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Abstract—As scientists endeavor to learn more about the world’s
ecosystems, engineers are pushed to develop more sophisticated
instruments. With these advancements comes an increase in
the amount of data generated. For satellite based instruments
the additional data requires sufficient bandwidth be available
to transmit the data. Alternatively, compression algorithms can
be employed to reduce the bandwidth requirements. This work
is motivated by the proposed HyspIRI mission, which includes
two imaging spectrometers measuring from visible to short wave
infrared (VSWIR) and thermal infrared (TIR) that saturate the
projected bandwidth allocations.

We present a novel investigation into the capability of using
FPGAs integrated with embedded PowerPC processors to ad-
equately perform the predictor function of the Fast Lossless
(FL) compression algorithm for multispectral and hyperspectral
imagery. Furthermore, our design includes a multi-PowerPC
implementation which incorporates recently developed Radia-
tion Hardening by Software (RHBSW) techniques to provide
software-based fault tolerance to commercial FPGA devices.
Our results show low performance overhead (4–8%) while
achieving a speedup of 1.97× when utilizing both PowerPCs.
Finally, the evaluation of the proposed system includes resource
utilization, performance metrics, and an analysis of the vul-
nerability to Single Event Upsets (SEU) through the use of a
hardware based fault injector.
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1. INTRODUCTION

As the scientific community continues to improve its un-
derstanding of the world’s ecosystems, so too do the tools
used to acquire the data. The growing desire to learn pushes
engineers to develop better and more capable instruments,
which as a result, produces more data that must also be
processed. On earth these large data sets can be evaluated
on large clusters and supercomputers; however, in space
these vast compute resources are absent due to limitations in
power and physical space. Furthermore, radiation hardened
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processor’s performance lag are several generations behind
commercial processors due to increased fabrication costs and
low demand. Therefore, satellites that can produce upwards
of terabits of data a day must rely on sufficient downlink
bandwidth to transfer the instrument’s recorded data back to
earth. To aide in the growing disparity between recorded
data and transmitted data, this work looks at how commodity
processors can be used for data compression.

Specifically, this work evaluates utilizing previously devel-
oped Radiation Hardening by Software (RHBSW) techniques
which have been proven for autonomy [1–3], for platform
FPGAs with embedded PowerPC 405 processors within the
its fabric, on the predictor function of the Fast Lossless (FL)
compression of multispectral and hyperspectral imagery [4].
We are motivated by the need to provide high performance
processing in environments requiring fault tolerance, such
as the proposed NASA/JPL HyspIRI mission [5] where two
imaging spectrometers would record data measuring visible
to short wave infrared (VSWIR) and thermal infrared (TIR).
These two instruments have the capability to produce data
at ≈930 Mb/s with an available peak downlink capacity of
≈800 Mb/s. The questions remains: how to provide high
performance fault tolerant processing to realize the global
misssion real-time collection, compression, and download
goals of the HypsIRI mission?

This work is further motivated by the SpaceCube developed
and constructed by NASA’s Goddard Space Flight Center.
The SpaceCube is targeted towards on-board processing and
in version 1.0 includes two Xilinx Virtex4 FX60 [6] commer-
cial FPGAs. These FPGAs each include two PowerPC 405
32-bit RISC processors. The PowerPC presents an attractive
computational component for space-based systems because
of its computing power. Compared to radiation hardened pro-
cessors, like the RAD750 (266 MIPS) [7], the PowerPC 405
can compute nearly 3.5 times (900 MIPS) the number of
computations per second. However, to use the non-radiation
tolerant PowerPC 405 in a space-based system, it must be
capable of identifying and recovering from a Single Event
Upset (SEU). Without a recovery mechanism, an SEU within
the processor could send it into an unknown or unrecoverable
state.

Using these PowerPC 405 processors, we set out to explore
the capability to integrate and evaluate the effectiveness of
our RHBSW techniques on the predictor function of the FL
compression algorithm. This is in contrast to conventional
approaches which would utilize the four processors in some
form of double, triple, or quad modular redundancy. Instead,
our approach aims to demonstrate performance gains by
using the multiple processors for computation and relying on
the RHBSW infrastructure for detecting and recovering from
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faults. This work will not focus on the detection or correction
of silent data corruptions (SDC). Instead we assume SDCs
can be corrected for on earth as part of the post processing.

To evaluate the proof of concept design several experiments
are performed to collect run-time performance and reliabil-
ity, along with the overhead of the RHBSW techniques on
program execution and resource utilization overhead. These
experiments include the use of our Memory Sentinel Injec-
tion System (MSIS) [3], a hardware based fault injector, to
inject faults into the PowerPC’s registers, data and instruction
caches along with the RHBSW fault detection and recovery
mechanisms.

Overall, our results are show that such an approach is fea-
sible with low performance overhead (4–8%). Moreover,
using multiple processors for computation instead of modular
redundancy greatly increases the computational throughput
and yields nearly linear speedup, 1.97×. The RHBSW
techniques also eliminate processor hangs and improve the
computed good data by 5–10%. Finally, the use of MSIS
provides us with a better understanding of how a commercial
platform FPGA might behave in harsh environments, such as
Low Earth Orbit, where single event upsets (SEU) are more
common place.

The rest of the paper is organized as follows. In Section 2
background information and related work describing the
predictor function of the Fast Lossless compression algo-
rithm, radiation hardening by software, and fault injections
is presented. Section 3 presents our fault tolerant approach
to implementing and evaluating the predictor function of
the Fast Lossless compression algorithm on PowerPC 405
processors on an FPGA. The experimental setup and results
of which follow in Section 4. Finally, we conclude within
Section 5 along with a description of our future work.

2. BACKGROUND AND RELATED WORK

This section aims to provide background and related work
discussion regarding the Fast Lossless compression algo-
rithm, as well as, current Radiation Hardening by Software
and embedded processor fault injection techniques. Further-
more, previous work published by the authors in each area
will also be described. This paper reports on the first system
wide integration of the three individual components, which
includes experiences and lessons learned. The results of the
integration can be found in Section 4.

Fast Lossless Compression Algorithm

The application being evaluated in this investigation is the
Fast Lossless compression algorithm which has been de-
signed for multispectral and hyperspectral imagery data [4].
While this primary investigation is principally concerned
with the predictor function of this algorithm (for reasons
described in greater detail in Section 3), this subsection
will provide a brief overview of the algorithm. Refer to
[4] for a more thorough description of the algorithm. The
compressor has been proposed for standardization by the
Multispectral and Hyperspectral Data Compression (MHDC)
working group of the Consultative Committee for Space Data
Systems (CCSDS) and, as of May 2011, has been approved
for publication by the Management Council for CCSDS [8].

The FL compression algorithm is a predictive technique using
adaptive filtering to achieve low complexity and high com-
pression, beyond current state-of-the-art implementations.

The predictive technique uses the sign algorithm [9] which is
a relative of the least mean square (LMS) algorithm [10, 11].
Compression operates on chunks of data that consist of three-
dimensional (3-D) arrays of data samples. The sign algorithm
is applied to differences between sample values and values
that we call preliminary estimates or local means. The general
principle used in the mean subtraction is to adjust each
sample in the prediction neighborhood by the preliminary
estimate in the same band as the sample but at the spatial
location of the sample being predicted. Since this is done as
part of a predictive compression algorithm, the difference is
encoded in the compressed bitstream.

The Fast Lossless algorithm has been shown to have effective
compression on the order of 4× [4]. JPLs tests with uncali-
brated AVIRIS data sets demonstrate compression results of
about 40% lower bit rate than state-of-the-art 2D approaches
(ICER), with an approximately 4:1 compression ratio.

Radiation Hardening by Software

As opposed to conventional fault tolerant approaches, which
utilize radiation hardened devices, this work focuses on tech-
niques that can be applied to commodity processors. Towards
this goal several fault tolerant techniques have been devel-
oped in software to create a more resilient system. These
efforts are generally categorized as Radiation Hardening by
Software (RHBSW) which use a small amount of resources
to increase computational throughput instead of using a form
of modular redundancy [12]. Our previous work in the area
[1, 2] demonstrate that the RHBSW approach is feasible and
is able to obtain an overall performance speedup by using the
resources to perform distributed computation.

Our approach has been to provide low overhead fault toler-
ance techniques to detect and correct flow control and other
errors that would otherwise crash the processor. This is ac-
complished by leveraging existing hardware already present
within the space-based system, namely a small radiation
hardened controller (such as the AeroFlex as part of the
SpaceCube). In addition to the traditional tasks of configuring
the FPGA and providing bitstream scrubbing capabilities, the
controller would be used to monitor tasks running on the FP-
GAs. The controller would also be responsible for managing
the pool of connected processors and distributing tasks as
they become available. While this work does not focus on
silent data corruptions (SDC) which may produce incorrect
results, additional hardware could be added to mitigate these
errors.

The techniques developed so far focus on the inclusion of
a heartbeat monitor, watchdog timers, and control flow as-
sertions in the user application. In addition a user-level
checkpoint and rollback library has been developed to aide in
the processor’s ability to recover once a failure is detected.
Our previously published research has focused on the use
of these tools and techniques on a single processor [1, 2],
whereas, this work is investigating how the techniques scale
not only to larger sized applications, but also to multiple
processors.

The use of checkpoint and rollback is a result of its wide
adoption in High Performance Computing community. In
many HPC applications a snapshot of the current state is
taken periodically throughout application’s execution. In
the event of an error, the application rolls back to the most
recent checkpoint rather than restarting the whole compu-
tation. Berkeley Lab’s Checkpoint/Restart (BLCR) [13] is
perhaps the most well known library which provides this
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functionality. Accelerators also are beginning to incorporate
this capability as well, CheCUDA [14] is a tool designed to
checkpoint CUDA applications that use GPU as accelerators
and is an add-on package of BLCR due to limitations on
CUDA content existing during the BLCR checkpoint. For
FPGAs several tools are being developed to provide check-
point/rollback support at both the processor an reconfigurable
fabric level [15, 16].

Hardware Based Fault Injection

Injecting faults into the embedded PowerPC 405 processors
on the Virtex4 FX60 FPGA requires a different approach than
conventional FPGA fault injectors [17]. Whereas most fault
injectors focus on injecting into the data or configuration
planes of the FPGA fabric, this work injects faults into the
hard IP core of the PowerPC. To facilitate this, we have
developed the Memory Sentinel Injection System (MSIS) [3].
The goal of MSIS is to provide a design team a low-cost
means for rapidly injecting faults to approximate the proces-
sor’s behavior in environments with cosmic radiation before
actually performing beam testing. MSIS is not intended to be
a replacement for conventional testing; however, a design can
go through several iterations of hardware based injections to
identify and correct bugs prior to running a beam test.

The MSIS tools consist of both hardware cores implemented
in the FPGA fabric and software programs in the form of
interrupt service routines (ISR) running on the device-under-
test’s (DUT) processor. To date MSIS has been targeted
towards the PowerPC 405s processors within the Virtex4 FX
FPGA, although ongoing work is underway to assemble a
more generic MSIS infrastructure for PowerPC 440 within
the Xilinx Virtex5 FX FPGA, Microblaze, and other soft core
processors. The hardware cores are responsible for triggering
an ISR and providing a random seed to determine which bit
within the processor’s context will be flipped.

Once the hardware MSIS core has triggered the MSIS soft-
ware ISR the processor performs the calculated bit flip,
emulating a single event upset (SEU), logs the event with a
separate controller for future evaluation, and then restores the
processor to its pre-interrupt state. More specifically, when
the ISR is triggered, the processor stores all of the general
purpose, a limited number of the special purpose, and all of
the nonvolatile registers onto the vector stack before calling
the MSIS software ISR. At this point the ISR has access to the
software stack and can manipulate any of the registers prior to
returning, in which case the processor’s registers are loaded
back to their general purpose, special purpose and nonvolatile
register locations.

In addition to these registers, MSIS also can inject faults
into the instruction and data caches of the PowerPC 405.
Within the same ISR, if the fault injection is determined to
be within either instruction or data cache, the MSIS hardware
core performs the bit flip as the data is read from off-chip
memory into the cache. To accomplish this the cacheline
is invalidated within the ISR causing the cacheline to be re-
read from memory. Injections can occur anywhere within the
cacheline, which includes the valid, dirty, tag and data bits.

Table 1 depicts an estimation of the PowerPC 405 processor’s
sensitive bits which are used to characterize the sensitivity to
single event upsets. Although the precise number of bits in
the Xilinx implementation of the PowerPC are proprietary,
these estimates are based on available documentation as
well as our own experiences implementing RISC processors
[18, 19]. This work does not imply that any particular bit is

more sensitive to upsets than any other; however, we use this
data to determine the area of the PowerPC that is vulnerable
to upsets. From this data we can create a focused injection
campaign that has a more uniform distribution across these
sensitive bits. Section 3 will cover how MSIS is inserted into
a specific design and Section 4 presents the results of using
MSIS with the Fast Lossless predictor function.

3. DESIGN

The application of the RHBSW techniques on the Fast Loss-
less compression prediction has been heavily motivated by
the NASA SpaceCube project, as well as, the proposed
NASA/JPL HyspIRI mission [5]. As a result, our design
focuses on key characteristics of the SpaceCube hardware,
namely embedded processors running on an FPGA, and the
capability to quickly and reliability process hyperspectral
imagery from instruments capable of producing an estimated
47.2 Tbits of data per day.

The SpaceCube utilizes two Virtex4 FX60 FPGAs along with
one radiation hardened AeroFlex anti-fuse gate array. To
emulate the SpaceCube this work utilizes one Xilinx ML410
development board, which contains the same Virtex4 FX60
FPGA. This development board includes a diverse set of
peripherals, such as off-chip memory (DDR/DDR2), non-
volatile storage in the form of CompactFlash, and a host of
external interfaces like serial ports, I2C, and Gigabit Ether-
net. The FPGA also includes two PowerPC 405 processors
embedded into the fabric. In this work these processors
have been combined with two system-on-chips (SoC) that are
common to embedded system designs. These SoCs include
off-chip memory controllers for DDR2, CompactFlash con-
trollers to read in large data sets used by the Fast Lossless
application and to store the results, and UART controllers to
interface with a host PC for testing and debugging. Figure 1
depicts the basic block diagram of the constructed system
running on a single FPGA.

The rest of this section is divided into three subsections. First,
the development and implementation of the Fast Lossless
(FL) compression algorithm’s predictor function on both a
single and dual processor system executing on the Virtex4
FX60 FPGA is described. Next, the fault tolerance techniques
developed as part of the Radiation Hardening by Software
(RHBSW) running on the processors performing the FL
predictor are presented. Finally, the design is augmented to
incorporate the Memory Sentinel Injection System (MSIS)
which is used to evaluate the fault tolerance techniques on
the FL predictor function. The results of this investigation
can be found in Section 4.

Fast Lossless Prediction

The Fast Lossless (FL) prediction function is one portion
of the compression algorithm that has been described in
Section 2. While the algorithm has been previously published
[4] this is, to the author’s knowledge, the first implementation
of FL on an embedded processor running on a platform
FPGA. Moreover, this is the first time the FL predictor has
been integrated with any fault tolerance techniques, such as
RHBSW.

The choice for focusing this work’s implementation on the
predictor function of the FL compression algorithm is largely
due to the result of profiling the application on a conventional
x86 processor. The profiling results indicated that ≈67.5% of
the execution time was spent in the prediction function.
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Table 1. PowerPC 405 Sensitive Bits

Feature Size

Instruction Cache 16KB + 1408B tag + 64 control bits
Data Cache 16KB + 1216B tag + 64 control bits
General Purpose Register Set 32 x 32 bits
Special Purpose Register Set 32 x 32 bits
Execution Pipeline 10x32 bits
ALU/MAC 1200 bits
Timers 3x64 bits
MMU 72x68 bits
Misc 1024 bites

Total 292,820 bits

Figure 1. Block diagram of the dual PowerPC 405 systems-on-chip used in this work

Following traditional embedded development with an FPGA,
the software implementation and evaluation on the Pow-
erPC 405 is the first step towards the creation of a design
running FL compression within the FPGA fabric to accel-
erate the application through custom hardware cores. This
common approach enables rapid development of the core
functionality in software first, minimizing risk. Then the
software implementation’s performance can be analyzed and
highly parallizable functions can be implemented as hardware
accelerator cores. This work will focus on the former.
Our previous work [20] has focused on the latter; however,
without implementing fault tolerant techniques.

For the purposes of evaluating the scalability of the FL
predictor function the application was ported to both a single
and dual processor implementation. The single processor
implementation performs the prediction on the entire image;
whereas, the dual processor system divides the image into
odd and even blocks in an effort to achieve a speedup in
the computation. Figure 2 illustrates the control flow graph
for the application running on one or more processors in the
system.

In the current implementation the image to be compressed
is stored in non-volatile storage, CompactFlash, and is ac-
cessible by processor 0. The image is read into a shared
memory to enable multiple processors to access the necessary
image blocks for its local computation. To synchronize each
processor’s execution at critical sections of the application, a
software barrier is used. To support multiple processors ac-
cessing image blocks of shared memory a mutex and mailbox
infrastructure was added. After each processor finishes its
current image block FL predictor computation a mutex must
be acquired before retrieving the next block.

Figure 2. Control flow graph of Fast Lossless predictor
running on one (or more) PowerPC 405 processors

Once the base system has been developed, the primary task
for migrating the FL predictor functionality to the Pow-
erPC 405 requires a cross-complier. Some modifications
were made to support the smaller available memory resource
on the embedded system and the added use of non-volatile
CompactFlash to store the original image and the results of
the prediction. In addition, the application was augmented to
use mutexes and mailboxes to enable processors to be issued
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Figure 3. Section of the dual processor system-on-chip
highlighting the sequence of events that occur for a heartbeat
message to be sent from the DUT to the controller

the next block of the image to process. Overall, the migration
to the PowerPC 405 proved to be a simple task, supporting
the traditional FPGA development approach. Once the appli-
cation is running on the device, the next step is in integrating
the Radiation Hardening by Software techniques.

Radiation Hardening by Software

The process of applying RHBSW has previously been per-
formed on a variety of small and medium scale applica-
tions, such as matrix-multiplication, Fast Fourier Transforms
(FFT), synthetic aperture radar (SAR), hyperspectral atmo-
spheric correction [1–3]; however, the FL predictor imple-
mentation represents the first application to run out of off-
chip memory. The RHBSW techniques have been integrated
in the FL predictor implementation, enhancing the reliability
of the system. This includes internal and external monitoring
of the device-under-test (DUT) through heartbeat generating,
watchdog timers, and control flow assertions. In addition,
checkpoint and rollback techniques taken from the High Per-
formance Computing (HPC) community have been integrated
into the system to reduce the amount of lost work when an
upset occurs.

Heartbeat Generation and Monitoring—The first key com-
ponent of the RHBSW infrastructure is the use of heartbeat
messages, which are generated by the DUT to notify a
separate controller of its current status. In our previous work,
heartbeats were generated and shared through a common on-
chip memory. A simple software barrier mechanism was
used to pass the heartbeat status between the DUT and the
controller. This mechanism requires the controller to employ
polling to determine when a new heartbeat message has
arrived. While easily implemented, the controller was limited
in its capability to perform any other task, such as application
execution management.

In this work heartbeats are now generated at a regular interval,
through the use of a soft IP timer core connected to an inter-
rupt controller through the Processor Local Bus (PLB), as can
be seen in Figure 3. Once the timer expires (1) it triggers an
interrupt to the DUT (2) which causes an interrupt service
routine to package up any necessary status information (3)
recorded since the last heartbeat and generates an interrupt (4)

...
#pragma BEGIN weight calc
weight calc(deltas,wd,height,bands,mu);
#pragma END weight calc
...

Figure 4. Simple example of control flow assertion use
around the weight calc function in FL predictor program

long int weight calc loop;
...
weight calc loop=0,weight calc loop ˆ=1’;
weight calc(deltas,wd,height,bands,mu);
if (weight calc loop != 1)

SendHeartbeat(ASSERTION ERROR);
...

Figure 5. Example of control flow assertions inserted in
place of pragma BEGIN/END

to the controller processor (5). Lastly, the controller retrieves
the heartbeat packet (6) which may include information such
as the DUT’s current program counter value, number of
interactions through a particular loop, or whether or not a
checkpoint has been recorded.

For the FL implementation, the controller uses this status to
determine if the DUT is busy processing the current image
block, is ready to process the next block, or is in an invalid
state and needs to be reset/rolled back. The adjustment of
the heartbeat interval is dependent on the application and
anticipated upset rate. In environments where relatively few
upsets are expected, such as Low Earth Orbit, a heartbeat
every tens of seconds may prove to be sufficient. Alterna-
tively, applications which are in more hostile environments
may benefit from shorter intervals. Due to the duration of
execution of the FL predictor function, this work focuses
on heartbeats arriving every second, although a designer can
program the controller and/or the DUT to dynamically adjust
the heartbeat when entering and exiting critical sections of the
application.

Watchdog Timers—In addition to heartbeat generation, watch-
dog timers enable the DUT to self-monitor and to tell if it is
still properly executing. In the event of an upset that crashes
the processor, the watchdog timer will trigger the DUT to
reset. However, unlike the heartbeats which are transferred
from the DUT to the controller, watchdog timeouts result in
a simple reset of the DUT. The watchdog is only responsible
for restarting the DUT. Once the DUT restarts, it checks to
see if there is a valid checkpoint to rollback to. In most cases,
there will be at least one checkpoint available; however, in the
event that no checkpoints remain or the reset occurred prior
to the recording of a valid checkpoint the DUT restarts the
application from the beginning.

Control Flow Assertions and Progress Monitoring—Control
flow assertions are used to ensure proper program execution.
If an upset causes the program to execute out of order,
the control flow assertions enables the DUT to notify the
controller that a fault has occurred. Furthermore, control
flow assertions also provide one mechanism to determine if
the DUT is making progress through the application. If the
application ceases to make progress for some user-defined
amount of time, the DUT can notify the controller to then be
reset. Currently, control flow assertions are added through the
use of #pragma BEGIN and #pragma END statement,
which are manually added by the developer. To ease the
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Figure 6. Control flow graph of Fast Lossless predictor
running on one (or more) PowerPC 405 processors with
checkpoint/rollback

integration of the actual code to perform the control flow as-
sertions a supplemental utility was developed which replaces
each pragma pair with the requisite assertion incriminating
and checking. A drawback of this approach is that it adds
execution overhead, potentially resulting in slower overall
application execution. Fortunately, the developer can tune the
number of assertions in the event the application experiences
intolerable slowdown. An example of how control flow
assertions are implemented in the FL predictor by a developer
is shown in Figure 4; whereas Figure 5 shows same code after
running the control flow assertion insertion utility.

Checkpoint and Rollback—The previously described mecha-
nisms have been more geared towards fault detection, Check-
point and Rollback is intended to aide in the recovery of the
DUT. During program execution the user inserts checkpoint
subroutines in order to save the state of the application’s exe-
cution. Then when a failure occurs and the DUT is restarted,
it can pick up where the last checkpoint left off, reducing the
amount of work that is needed to be re-performed.

For the FL predictor application, checkpoints are inserted
after each successive block of the image computation. If a
failure occurs in the middle of one block, the program will
gracefully rollback to the beginning of the block. This work
improves on our previous implementations of checkpoint
and rollback by enabling an application to store multiple
checkpoints. Furthermore, checkpoints are now able to be
stored in off-chip memory, allowing for more checkpoints to
be stored and for the checkpoint sizes to be larger. The benefit
to the system is that if the checkpoint data contains invalid
data that will lead to a fault when restarted the system can
rollback to another, earlier, checkpoint. Figure 6 illustrates
the augmented control flow graph which includes the check-
point and rollback functionality.

Experimental Setup

In order to evaluate the fault tolerance techniques integrated
into the Fast Lossless predictor function, the Memory Sen-
tinel Injection System (MSIS) is used. MSIS provides

Table 2. FL predictor runtimes with and without cache on
one and two PowerPC 405 processors on Virtex4 FX60

FPGA

Number of No Cache Cache
PowerPCs Enabled Enabled

1 883.22 s 53.53 s
2 461.08 s 27.15 s

Speedup 1.92× 1.97×

the necessary software and hardware infrastructure to inject
faults into the PowerPC 405 registers, data and instruction
caches. The primary role MSIS provides for this work is a
reliable mechanism to evaluate how the RHBSW techniques
are on the FL predictor implementation. Previous work
[3] provides significant details regarding the sensitivity of
specific registers, data and instruction caches. Instead, this
work is focused on a medium scale fault injection campaign
to profile the fault detection and recovery mechanism.

To illustrate how MSIS is integrated into the existing hard-
ware design, Figure 7 upgrades the original design by adding
two MSIS hardware cores (one for each PowerPC 405) and
a third system-on-chip for system control. Since the Xilinx
Virtex4 FX60 FPGA does not have a third PowerPC 405
a soft processor has been used in its place. The Microb-
laze processor is responsible for controlling the injection
campaigns on the processors as well as receiving heartbeat
monitor signals and issuing resets and rollbacks to the two
DUTs.

4. RESULTS

To evaluate the Fast Lossless compression algorithm’s predic-
tor function we have developed several experiments. These
experiments are intended to identify a baseline for perfor-
mance and quantify the effectiveness of radiation harden-
ing by software techniques on the predictor function. For
each experiment we use one dataset from the Airborne Vis-
ible/Infrared Imaging Spectrometer (AVIRIS), namely the
2001 uncalibrated (raw) dataset with imagery from the Island
of Hawaii, Hawaii (flight f011020t01, run p03r05). We chose
a dataset that fits within our embedded development board’s
available off-chip memory and have verified our results ex-
actly match those calculated on a general purpose processor.
The Hawaii dataset is stored in non-volatile CompactFlash
memory prior to being transferred to off-chip DDR2 memory.
The size of the image is ≈134 MB with 512 lines of 614
samples and an instrument width depth of 12-bits.

Fast Lossless Predictor Profiling

To begin, the predictor function’s runtime performance with-
out any Radiation Hardening by Software techniques or fault
injections are shown. The test is used to demonstrate func-
tionality as well as to provide a baseline for comparison when
RHBSW techniques are applied. Table 2 lists the results when
running with and without cache. The performance compari-
son with and without cache indicates this is a compute bound
problem. The run-time performance for the single processor
is 1.32 Msamples/sec (million samples per second).

While the focus of this work is not to compare against a
commodity x86 processor, in order to provide a point of
reference a single core 2.66 GHz processor is able to perform
the same computation in ≈12.95 seconds. The PowerPC 405
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Figure 7. Block diagram of dual PowerPC 405 system-on-chips with MSIS controller infrastructure

in these experiments is clocked at 300 MHz (≈8.87× lower
clock rate) yet executes only 4.13× slower than the x86
processor. The run-time performance for the x86 processor
is 5.44 Msamples/sec.

The predictor function is further profiled when running on
one PowerPC 405 to provide a better understanding of the
execution breakdown. As seen in Figure 8, the majority of
the program’s execution is in performing the sign algorithm
portion of the predictor function (≈78.12%). The weight
calculation runs for ≈6.84 seconds, and reading the image
from memory takes ≈4.87 seconds. The profiling data is
useful for a variety of reasons. In a conventional embedded
systems to FPGA development cycle the dominate functions
would be further evaluated for acceleration in hardware. In
this work we use the data to better understand where to place
critical control flow assertions and checkpoints.

Table 2 also shows the performance for two PowerPCs run-
ning on a single FPGA without RHBSW techniques to show
overall scalability. The ideal speedup of 2× when scaling to
two processors is nearly reached, with 1.97× achieved when
cache is enabled. The computed run-time performance is 2.6
Msamples/s. The speedup is primarily due to the minimal
coordination needed between the two processors when com-
puting independent blocks of the image. Furthermore, the
contention for memory is largely minimized when enabling
the cache since the FL predictor function is largely compute
bound.

Radiation Hardening by Software Overhead Analysis

To evaluate the FL predictor function with RHBSW tech-
niques we first implement heartbeat monitoring with a single
device-under-test (DUT) at 1 second intervals. It is important
to note that the heartbeats themselves do not require 1 second
to execute, in fact as the results show they require signif-
icantly less time. The total execution time only increased
by 0.91 seconds or ≈1.69% overhead to 54.43 seconds.
When adding the Watchdog timer the time increased by an
additional 0.89 seconds, ≈1.63%, to 55.32 seconds. Overall,
the overhead incurred was ≈3.32%.

Figure 8. Runtime profiling of predictor function of Fast
Lossless algorithm running on one PowerPC 405

The largest contributor to the execution overhead occurs
when performing a checkpoint. For this particular image
example the checkpoint size is 17.76 MB which is performed
after every image block computation. The overhead incurred
for a single PowerPC performing one checkpoint is 0.57 sec-
onds, or ≈1.06%. The time for two PowerPCs to perform a
checkpoint in unison is 0.59 seconds. The slight increase over
one processor is due to memory contention during the write.
The frequency of the checkpoints is application dependent;
however, the time is commonly associated with the mean
time between errors (MTBE). For an orbit comparable to the
projected HypsIRI mission, we have computed some early
estimates using upset characterizations for the PowerPC405
processor on the Virtex4 FX FPGA [21] of 2.56 × 10

−02

upsets per device/day. These early estimates are only used
to indicate the frequency of checkpointing can occur on the
order of days or weeks rather than seconds or minutes, reduc-
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Table 3. MSIS register injection campaign results

Result No RHBSW RHBSW

Good Data 79.18% 79.60%
Bad Data 15.18% 14.75%

Hang 5.64% 0.00%
Recovery via Rollback 0.00% 4.35%

Recovery via Reset 0.00% 1.30%

Total Good Data 79.18% 85.25%

ing the overhead incurred by checkpointing dramatically.

When performing a rollback the processor must retrieve the
last valid checkpoint and load its contents back into the
processor. This time is computed by enabling a timer prior
to forcing a rollback and stopping the timer immediately
after the program recommences. Furthermore, the number
of rollbacks taken during a programs execution is directly
related to the number of faults identified, we report only the
single rollback time. For the 17.76 MB checkpoint a rollback
was measured to take 0.52 seconds, or comparable to a single
checkpoint time.

With all of the Radiation Hardening by Software techniques
applied to the FL predictor function, a single PowerPC 405
computed the image in 55.9 seconds, or with 95.76% ef-
ficiency of the non-fault tolerant system. The real-time
performance dropped only slightly to 1.26 Msamples/s. For
two processors running in parallel the image was computed in
29.52 seconds, or 91.91% efficiency over the two processor
non-fault tolerant system, with a real-time performance of 2.4
Msamples/s.

When comparing these RHBSW run-time performances with
real-time requirements of the HyspIRI mission where data
can be collected at ≈800 Mb/s (≈50 Msamples/s), we re-
quire between 20 and 40 FPGA devices (for dual and single
PowerPC implementations respectively). While this num-
ber is high, the equivalent number of radiation hardened
RAD750 processors [7], which are ≈3.5× slower than the
PowerPC405, is ≈133 in order to fulfill the real-time per-
formance requirement. Work is underway to leverage the
FPGA’s reconfigurable fabric to accelerate the compute inten-
sive functions. Current work has demonstrated the capability
in a hardware implementation [20]; however, no fault-tolerant
techniques have been applied.

Hardware Based Fault Injection Reliability

The next set of experiments evaluated the systems capability
to use the RHBSW techniques when faults are injected into
the system. Presently, no mechanisms are used to detect when
an injected fault results in a silent data corruption (SDC). For
these tests two sets of a medium scale injection campaigns of
10,000 injections are performed. The first set of injections
are into the general purpose and special purpose registers
of a single PowerPC 405 processor. The second set of
injections are into the instruction and data caches. Both sets
of injections include a campaign with and without Radiation
Hardening by Software techniques.

During a campaign one injection occurs per iteration of the
application. First, a golden result is computed without any
injections occurring. Then, after each injection, the computed
results are compared with the golden results. The results are
broken down into good data, when the computed and golden

Table 4. MSIS cache injection campaign results

Result No RHBSW RHBSW

Good Data 81.22% 81.21%
Bad Data 8.97% 8.98%

Hang 9.80% 0.00%
Recovery via Rollback 0.00% 5.83%

Recovery via Reset 0.00% 3.98%

Total Good Data 81.22% 91.02%

Table 5. Resource Utilization for single DUT SoC without
MSIS, single DUT SoC with MSIS, dual DUT with MSIS

on a Virtex4 FX60 FPGA

Design Slices FFs 4-Input LUTs

Single DUT no MSIS 8,545 (16%) 7,530 (14%)
Single DUT MSIS 13,851 (27%) 13,460 (26%)
Dual DUT MSIS 17,176 (34%) 18,252 (36%)

results match, bad data, when there is a disparity between
the results, and hang, when the injection causes the processor
to stop executing. In addition, the use of RHBSW adds two
more categories of results recovery via rollback, when a fault
is detected and the system is able to recover by rolling back
to a previous checkpoint, and recovery via reset, when no
available checkpoints exist, but the control flow assertions,
watchdog timer or heartbeat monitor detected a fault.

The results of the injection campaign are shown in Table 3.
While the difference between good and bad data is of interest,
this paper is focusing on the ability to reduce the percentage
of time a fault hangs the system. Most notably, the register
injection campaign improves upon the 5.64% of hangs with
the use of the RHBSW techniques. In Table 4 the results
for the instruction and data cache injection campaign are
presented. As with the register campaign the percentage of
hangs is reduced to 0% with RHBSW.

Resource Utilization

Finally, we report on the resource utilization of this approach.
Since this investigation spans different experiments we pro-
vide the specifics of the single PowerPC 405 SoC design,
dual PowerPC 405 SoC design, and the dual PowerPC 405
SoC design plus single Microblaze design with MSIS. From
Table 5, the initial design currently consumes ≈16% of the
available FPGA resources on the Virtex 4 FX60. When
adding MSIS, which includes a second PowerPC SoC for
controlling MSIS injections, the resource utilization increases
to ≈27%, adding ≈11% overhead. This is largely due
to the resources needed by the second PowerPC which in-
cludes buses, memory controllers, and a second UART for
debugging information. When extending the design to use
both PowerPCs as devices under test the utilization increases
again to ≈34%. Since MSIS is used for fault injection and
evaluation, these utilization’s are directly related to what a
design would incur to be evaluated with MSIS. The RHBSW
techniques, such at the watchdog timer and control flow as-
sertions use the existing SoC hardware and add no additional
overhead in terms of resource utilization.

5. CONCLUSION AND FUTURE WORK

Motivated by the urgent need for fast and fault tolerant data
compression of hyperspectral imagery data, this work inves-
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tigates the feasibility of applying Radiation Hardening by
Software techniques with the prediction function of the Fast
Lossless compression algorithm. Beyond a simple proof of
concept, the results show that the application can be quickly
adapted to run on the multiple PowerPC 405 processors and
integrated with fault tolerant techniques, such as heartbeat
monitoring, watchdog timers, control flow assertions, and
checkpoint/rollback with an efficiency achieved of ≈95%.
Furthermore, near linear speedup is achieved when scaling
the number of processors, while low overhead of ≈1.06%
is incurred when performing checkpoint and rollback. In
addition, we have also evaluated the RHBSW techniques
through the use of our hardware based fault injection tool,
MSIS, and eliminated processor hangs while improving the
total good data results to above 85%.

This work has taken several significant strides towards ad-
dressing the feasibility question of such an approach. Our
next step is to continue down the FPGA development cycle
and migrate key functionality of the predictor function into
hardware accelerator in the FPGA fabric. While some re-
search has already investigated a hardware implementation
[20], no fault tolerant techniques have been applied to the
hardware approach. Even though several options exist, such
as bitstream scrubbing [22], we aim to employ an alternative
checkpoint/restart technique that we have been developing for
the FPGA fabric [15]. This approach will allow us to directly
integrate with our existing Radiation Hardening by Software
approach that has been solely targeting the PowerPC 405
while providing hardware accelerated computation.
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