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Abstract

Wart is a disease caused by human papillomavirus with common and plantar warts as general forms. Commonly used meth-

ods to treat warts are immunotherapy and cryotherapy. The selection of proper treatment is vital to cure warts. This paper 

establishes a classification and regression tree (CART) model based on particle swarm optimisation to help patients choose 

between immunotherapy and cryotherapy. The proposed model can accurately predict the response of patients to the two 

methods. Using an improved particle swarm algorithm (PSO) to optimise the parameters of the model instead of the tradi-

tional pruning algorithm, a more concise and more accurate model is obtained. Two experiments are conducted to verify the 

feasibility of the proposed model. On the hand, five benchmarks are used to verify the performance of the improved PSO 

algorithm. On the other hand, the experiment on two wart datasets is conducted. Results show that the proposed model is 

effective. The proposed method classifies better than k-nearest neighbour, C4.5 and logistic regression. It also performs better 

than the conventional optimisation method for the CART algorithm. Moreover, the decision tree model established in this 

study is interpretable and understandable. Therefore, the proposed model can help patients and doctors reduce the medical 

cost and improve the quality of healing operation.

Keywords Wart treatment method · Classification · Decision tree · Particle swarm optimisation

Introduction

Wart is a skin disease caused by human papillomavirus 

(HPV) that infects the outer layer of the skin and induces 

excessive proliferation of skin cells [1]. Treatment is 

urgently needed by patients with warts because of the effect 

of this disease on human appearance and daily life. Meth-

ods clinically available for the effective treatment of warts 

include immunotherapy, antimitotic therapy and destructive 

methods. However, existing methods only eliminate or ease 

the symptoms and signs of warts [2]. In addition, patients 

who catch the same wart but under different symptom condi-

tions have different responses to the same treatment [3]. The 

different methods induce different levels of side effects, cost 

and pain. Therefore, the selection of method for different 

patients is important to maximise the elimination of wart 

symptoms, reduce side effects and pain and minimise the 

treatment cost.

In the traditional clinical treatment of warts, doctors 

choose a method for patients in a subjective manner. This 

method is not reliable especially when the doctor lacks clini-

cal experience. In some cases, physicians are obliged to test 

each method individually, adding financial burden and pain 

to patients. Machine learning can effectively solve these 

problems. It can automatically learn from previous cases 

and assist doctors in choosing the appropriate treatment for 

patients. It effectively eliminates the symptoms of patients 

and avoids problems caused by multiple treatments.

In recent years, the machine learning and data mining 

algorithms employed in medical science have grown rap-

idly because they are intelligent in analysis and discovering 

knowledge from datasets [5–9]. Many studies used machine 

learning methods to treat skin diseases, such as melanoma 
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[4–6], which is a type of skin cancer developing from mel-

anocytes. Machine learning has also been used for skin can-

cer diagnosis [10–13], skin lesion classification [11, 14, 15] 

and skin sensitisation [16, 17]. A number of studies have 

compared the two treatment methods in terms of medical 

science [18–24], but a few studies have used machine-learn-

ing methods to select the two methods. Khozeimeh et al. 

[31] proposed an expert system to predict the responses 

of patients with warts to cryotherapy and immunotherapy 

but only achieved 83.33% accuracy. Guimaraes et al. [25] 

also developed a system based on fuzzy logic to predict the 

adaptability of a patient to immunotherapy. Given their high 

prediction accuracy, decision tree (DT) algorithms including 

J48, ID3 and classification and regression tree (CART) were 

built as classifiers to select the optimal treatment method. 

Ghiasi et al. [26] employed the CART algorithm to develop 

accurate predictive models for analysing the effectiveness of 

cryotherapy and immunotherapy. Akben [27] proposed ID3 

classification model-based interpretable fuzzy informative 

images to predict the success of wart treatment methods. 

Khatri et al. [28] used the genetic programming-based J48 

algorithm to enhance the predictive accuracy with the same 

dataset.

However, these methods are only 70–90% accurate and 

cannot give physical meaning. Ghiasi [29] proposed a model 

with sufficient accuracy, but their DT structure is compli-

cated and difficult to understand. Through experiments, 

authors found that compared with other classifiers, such 

as k-nearest neighbour (K-NN), support vector machine 

(SVM), etc., the prediction accuracy of the decision tree 

classifier on immunotherapy dataset and cryotherapy dataset 

is relatively high, reaching 82–93% [9, 37]. And as a clas-

sical machine-learning algorithm, the DT is known to be 

computationally inexpensive and no assumptions are needed 

concerning the predictors’ distribution. Therefore, this paper 

considers further improvements to the decision tree, and 

proposes an improved decision tree model using PSO for 

parameter optimization. This paper uses PSO algorithm to 

optimise the parameters of the decision tree instead of the 

traditional pruning optimization method, and then uses the 

optimal parameter combination to establish an improved 

decision tree classification model. The final result shows 

that the structure of the proposed model is simpler compared 

with other decision tree model, and the prediction accuracy 

of the proposed model reaches 100%. Besides, it has a better 

interpretability.

This paper has the following contributions:

1. Combining the linearly decreased inertia weight with 

time-varying acceleration coefficients, the optimization 

capability of PSO has been improved.

2. The parameters of DT were optimised using the PSO 

algorithm instead of the pruning algorithm, making 

training process of the DT model simpler and structure 

more concise.

3. The classification accuracy of the proposed model is 

100%, indicating that it can effectively select the best 

treatment for warts.

This paper includes five sections. Section “Related work” 

briefly introduces the essential earlier works and findings 

about the WART and some related works about the CART 

and PSO algorithm. In section “Model development” the 

process of model construction is explained. First, the data-

set was introduced, and then the imbalanced dataset was 

processed using the Synthetic Minority Oversampling Tech-

nique (SMOTE) algorithm. Finally, the DT model was built 

based on PSO using the CART algorithm. The experiment 

was carried out in section “Experiments and analysis”, and 

the proposed method was compared with the traditional 

method to evaluate its performance. Finally, section “Con-

clusion” summarises this paper.

Related work

To improve the diagnosis of medical science and reduce the 

subjective interference of doctors’ decision-making, several 

researchers have studied the application of predictive algo-

rithms to the diagnosis and treatment of wart skin diseases. 

For example, Khozeimeh et al. [31] proposed an expert 

system based on fuzzy logic rules to study the therapeutic 

effects of immunotherapy and cryotherapy on warts. On the 

basis of the expert system proposed by Khozeimeh et al. 

[31], Guimaraes et al. [38] used the fuzzy neural network 

method to improve the prediction accuracy of the model. 

On other study, based on the dataset provided by Khozeimeh 

et al. [31], Akben [10] established an ID3 decision tree clas-

sifier to predict the choice of treatment options for warts. 

Similarly, Khatri et al. [9] also use the same dataset to 

establish a J48 decision tree classification model to help the 

selection the treatment of warts. Because of the excellent 

performance of DTs in these models, this article considers 

further improvements to the decision tree, which is of great 

significance in improving the accuracy of model predictions 

and increasing model interpretability.

As a kind of classical supervised machine learning and 

data mining approaches, DTs have been widely used in 

classification and data mining problems because of its fast 

classification speed, high accuracy and easy understanding. 

The optimization and improvement of decision tree algo-

rithms has always been a research hotspot in the field. There 

are several forms of DT to establish a DT-based model, 

including CART, C4.5 and ID3. CART was proposed by 

Breiman [7]. The classification tree is used to analyse clas-

sification outcomes, and the regression tree is utilised to 
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analyse continuous outcome. CART divides the sample into 

subgroups repeatedly based on certain criteria. The CART 

algorithm is easy to implement and interpret. Therefore, it 

has many applications in medical diagnosis and prognosis.

In the diagnosis of skin diseases, tree-based approaches, 

such as CART, [8], J48 [9] and ID3 [10], are used in wart 

treatment selection. Non-tree-based approaches, including 

SVM [11, 12], K-NN [13, 14], convolutional neural network 

[15] and Bayesian Network [13], are utilised for skin disease 

diagnosis. However, tree-based methods are generally supe-

rior to their counterparts in terms of performance. Especially 

in terms of accuracy, the DT model is always higher than 

other models. It offers distinct advantages. On the one hand, 

the CART algorithm does not need to make any assump-

tions about features neither do they need to transform the 

variables. It can solve classification and continuous vari-

ables simultaneously. On the other hand, the CART model 

is easy to visualise and has strong interpretability. Compared 

with black-box models such as neural networks, DT models 

can be displayed in the form of graph and, therefore, have 

stronger interpretability.

However, the CART classifier does not always produce 

ideal results. It can be associated with some disadvantages. 

One of the main drawbacks is that its structure is susceptible 

to sample variables and sample size and may become com-

plicated due to many branches. In this case, the performance 

of CART can be improved in two ways. One is the ensemble 

method, such as random forest. It combines the results of 

several classifiers to improve the performance over a single 

classifier. Another approach to improve the performance of 

CARTs is to optimise the parameters of the classifier. In this 

paper, the PSO algorithm is used to optimise the parameters 

of the decision tree, which can better control the generation 

scale of the tree while ensuring good classification accuracy, 

making the structure of the generated decision tree simpler.

The meta-heuristic technique is an intelligent optimisa-

tion algorithm for classifiers, such as ant colony optimisa-

tion, PSO and genetic algorithm (GA). In this paper, the 

PSO algorithm is employed to optimise the parameters of 

CART. The PSO algorithm is an evolutionary computation 

algorithm proposed by Kennedy and Eberhart [16, 17] in 

1995. The basic concept of PSO stems from a metaphor 

of social interaction, and the PSO algorithm is constructed 

to simulate the social behaviour of birds flocking or fish 

schooling. Each particle represents a candidate solution of 

the research problem. Suppose that all potential solutions to 

the optimisation problem are particles in the search space. 

All particles have an adaptation value determined by the 

optimised function. Each particle has a velocity vector that 

determines the direction and distance of their flight. The 

particle follows the current optimal particle to search in the 

solution space, traces the optimal solution p
best

 currently 

found by itself and the optimal solution pgbest currently found 

by the population and then searches through generations 

until the optimal solution is obtained. Each particle updates 

its speed and position, respectively [18], as follows:

where d indicates the dth dimension of the particle; i indi-

cates the particle i; k indicates the kth generation; c
1
 , c

2
 are 

the learning factors, also called the acceleration constant; 

r
1
 , r

2
 are random numbers between [0, 1] and w is the inertia 

weight function.

Although PSO is relatively simple to apply and has a 

high convergence rate, it is easy to fall into local optimum 

and premature convergence. In the past few years, many 

improved PSO algorithms have been proposed to improve 

the search capability of the PSO algorithm and reduce the 

probability of PSO falling into a local optimum [19–22, 

40–42]. As an important parameter of PSO, the improve-

ment of inertia weight can greatly improve the performance 

of PSO. A proper w can help PSO achieve a balance between 

global exploration and local exploitation. In general, a larger 

w is better for global exploration, and a smaller w is better 

for local exploitation [23]. In [22], linearly decreased iner-

tia weight is introduced in PSO (PSO-LDIW), where w is 

defined as follows:

where w
max

 and w
min

 indicate the maximum and minimum 

values of the inertia weight, respectively; iter represents 

the number of the current iteration; and maxiter denotes 

the maximum iteration number. Moreover, Asanga [23] has 

used the time-varying inertia weight factor in PSO and intro-

duced time-varying acceleration coefficients to control the 

local search and convergence to the global optimum. The 

time-varying acceleration coefficients [23] are calculated as 

follows:

where c
1i

 and c
1f  denote the initial and the final values of 

the acceleration coefficient c
1
 , c

1i
= 2.5 , c

1f = 0.5 ; c
2i

 and 

c
2f  represent the initial and the final values of c

2
 , c

2i
= 0.5 , 

c
2f = 2.5.

In the field of medical science, the PSO algorithm has 

been used in many aspects, such as brain tumour [24–26], 

heart disease [27] and skin and blood cancer [21, 28, 29]. For 

example, PSO has been combined with K-means clustering 

(1)vk+1
id

= wvk
id
+ c1r1

(

pid − xk
id

)

+ c2r2

(

pgd − xk
gd

)

,

(2)x
k+1

id
= x

k

id
+ v

k+1

id
,

(3)w = wmax −
(

wmax − wmin

)

× iter∕maxiter,

(4)c1 =
(

c1f − c1i

)

× iter∕maxiter + c1i,

(5)c2 =
(

c2f − c2i

)

× iter∕maxiter + c2i,
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for enhanced skin lesion segmentation and classification 

[30]. Tan [21] utilised the enhanced PSO algorithm during 

feature selection to conduct intelligent skin cancer diagno-

sis, and results showed that this method is superior to those 

presented in other studies. In this paper, we utilise the PSO 

algorithm to optimise the parameters of the CART tree and 

to select proper treatment methods for warts. Given that it 

makes no hypothesis to optimise the problem and can search 

large spaces of a candidate solution, the PSO algorithm is 

applied to optimise the DT parameters among large search 

spaces. The linearly decreasing strategy is adopted for inertia 

weight with (3) to achieve the balance of the global and local 

searching performance of PSO. The time-varying strategy 

is also adopted in this paper to improve the search ability of 

conventional PSO algorithms.

Model development

Dataset

The datasets used in this paper are from the literature [31]. 

The dataset collected 180 data from patients with common 

warts or/and plantar warts treated using immunotherapy or 

cryotherapy in the Dermatology Department of Ghaem Hos-

pital in Mashhad from September 2013 to February 2015. 

The two types of warts and treatment approaches were used 

because they are the common.

Among the 180 data, 90 records were collected when 

immunotherapy was used to treat patients. These records 

contained eight features, namely, gender, age, time elapsed 

before treatment, number of warts, types of warts, surface 

area of the warts, induration diameter of initial test and 

response to treatment. Another 90 records were collected 

when cryotherapy was used to treat patients. These records 

contained seven features, namely, gender, age, time elapsed 

before treatment, number of warts, types of warts, surface 

area of the warts and response to treatment. Data collec-

tion was performed as previously described [31]. Tables 1 

and 2 list the attributes and related values or types in the 

immunotherapy and cryotherapy datasets, respectively. The 

class attribute in these datasets is the Response to treatment 

feature.

Classifier development

We introduce an extended DT method to construct the 

model. DT is a classifier with simple structure and high 

search efficiency, and the classification system is a branch 

of PSO algorithm research. Maximising the advantages of 

the PSO algorithm, a DT is constructed using the structure 

and node operations of the DT. Many DT algorithms exist, 

but the CART algorithm is utilised in study because of its 

capacity to deal with discrete and continuous variables.

Data preprocessing

A class imbalance exists in the dataset used in this article. 

The so-called class imbalance problem refers to the imbal-

anced distribution of the categories of the training sets used 

in the training classifier. As shown in Table 3, category 1 

indicates that the patient responded well to the treatment, 

and 0 indicates that the patient did not adapt to the treat-

ment. The statistical results in Table 3 show that the class 

imbalance problems in the two datasets have different levels. 

The number of data with category 1 in the immunotherapy 

dataset is 71, and that with category 0 is 19; meanwhile, the 

number of data with category 1 in the cryotherapy dataset 

Table 1  Features in the immunotherapy dataset

S/N Feature name Value/type

1 Response to treatment 1—Yes

2—No

2 Gender 1—Man (41)

2—Woman (49)

3 Age (years) 15–56

4 Time elapsed before treatment (months) 0–12

5 Number of warts 1–19

6 Types of wart (count) 1—Common (47)

2—Plantar (22)

3—Both (21)

7 Surface area of the warts  (mm2) 6–900

8 Induration diameter of initial test (mm) 5–70

Table 2  Features in the cryotherapy dataset

S/N Feature name Value/type

1 Response to treatment 1—Yes

2—No

2 Gender 1—Man (47)

2—Woman (43)

3 Age (years) 15–67

4 Time elapsed before treatment (months) 0–12

5 Number of warts 1–12

6 Types of wart (count) 1—Common (54)

2—Plantar (9)

3—Both (27)

7 Surface area of the wart  (mm2) 4–750

Table 3  Category distribution 

in dataset
Immuno-

therapy

Cryotherapy

1 71 48

0 19 42
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is 48, and that with category 0 is 42. The category imbal-

ance in the immunotherapy dataset is relatively large. Thus, 

we chose the SMOTE algorithm to handle the imbalance 

problem.

SMOTE is a common means of dealing with imbalanced 

data. The SMOTE algorithm analyses and simulates a small 

number of samples and adds new samples of artificial simu-

lation to the dataset to solve the serious imbalance in the cat-

egories in the original data. The generation of a new sample 

by SMOTE is shown in Fig. 1 [32].

According to Fig. 1, in a binary dataset, the classification 

of samples is not always balanced. According to the clas-

sification criteria, the samples can be divided into two cat-

egories. In Fig. 1, in other words, the sample can be divided 

into majority class and minority class according to the deci-

sion boundary. To generate a new sample for the imbalanced 

dataset, for each sample x in the minority class, the distance 

d(x, y) from all samples in the minority sample set to x is 

calculated as follows using the Euclidean distance standard 

to obtain its K-NN [33]:

Secondly, a sampling ratio is set according to the sample 

imbalance ratio to determine the sampling magnification N, 

which is calculated as follows:

where Nmaj is the majority sample number and N
min

 is the 

minority sample number.

(6)

d(x, y) =

√

(

x1 − y1

)2
+
(

x2 − y2

)2
+⋯ +

(

xn − yn

)2

=

√

√

√

√

n
∑

i=1

(

xi − yi

)2
.

(7)N = Nmaj − Nmin

Finally, for each minority sample x, several samples 

are randomly selected from its K-NNs, assuming that the 

selected neighbour is x
n
 . For each randomly selected neigh-

bour x
n
 , a new sample is constructed with the original sam-

ple in accordance with the following formula [34]:

where δ is a random number between 0 and 1. Therefore, 

a generated sample is obtained as is showed in the Fig. 1.

After data preprocessing, a model is constructed to select 

a suitable treatment alternative.

Parameter optimisation algorithm

There are some traditional optimization methods for DTs, 

including postpruning, prepruning, and error-based prun-

ing. In this paper, an improved particle swarm optimiza-

tion method is proposed to optimise the parameters of the 

decision tree to achieve the purpose of model optimization. 

Based on the contribution of inertia weights and learning 

factors to particle swarm optimization, this paper combines 

the linearly decreased inertia weight and the time-varying 

acceleration coefficients to propose an improved particle 

swarm algorithm to optimise the parameters of the decision 

tree.

In the particle swarm algorithm, the inertia weight w rep-

resents the ability of the particle to maintain the state of 

motion at the previous moment, which can be used to bal-

ance the global and local search capabilities of the particle, 

so it is very important in the particle swarm algorithm. Many 

scholars believe that the value of inertia weight should be 

large when the particle swarm is in the exploration state, 

and small in the exploitation state. This paper employees 

the linearly decreased inertia weight [22] to change inertia 

weight with the iterations, it can be calculated by formula 

(3). Moreover, in different states of the particle swarm, the 

requirements for the local and global exploration capabili-

ties of the particle swarm are different. The learning factor 

c
1
 represents "self-cognition", which helps to explore the 

local area and maintain the diversity of the group, and the 

learning factor c
2
 represents "social cognition", which can 

help the group quickly converge, so the learning mechanism 

requirements for the learning factors c
1
 and c

2
 are also dif-

ferent. Therefore, the time-varying acceleration coefficients 

[23] are used in this paper. It can be computed by formula 

(4) and (5).

In other words, the evaluation function is the only inter-

face between the PSO algorithm and the specific application 

problem. It is a quantitative reflection of the individual’s 

advantages and disadvantages in the population. Its structure 

directly affects the efficiency of problem solving.

(8)xnew = x + rand(0, 1) × |
|x − x

n

|
|,

Fig. 1  Generation of a new sample by SMOTE
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The accuracy of DT is an important criterion for evaluat-

ing DTs. Moreover, the shape of the DT and the number of 

nodes may greatly vary from one individual to another. The 

number of attributes and the number of attribute values are 

unrestricted quantities. Hence, using a fixed-length bit string 

to represent the DT is inappropriate. In this study, PSO is 

used to iterate the parameter values continuously, giving dif-

ferent values to the parameters. Optimising the parameter 

values, we can find a DT with a simple structure and high 

accuracy. Let us determine the adaptation function as:

The structure and accuracy of the DT can be affected 

by several parameters, including max_features, max_depth, 

min_simple_split, min_simple_leaf and max_leaf_node, 

represented in the formula as feature
num

 , depth, simplesplit , 

simpleleaf and leaf
node

 , respectively. ‘max_features’ is the 

number of features considered when searching for the 

best partition, ‘max_depth’ is the maximum depth of the 

specified tree, ‘min_simples_split’ represents the minimum 

number of samples needed to split an internal node, ‘min_

simples_leaf’ specifies the minimum number of samples 

required for each leaf node and ‘max_leaf_nodes’ specifies 

the leaves’ maximum number of nodes.

I n  t h e  a d a p t a t i o n  f u n c t i o n , 

f
(

featurenum, depth, simplesplit, simpleleaf,leafnode

)

 indicates 

the accuracy of the DT, which is determined by five param-

eters of DT. Moreover, w
acc

 , wdepth and w
num

 are weights 

corresponding to the accuracy, depth and number of nodes. 

Since the accuracy and depth and the number of nodes are 

different magnitude units, a balance factor c is required. Let 

w
acc

 = 0.95, wdepth = 0.025, w
num

 = 0.025, and the balance 

coefficient c be 0.1.

Classifier development

The tree-based classifier CART is used because of its 

explicit meaning and simple properties. Our model utilises 

the CART algorithm for the selection of wart treatment. The 

CART model is fast to build, and it is applicable to qualita-

tive and quantitative data. Recursive binary splitting is also 

applied.

Given training set D and continuous attribute a. Assum-

ing that at the node i, attribute a has n different values in D
i
 . 

First, these values are sorted from small to large, denoted as 

a =

{

a
1, a

2,… , a
n

}

 , where a1 ≤ a
2 ≤ ⋯ ≤ a

n.

Then, D
i
 is divided into subsets D−

it
 and D+

it
 based on the 

dividing point t. D−

it
 is the sample in dataset D

i
 of which the 

value of attribute a is less than the value of t. D+

t
 is the sam-

ple in dataset D
i
 of which the value of attribute a is greater 

(9)

fitnessfunction = wacc × f
(

featurenum, depth, simplesplit, simpleleaf, leafnode

)

− c ×
(

wdepth × depth + wnum × numnode

)

.

than that of t. Then, D
i
 is denoted as D

i
= {D

−
it

, D
+

it
 }, where 

a
i in D−

it
 is less than t, and ai+1 in D+

it
 is more than t.

For the adjacent attribute values ai and ai+1 , the result of 

the division of t by taking any value in the interval [ ai, a
i+1] 

is the same. Therefore, for the continuous attribute a, the 

median point 
a

i
+a

i+1

2
 of the interval [ ai, a

i+1] is taken as the 

candidate segmentation point, and then the Gini value is 

calculated:

When we used the CART algorithm to build our model, 

the process of dividing the nodes was repeated to classify the 

samples as accurately as possible. However, this step pro-

duced too many branches and too complicated DT structure. 

Considering that the PSO algorithm makes no hypothesis to 

optimise the problem and can search large spaces of a candi-

date solution, we introduced it to iterate the DT parameters. 

It needs short search time and can consider as many combi-

nation schemes as possible. Therefore, the proposed model 

combining PSO with CART can realise a DT with a simple 

structure and high classification accuracy.

The DT is constructed using the PSO algorithm to gen-

erate the next-generation group from the previous genera-

tion DT group through the particle motion operation and 

gradually evolves until the termination condition of the PSO 

algorithm is satisfied. The flowchart of our model is shown 

in Fig. 2. The steps of our model are as follows:

Step 1: Employ the SMOTE algorithm to generate new 

samples from the initial class-imbalanced dataset D, and 

obtain the class-balanced dataset D′;

Step 2: Divide the class-balanced dataset D′ into training 

and testing sets;

Step 3: Initialise a group of particles (group size is m), 

and randomly generate parameter values within the range 

of values;

Step 4: Generate a DT group based on randomly gener-

ated parameter values and training sets, i.e. particle group m;

Step 5: Use the validation set to calculate the accuracy of 

each DT, and evaluate the fitness of each particle;

Step 6: For each particle, compare its current fitness value 

with the best position p
best

 it has experienced, and if it is bet-

ter, replace it with the current best position p
best

;

Step 7: For each particle, compare its fitness value with 

the best position g
best

 that has been experienced globally, and 

if it is better, reset g
best

;

Step 8: Update the particles’ velocity and position using 

formulas (3), (4) and (5);

Step 9: Repeat step 3 until the termination condition is 

reached.

The optimal DT refers to the DT with the largest adapta-

tion function value. In the evolution of particle motion, the 

last generation of groups does not necessarily contain the 

(10)candidate_segmentation_point = (ai + a
i+1)∕2.
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optimal DT. Therefore, the best DT must be saved in the 

whole process. Whenever the next generation is produced, 

compare it with the saved one and eliminate the relatively 

poor one. Thus, until the end of evolution, the saved DT is 

basically the best, that is, the result to be saved.

Performance criteria

The two most commonly used performance metrics in 

classification tasks are error rate and accuracy. They are 

suitable for two-category and multi-category tasks. The 

accuracy rate is the ratio of the number of correctly classi-

fied samples to the total number of samples, and the error 

rate is the proportion of the number of samples with the 

wrong classification to the total number of samples. In 

addition, precision and sensitivity can be used to measure 

the performance metrics of the model. They are all avail-

able from the confusion matrix.

The confusion matrix is a basic tool for evaluating clas-

sifier credibility. Taking a two-category problem as the 

Fig. 2  Flowchart of our model
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research object, the confusion matrix of Fig. 3 shows all 

the cases that a classifier may encounter, where the row of 

Fig. 3 corresponds to the category to which the instance 

actually belongs, and the column of Fig. 3 represents the 

result of the prediction classification.

With these four basic indicators, multiple classifier 

evaluation indicators can be derived. Accuracy of the 

model generated by the classification algorithm accord-

ing to Table 4 is given by Eq. (10) [8]:

The proximity of the observed value to the true value is 

called precision, and its equation is shown in the following 

equation [8]:

Estimating the validity of the classifier’s positive clas-

sification label is called sensitivity. The equation of sen-

sitivity is shown in the following equation [8]:

(11)Accuracy ∶ ACC =
TP + TN

TP + FP + FN + TN
.

(12)Precision ∶ PRE =
TP

TP + FP
.

(13)Sensitivity ∶ SEN =
TP

TP + FN
.

The formula of F-measure is shown in the following 

equation [8]:

The proportion of negative classes in the sample that are 

predicted to be negative classes is called specificity. The 

equation of specificity is shown in the following equation:

Also, ROC was used to evaluate the performance.

In this section, a brief introduction of the dataset has 

been given, and the development of the classifier has been 

introduced. In the classifier development part, the dataset 

was preprocessed using the SMOTE method first, and then a 

parameter optimization method based on PSO was proposed 

to optimise the parameters of DT, and the optimal param-

eter combination obtained from the parameter optimization 

results was used to establish the DT model. Finally, the per-

formance criteria of the model have been introduced.

Experiments and analysis

The experiment in this article consists of two parts. On the 

one hand, the improved particle swarm algorithm used in 

this article is verified experimentally using several bench-

mark functions, and compared with other improved particle 

swarm algorithms On the other hand, the wart dataset and 

the model developed in the third section were used, and 

experiments were carried out to verify the performance of 

the CART model improved by the particle swarm algorithm 

proposed in this paper. The main experiment is as follows.

Estimation on PSO

Benchmark functions

Mathematical optimization problems need to use some func-

tions to test the performance of the optimization algorithm. 

Similarly, to verify the improved performance of the parti-

cle swarm algorithm in terms of parameters, a test function 

is required. This paper selects five classical standard test 

functions to evaluate the performance of the improved PSO 

algorithm and compare them with the standard PSO algo-

rithm, PSO-CK [39], PSO-TVAC [23] and PSO-LDIW [22].

(1) Sphere function

(14)F-measure ∶ F-mea =
2 × PRE × SEN

PRE + SEN
.

(15)Specificity ∶ SPE =
TN

TN + FP
.

Fig. 3  Confusion matrix

Table 4  The details of the benchmark functions

Number Name Dimen-

sion

Search 

space

Threshold Minimum

f
1
(x) Sphere 50 [− 100, 

100]

0.01 0

f
2
(x) Rosen-

brock

50 [− 30, 30] 100 0

f
3
(x) Ackley 50 [− 32, 32] 0.01 0

f
4
(x) Rastrigin 50 [− 5.12, 

5.12]

50 0

f
5(x) Schwefel 50 [− 10, 10] 0.01 0
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The Sphere function is a unimodal function, which 

is often used to test the convergence rate of optimization 

problems.

(2) Rosenbrock function

The Rosenbrock function is a unimodal non-convex func-

tion, and the correlation between the function variables is 

strong and difficult to solve.

(3) Ackley function

The Ackley function is widely used to test optimization 

algorithms, but because of the many minimum points of 

the function, it is very difficult to find the optimal solution.

(4) Rastrigin function

The Rastrigin function is a very typical nonlinear mul-

timodal function. Because of its large search interval and a 

large number of minimum points, it is difficult for this func-

tion to find the optimal solution.

(5) Schwefel function

Schwefel function is also a very typical unimodal func-

tion. There are accumulative terms in this function, which 

makes calculation difficult.

More details such as the dimension, the search space of the 

dimension, the threshold and etc. can be showed in Table 4.

Experiments and results

As discussed above, five benchmark functions are employed 

to evaluate the introduced PSO algorithm. The superiority of 

the introduced PSO algorithm is demonstrated over four popu-

lar PSO algorithms, including the standard PSO algorithm, 

PSO-CK [39], PSO-TVAC [23] and PSO-LDIW [22]. The 

experimental parameters are set as follows: the dimension of 

the particle swarm is D = 50, and the population of the particle 

swarm is S = 20. It should be noted that to avoid the influence 

of random factors, each experiment has been repeated 20 times 

(16)f
1
(x) =

D
∑

i=1

x2

i
.

(17)f
2
(x) =

D−1
∑

i=1

(

100
(

xi+1
− xi

)2
+
(

xi − 1
)2
)

.

(18)
f
3
(x) = −20e

−0.2

�

1

D

D
∑

i=1

x2

i

+ 20 + e − e

1

D

D
∑

i=1

cos 2�xi

.

(19)f
4
(x) =

D
∑

i=1

(

x2

i
− 10 cos 2�xi + 10

)

.

(20)f
5(x) =

D∑

i=1

|
|xi

|
| +

D∏

i=1

|
|xi

|
|.

independently, and the average value of the 20 experiments is 

taken as the experimental result. The detailed information of 

the experiment result are shown in Table 5, including the aver-

age, maximum and minimum fitness values of different PSO 

algorithms under each benchmark function.

It can be seen from the results in Table 5 that on the five 

benchmark functions, the optimal solution obtained by the 

PSO-LT algorithm used in this paper is the closest to the 

minimum value of 0. Among them, the performance of the 

PSO-LT on f
1
(x) is the best, which is the closest to 0. The 

performance of the PSO-LT on f
2
(x) is slightly worse, but it 

is still better than other PSO algorithms. It is worth noting 

that in f
4
(x) , the minimum fitness value obtained by PSO-LT 

used in this article is 0. In summary, compared with other 

particle swarm algorithms, the PSO-LT algorithm combin-

ing PSO-LDIW and PSO-TVAC in this paper performs best, 

and the average fitness value obtained is closest to the mini-

mum value, which proves the performance and feasibility of 

the PSO-LT algorithm.

Experiment on proposed classifier

Results

The initial datasets of immunotherapy and cryotherapy show 

different levels of class imbalance. To avoid bringing large 

bias of the classifier, we applied the SMOTE algorithm to 

solve this class-imbalanced problem.

In the immunotherapy dataset, the number of minority 

samples is 19, and the number of majority samples is 71. 

Table 5  The mean fitness of the four PSO algorithms on five bench-

mark functions

Bold values represent the results of the proposed model for better 

comparison

PSO PSO-LDIW PSO-TVAC PSO-LT

f
1
(x) Mean 0.0005 3.52 × 10−23 34.0877 �.�� × ��

−��

Max 0.0006 2.51 × 10−22 47.5005 �.�� × ��
−��

Min 0.0002 9.44 × 10−25 12.7414 �.�� × ��
−��

f
2
(x) Mean 7.3461 1.3588 3.9815 0.4528

Max 7.3661 1.6511 5.4042 0.6941

Min 7.3270 0.8918 2.7387 0.0956

f
3
(x) Mean 0.0064 4.62 × 10

−14 0.0893 �.�� × ��
−��

Max 0.0074 1.10 × 10
−13 0.1040 �.�� × ��

−��

Min 0.0054 7.11 × 10−15 0.0649 �.�� × ��
−��

f
4
(x) Mean 0.0316 4.43 × 10

−11 3.6549 �.�� × ��
−��

Max 0.0423 1.22 × 10
−10 4.6394 �.�� × ��

−��

Min 0.0249 4.26 × 10
−12 2.8332 0.0000

f
5(x) Mean 0.0123 9.59 × 10−15 0.1473 �.�� × ��

−��

Max 0.0148 5.52 × 10−14 0.1652 �.�� × ��
−��

Min 0.0102 1.00 × 10
−16 0.1233 �.�� × ��

−��
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Therefore, the sampling ratio N is 52, which is the number 

of new samples generated by the SMOTE algorithm. The 

final number of data in the immunotherapy dataset is 142. 

Similarly, the final number of data in the cryotherapy dataset 

is 96.

Normally, 80–90% of the data points are used for model 

training [19, 35, 36]. In our paper, we set the training set to 

80% of the total dataset and the verification set to 20% of the 

total dataset. Using 80% of the wart dataset, our model can 

provide satisfactory results. The process in section “Clas-

sifier development” is then used to train the model. During 

optimisation, the PSO structure parameters are set as fol-

lows: the particle swarm initial population is 200, the search 

space dimension is 5 and the maximum iteration number 

k = 200. Considering the data characteristics of the immu-

notherapy and cryotherapy datasets, the parameter range of 

the DT is set as shown in Table 6.

Comparisons

This section mainly includes two parts. One is the compari-

son with the traditional optimisation method for the CART 

algorithm, and the other is the comparison with the existed 

method for wart treatment selection, to prove the validity of 

the proposed model. Before the comparison parts, the evalu-

ation index of the model is defined.

Comparison with the traditional optimisation method The 

traditional optimisation method of the DT is to use pruning 

methods, including prepruning, backpruning and reduced-

error pruning. In this paper, three pruning methods were 

used to evaluate the effect of the proposed method, as shown 

in Table 7, and the results were calculated. The performance 

criteria include the accuracy, precision, sensitivity, F-meas-

ure and specificity.

In Table 7, the proposed method has the best perfor-

mance. The accuracy, precession and sensitivity of the 

proposed have reached 100%, and its AUC is the largest in 

two of the datasets. Combining the performance between 

the two datasets, backpruning optimisation is in the second 

place. Thus, we can conclude that the proposed method has 

the best ability in optimising the performance of the CART 

algorithm.

Figures 4 and 5 show the performance of the five opti-

misation methods in the immunotherapy and cryotherapy 

datasets. The AUC has been calculated in two pictures. Fig-

ure 4 shows that the lines of backpruning and prepruning 

in the cryotherapy dataset have coincided, and the two of 

them share the same AUC of 0.9667, which is the second 

largest value among the five results. In addition, the line of 

the proposed method has contained the four other lines in 

the axis. Figure 5 shows that the line of the original CART 

and backpruning has also coincided. Similarly, the line of 

the proposed method has contained the four other lines in 

the axis in the immunotherapy dataset, which means that 

the effect of the proposed method is better than those of the 

four other methods.

The above results show that the PSO-optimised CART 

method is superior to the other optimisation methods in 

accuracy, precision, sensitivity and other evaluation metrics.

Comparison with existing models In the literature [37], the 

Bayesian, C4.5 DT, logistic regression and K-NN classifi-

cation algorithms were used to construct the model for the 

immunotherapy and cryotherapy datasets, and the accuracy 

of the classification results was calculated. The model in 

this paper is compared with the model in [37]. The results 

are shown in Table 8.

Table 6  Range of parameters

Parameter max_fea-

tures

max_

depth

min_sim-

ples_split

min_sim-

ples_leaf

max_leaf_

nodes

Range [1, 7] [4, 10] [3, 20] [3, 20] [10, 300]

Table 7  Comparison of the 

traditional optimisation method 

with the CART algorithm

Bold values represent the results of the proposed model for better comparison

Dataset Method Evaluating system

ACC PRE SEN F-mea SPE

Cryotherapy dataset Original CART 0.867 1.00 0.786 0.880 0.900

Prepruning 0.967 0.933 1.000 0.965 0.967

Backpruning 0.967 1.000 0.929 0.963 0.967

Reduced-error pruning 0.957 1.000 0.933 0.965 0.944

Proposed method 1.000 1.000 1.000 1.000 1.000

Immunotherapy dataset Original CART 0.900 0.833 0.714 0.769 0.875

Prepruning 0.867 0.714 0.714 0.965 0.814

Backpruning 0.900 0.833 0.714 0.769 0.875

Reduced-error pruning 0.869 0.667 0.500 0.572 0.783

Proposed method 1.000 1.000 1.000 1.000 1.000
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Compared with the four models in [37], the proposed 

PSO-based CART DT model is optimal in terms of accu-

racy and sensitivity, both of which are 1. The accuracy of 

the C4.5 DT model is suboptimal, and that of the Bayesian 

classifier is the worst. The accuracy, precision, sensitivity, 

F-measure and specificity of the final classification result 

of the classifier are optimal. Therefore, the proposed model 

performs better than the four models in [37]. In addition to 

the CART model proposed in this article, we can see from 

Table 8 that the second best performing model is C4.5. C4.5 

is also a kind of decision tree algorithm. It can be seen from 

this that the accuracy of the model based on the decision 

tree is higher than other traditional models in the application 

of classification and prediction problems, which once again 

proves the superior performance of the improved algorithm 

based on the CART decision tree in this paper.

Discussion

Wart is a skin disease caused by HPV, where common and 

plantar warts are their general types. Immunotherapy and 

cryotherapy are the two most utilised treatments for warts. 

In consideration that different warts under different circum-

stances have different responses to different treatment meth-

ods, the treatment of warts needs to be selected according to 

each individual’s condition. Therefore, this paper establishes 

a CART classifier for the selection of immunotherapy or 

cryotherapy for plantar and common warts to help patients 

choose the appropriate treatment.

CART tree is a classic classifier method useful in many 

types of classifier and regression situations. However, the 

tree is easy to overfit. To solve this problem, the PSO algo-

rithm is used to discover the advantages of the optimal 

region in the complex search space through the interaction 

between particles. The algorithm model combining PSO and 

DT is constructed. The optimal DT is approximated by the 

idea of gradual approximation. The linearly decreased iner-

tia weight and the time-varying acceleration coefficients are 

adopted to improve its optimisation performance. Compared 

with the traditional optimisation methods, such as preprun-

ing, backpruning and error-reduced pruning, the proposed 

method is the most effective.

This study analysed the original immunotherapy and 

cryotherapy datasets, used the SMOTE algorithm to clas-

sify the original dataset and expanded the size of the original 

dataset. Then, the PSO algorithm is used to optimise the 

parameters of DT, and the optimal parameter combination 

obtained from the results is used to build a DT classifier. To 

verify the performance of the PSO algorithm used in this 

paper, five benchmark functions were used to test the con-

vergence of the PSO algorithm in the first part of the experi-

ment and compared with other improved PSO algorithms. 

The experimental results prove that the PSO algorithm used 

in this paper has the performance advantages of effectively 

finding the optimal solution and avoiding premature matu-

rity. In the second part of the experiment, this article uses the 

wart data set to establish a DT classifier to select the optimal 

treatment plan for warts, and compares the latest selection 

method of wart treatment plans with traditional classifiers. 

The final experimental results prove that after the optimisa-

tion of parameters the structure of the selected DT model is 

simpler, with an accuracy rate of 100%. The resulting model 

has 100% accuracy and sensitivity on both datasets, and its 

performance is superior over those of other conventional 

algorithms, such as K-NN, NB and LR. Moreover, the DT 

Fig. 4  ROC of the cryotherapy dataset

Fig. 5  ROC of the immunotherapy dataset
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model established in this paper is visual and easy to under-

stand. It can assist doctors and patients with sputum skin dis-

eases to choose a suitable treatment, save doctors’ diagnosis 

time and reduce patients’ medical costs. In future studies, 

if further information is obtained from different groups of 

patients, other efficient DT-based models that can be implied 

to different cases may be established.

Conclusion

This study analysed the original immunotherapy and cryo-

therapy datasets, and established a mixed classification 

model through the combination of PSO and CART DT. The 

PSO algorithm used in this article uses a linearly decreased 

inertia weight and time-varying acceleration coefficients 

to avoid premature and getting trapped into local optima. 

The superior performance of the PSO algorithm is verified 

through experiments. At the same time, the PSO algorithm is 

used to optimise the parameters of the decision tree instead 

of the traditional pruning algorithm. Because of the simple 

operation, few parameters and excellent search ability to find 

the optimal solution, the PSO algorithm used in this paper 

can quickly find the optimal parameter combination of the 

CART DT. And then a more concise and more accurate clas-

sification model is established. The classification accuracy 

of this model has achieved 100% on both datasets, and its 

performance is superior over those of other conventional 

algorithms. Compared with the conventional optimisation 

methods, such as prepruning, backpruning and reduced-error 

pruning, this new PSO-optimised model tree is superior over 

other optimisation methods. Compared with existing meth-

ods for the selection of wart treatment, the proposed method 

also performs better than the other methods. Moreover, the 

proposed DT model established is visual and easy to under-

stand. It can assist doctors and patients with sputum skin 

diseases to choose a suitable treatment, save doctors’ diag-

nosis time and reduce patients’ medical costs.

Appendix

See Table 9.

Table 8  Comparison of the 

proposed model with the 

models constructed in [37]

Dataset Algorithms Evaluating system

ACC PRE SEN F-mea SPE

Cryotherapy dataset PSO-based CART 1.000 1.000 1.000 1.000 1.000

Navie Bayes [37] 0.844 0.845 0.896 0.829 0.883

k-NN [37] 0.933 0.930 0.929 0.915 0.927

C4.5 [37] 0.954 0.937 0.976 0.933 0.964

LR [37] 0.920 0.893 0.889 0.894 0.912

Immunotherapy dataset PSO-based CART 1.000 1.000 1.000 1.000 1.000

Navie Bayes [37] 0.780 0.848 0.820 0.805 0.825

k-NN [37] 0.810 0.830 0.828 0.812 0.822

C4.5 [37] 0.840 0.901 0.832 0.851 0.864

LR [37] 0.800 0.775 0.800 0.837 0.817
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