel time. The algorithm can easily keep track of the deleted edges. 

Our algorithm utilizes the notion of "centroid decomposition" of a tree [13, 301. 
The centroid is a vertex vo which minimizes the size of the maximal subtree in the 
forest generated when vo is deleted from the tree. Obviously, the size of the maximal 
subtree at the centroid is less than or equal to n/2. Now, let tht. path from the 
centroid vo to the root u be VO, vl, . . . , v, = u. Consider all the subtrees TI, . . . , Tt 
which are rooted at sons of vertices along this path but not containing any v,. Thus, 
a typical subtree consists of a vertex vj, which is a son of v, (0 s j a r; vj # V,-I if 
j > 0), together with all the vertices v such that vf lies on the path from the root u to 
v. We allocate to the tree Ti as many processors as there are vertices in Ti. Recursively, 
we evaluate the function g over all the subtrees TI, . . . , T, in parallel. Then, the 
following is evaluated in parallel for all j, j = 0, 1, . . . , r. Let a, equal w,, plus the sum 
of g-values taken over the sons of v, (except for vj-I in case j m 0). Obviously, all the 
aj's are found in O(1og n) parallel time. The problem is now reduced to evaluating the 
function g along the sequence ao, al, . . . , a,. This can be carried out in O(1og r) time, 
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as indicated earlier in the present section. If H(n) is the amount of parallel time that 
this procedure requires on a tree with n vertices, then H(n) 5 H(n/2) + clog n so that 
H(n) = ~(( logn)~) .  

When the latter parallel algorithm is applied to designing a serial algorithm 
for the max-min k-partitioning problem on a tree, we obtain a bound of 
O((n + nl~gn)(logn)~) = O(n(10gn)~). Analogous ideas can be applied to the 
min-max problem [2]. 

8. Max-Flow-Related Problems 

The renowned max-flow problem is presently solvable in 0(V3) time by Karzanov's 
algorithm [19] or O(EV1og V) time by Sleator's algorithm [36]. The best parallel 
algorithm known for max-flow is that of Shiloach and Vishkin, which runs in 
O ( p  log V) time if V processors are employed. This is not very satisfactory for our 
needs in this paper. The main difficulty with the good max-flow algorithms is that 
they all build upon Dinic's [ l l ]  basic idea which leads to O(V) phases. In fact, all 
the improvements upon Dinic's work regard the solution of a single phase. Thus, we 
do not expect a parallel max-flow algorithm to run in o(V) time. 

A good parallel algorithm for max-flow (even with as many as EV processors) 
would be helpful for the following kind of problems. Suppose that cu is the capacity 
of the edge (i, j )  but it is desirable not to use an edge at its full capacity. Less 
informally, suppose that every edge (i, j )  has some safety level su such that the ratio 
filsii (whereJ, is the flow through (i, j)) is sought to be minimized. A closely related 
problem which can also be solved by the same methods is that of maximizing the 
minimal ratio. Consider the problem of sending a certain amount of flow v (or, more 
generally, any flow with lower bounds [20]) through the network so that the maximal 
ratiofii/su is minimized. This can be solved by defining F(X) to be the value of the 
maximum flow, subject to additional capacity constraints of the formf;, 5 As,,. We 
then solve the equation F(X) = v. 

For a demonstration of the method in this case, consider Dinic's [l 11 algorithm for 
max-flow. Like most of the other efficient algorithms for max-flow, Dinic's algorithm 
works in O( V) phases, where during a single phase a maximal (rather than maximum) 
flow is sought through a "layered" network with modified capacities. In the para- 
meterized version these capacities become nonnegative linear functions of h over a 
certain interval. In Dinic's algorithm we repeatedly look for paths through this 
layered network. The bottleneck of a path, that is, the minimum of (modified) 
capacities along the path, determines the amount by which the flow may be increased. 
This minimum is in fact a piecewise-linear function of A. Thus, breakpoints of this 
minimum function are critical values of A, Recall that, in general, a critical value of 
X arises at a point where the algorithm has to compare two linear functions of A. 
Now, an augmenting path can be found by V + 2E processors in O(1og V) time 
[34]. The bottleneck is found in O(log1og V)  time. Each phase of Dink's algorithm 
finds an augmenting path at most E times. A parallel algorithm for max-flow which 
is suitable for our needs can now be devised to run in O(EV1og V) time. This, 
however, does not justify utilizing parallelism, since Sleator's serial algorithm runs in 
the same time. On the other hand, Shiloach and Vishkin's parallel max-flow 
algorithm [35] runs in 0(V210g V) time if V processors are employed. Using their 
algorithm, we run in O(plog V) phases, where in each phase we run O(1og V) 
regular max-flow problems. Since the max-flow problem can be solved in 
O(Vmin(E1og V, v2)) time, it follows that the corresponding parametric problem 
can be solved in 0 ( v 3  log2 V. min(~1og V, p ) )  time. This readily applies to improving 
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the bound obtained by Gusfield in [16], where the parametric method [23] was 
applied without exploiting parallelism in max-flow for solving a problem of program 
module distribution. 

Another related problem was presented at the recent Israeli-South African Sym- 
posium on Operations Research (February 198 1) by Dr. Eiselt of Concordia Univer- 
sity. Given is a directed graph together with weights wi associated with the vertices. 
The weight is interpreted as the number of customers located at vertex i. We have to 
select a vertex u at which a facility will be established. We then route the customers 
to the facility, minimizing the maximal number of customers using any single edge. 
Our method in the present paper is also applicable to this problem and does improve 
significantly the previously known bounds. We note that in this case one F-evaluation 
amounts to solving n max-flow problems (corresponding to the n potential locations 
of the facility). Thus, one obvious aspect of parallelism that should be exploited is 
the fact that these n problems can be solved by n machines in parallel. This is, of 
course, independent of the issue of parallelism within the max-flow problem itself. 

A good parallel algorithm for the max-flow problem should also be helpful for 
solving problems related to the min-cost flow problem, like minimizing certain edge- 
flows subject to a budget constraint together with a total flow requirement (or lower 
bounds). This, of course, suggests further research toward a parallel algorithm for 
the min-cost flow problem. 

9. "Second-Order" Applications 

The importance of parallelism may be "doubled" when we imagine problems in 
which the basic principle presented in this paper is applied more than once to the 
same problem. Consider, for example, the following parametric variant of the 
minimum-ratio-cycle problem. Suppose that the edge-costs are themselves increasing 
linear functions of a parameter A, with an interpretation similar to that discussed in 
the section on spanning trees. Now, suppose that we wish to find the maximum h 
such that the minimum cost-to-time ratio of a cycle is less than or equal to a given 
bound b. Here, we define F(X) to be the minimum ratio relative to the cost evaluated 
at A. We would therefore like to have a goodparallel algorithm for finding minimum- 
ratio cycles. 

A parallel version of the algorithm of the kind presented here would work as 
follows. Suppose that we can detect a negative cycle on a P-processor machine in 
T(n, P) time. The evaluation of F(h) on a P-processor machine will work as follows. 
There will be T(n, P) stages. During each stage, P critical values (of the parameter 
used for the minimum-ratio computation) will be produced in one time unit. Then, 
a binary search will take O(1og P)  detection^,^ that is, O(T(n, P)logP) time. Thus 
F(A) is evaluated in O((T(n,  log P) parallel time. The solution of F(A) = b will be 
as follows. The procedure will run in O((T(n, ~ ) ) ~ l o g P )  stages. Drsing a stage, P 
critical values of X will be produced in P time units (serially). Then the search 
requires O(1ogP) F-evaluations. A single evaluation takes O((P + Tslog P)T(n, P)) 
time, where TS is the serial time bound for detecting negative cycles. Thus, altogether, 
our algorithm runs in O((P + (P + Tslog P)T(n, P)log P)(T(n, ~ ) ) ~ l o g P )  time. 
Assuming P = O(Ts1og P), this reduces to  log P ) ~ ( T ( ~ ,  P))3), where the signif- 
icance of reducing T(n, P) is amplified considerably. Typical values in our example 
here would be TS = 0(n3), P = 0(n3), and T(n, P) = O(lognlog1ogn) so that we 
obtain a bound of 0(n3(log n)6(log log r ~ ) ~ ) .  Without exploiting any parallelism the 
algorithm would only have an 0(n12) bound. 

In general, it may sometimes be beneficial to perform detections in parallel, as we show later. 
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A modification which yields a further improvement is as follows. Employ P = 

n310gn processors. Thus, there will be 0(n310gn) critical values produced. Now, 
instead of detecting negative cycles at one value at a time, let us select logn values 
which are equally spaced in the set of critical values. By allocating n3 processors to 
each of the selected values, we can detect negative cycles at all of them in 
O(lognlog1ogn) parallel time. The binary search takes O(log1ogn) time (but no 
detections) and results in reducing the set of remaining critical values to a size of 
0(n3). We then, again, select logn values and repeat the same idea. The search 
thus takes 0((log(n310g n))/log log n) = O(1og n/log log n) steps, each requiring 
O(1og n log log n) time. Thus, the entire search takes O((1og n)2) time, which means 
that a minimum-ratio cycle is found in O((10gn)~) parallel time. The solution of 
F(h) = b is as follows. There will be O((10gn)~) stages. During each stage, O(1ogn) 
values will be tested, requiring 0(n3(logn)2) time if we use approach 1 for finding 
minimum-ratio cycles. Thus, the algorithm runs in 0(n3(log n)6) time. 

The idea of using the basic technique more than once in the same problem has 
also been used by the author very successfully for solving the weighted Euclidean 
1-center problem [26]. In that problem we are given n points (ai, bi), i = 1, . . . , n in 
the plane, together with positive weights wi and we seek a point (x ,  y) so as to 
minimize max(wi-[(x - ai)2 + (y - bi)2]1'2 : i = 1, . . . , n). By viewing the variables 
x ,  y themselves as parameters playing the role of A, as throughout the present paper, 
a "second-order" application of our basic idea was obtained. The resulting bound 
was O(n(1og n)3(log log n)2), a significant improvement over the previously known 
bound of 0(n3) (see [26]). 

10. Conclusion 

The application of parallel algorithms to serial computation does not necessarily 
have to follow exactly the general scheme developed in this paper. It has been shown 
throughout that, very often, deviations from the general principle result in further 
improvements. Nevertheless, all these secondary improvements are themselves due 
to parallelism in one way or another and hence conform with the general spirit of 
what we have been trying to indicate. We prefer not to formalize our claims in the 
form of a general theory, since it is likely that the basic idea may be applicable in 
cases that do not presently seem to conform with our general framework. 

The results in this paper motivate further research in parallelism in combinatorial 
algorithms. It turns out that there are interesting problems with any number of 
processors. Sometimes it may even be useful to have a number of processors which 
is much larger than the serial time complexity of the problem. Also, it may happen 
that a variable number of processors becomes useful when applied in serial compu- 
tation, as indicated in this paper. Particularly stimulating are the so-called second- 
order applications. When we have several parameters involved, there is an interesting 
variety of ways to apply parallelism, as shown in Section 9. 
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