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Applying reflection tomography in the postmigration domain
to multifold ground-penetrating radar data

John H. Bradford1

ABSTRACT

Acquisition and processing of multifold ground-
penetrating radar (GPR) data enable detailed measure-
ments of lateral velocity variability. The velocities con-
strain interpretation of subsurface materials and lead to
significant improvement in image accuracy when cou-
pled with prestack depth migration (PSDM). Reflec-
tion tomography in the postmigration domain was intro-
duced in the early 1990s for velocity estimation in seis-
mic reflection. This robust, accurate method is directly
applicable in multifold GPR imaging. At a contam-
inated waste facility within the U.S. Department of
Energy’s Hanford site in Washington, the method is
used to identify significant lateral and vertical veloc-
ity heterogeneity associated with infilled waste pits. Us-
ing both the PSDM images and velocity models in in-
terpretation, a paleochannel system that underlies the
site and likely forms contaminant migration pathways is
identified.

INTRODUCTION

Accurate estimation of electromagnetic (EM) velocity from
ground-penetrating radar (GPR) data enables accurate time-
to-depth image transforms; in addition, velocity is an electrical
property that can improve our understanding of the subsur-
face. When coupled with a suitable mixing equation, velocity
can be used to estimate permittivity, which in turn may lead
to estimates of pore-fluid content (Topp et al., 1980; Brewster
and Annan, 1994; Greaves et al., 1996; Powers and Olhoeft,
1996; Huisman et al., 2003).

Most GPR surveys are acquired with a constant transmitter-
receiver (Tx-Rx) offset. EM velocity estimates can made be
from these common-offset data with one of two methods. The
first method utilizes qualitative interpretation to correlate re-
flectors in the radar section with significant boundaries iden-
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tified in the borehole data. However, there are drawbacks:
Borehole data are not always available, there is potential for
misinterpretation or misalignment, and this method suffers
from a lack of lateral resolution. The second method of veloc-
ity estimation utilizes the moveout of scattering diffractions
(Bradford and Harper, 2005), but the distribution of scatter-
ing events limits the precision of the velocity model, and often
diffractions are not present.

It is typical to acquire one or more sparsely located CMP
gathers within a broader GPR survey area to obtain a 1D or
coarse laterally varying velocity structure for interpreting a
common-offset survey. From the CMP gather, an rms velocity
distribution is estimated using normal moveout (NMO) anal-
ysis (Campbell et al., 1995; Bradford et al., 1996; Young and
Sun, 1996). A common strategy for computing effective inter-
val velocities from the rms velocity incorporates Dix inversion
(Dix, 1955). This approach does not account for lateral veloc-
ity heterogeneity and is sensitive to velocity errors resulting
from dipping reflections or diffraction tails (Yilmaz, 2001).

Several published studies have overcome these limitations
by acquiring multifold profiles (Fisher et al., 1992a; Liberty
and Pelton, 1994; Pipan et al., 1999; Deeds and Bradford, 2002;
Bradford, 2003, 2004; Pipan et al., 2003). With this method,
the well-established acquisition geometries of seismic explo-
ration are used to acquire multiple source/receiver offsets at
each point within a survey. Multifold acquisition and process-
ing in GPR imaging has a number of advantages, including
suppression of coherent noise through dip-filtering methods
and suppression of both coherent and random noise through
stacking.

Although multifold data enable detailed measurement of
lateral velocity variability (Greaves et al., 1996), NMO-based
processing schemes are subject to the fundamental assump-
tions of NMO velocity analysis, which include small offset-
to-depth ratios, small vertical and horizontal velocity gradi-
ents, and planar flat-lying reflections (Al-Chalabi, 1973, 1974;
Yilmaz, 2001). These assumptions are often violated in GPR
investigations (Deeds and Bradford, 2002; Bradford, 2003,
2004).

K1
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REVIEW OF PRESTACK DEPTH MIGRATION
VELOCITY ESTIMATION

As with poststack migration and prestack time migration,
prestack depth migration (PSDM) focuses scattered energy
and moves dipping events to the correct spatial location. The
primary advantage of PSDM is correct treatment of lateral
and vertical velocity gradients. As long as precise amplitude
reconstruction is not a primary interest (e.g., we are only mea-
suring wavefield kinematics) and with the basic assumption
that the subsurface electric properties are independent of fre-
quency, many of the migration algorithms developed for seis-
mic data analysis can be applied directly to GPR data with-
out modification. While not generally true, the assumption
of frequency-independent material properties is a reasonable
first-order approximation in most cases, and often good mi-
gration results are obtained with any of the standard migra-
tion tools (Fisher et al., 1992a; Fisher et al., 1992b; Bradford
et al., 1996; Bradford and Loughridge, 2003; Pipan et al., 2003;
Bradford and Harper, 2005).

PSDM depends strongly on the depth-velocity model, so ac-
curate velocity estimation is critical. Methods for estimating
velocity distribution fall into two categories: reflection tomog-
raphy and PSDM velocity analysis.

Table 1. Typical work flow for reflection tomography in the
postmigration domain.

Step Procedure

1 Derive starting depth-velocity model.
2 Apply PSDM.
3 Pick horizons.
4 Estimate wavefront kinematics using ray

tracing.
5 Estimate RMO distribution using

semblance analysis along coherent
horizons.

6 Update velocity model via tomography.
7 Quality check/edit velocity model and

apply PSDM with new velocity model.
8 Quality check RMO distribution and

iterate starting at step 3 if necessary.

Figure 1. PSDM CIP gathers computed from a simple synthetic data set. RMO in
the CIP gathers is strongly sensitive to even small errors in the velocity model.

Most tomography algorithms are designed to invert for the
velocity structure based on traveltime picks of specific reflect-
ing horizons in the premigration domain. As pointed out by
Stork (1992), tomography has the advantage that computa-
tional methods for solving the inverse problem are well un-
derstood and solutions can be found quickly and efficiently.
A significant disadvantage arises when there is significant sub-
surface complexity and wavefield distortion makes it difficult
to pick the traveltimes of specific reflecting horizons.

PSDM velocity analysis takes advantage of the strong ve-
locity dependence of PSDM. When the data are migrated
with the correct velocity model, reflections in common-image-
point (CIP) gathers (the postmigration analog of CMP gath-
ers) migrate to the same depth and appear flat (Figure 1).
If the velocity model is wrong, reflectors are not flat lying;
this apparent offset-dependent depth is defined as residual
moveout (RMO). RMO shows increasing depth with offset if
the velocity is too high or decreasing depth with offset if the
velocity is too low (Figure 1). After migration with an initial
velocity model, the velocity model is updated iteratively to re-
move residual moveout with a top-to-bottom method known
as layer stripping. With this method the data are remigrated
after each velocity update and checked for RMO, often using
coherence panels in the CIP domain (Lafond and Levander,
1993). PSDM analysis takes advantage of reflector coherence
and continuity in the postmigration domain. This improves the
processor’s ability to evaluate specific reflecting horizons, par-
ticularly in a complex subsurface setting. Further, the output
of PSDM velocity analysis are a subsurface velocity model and
PSDM image.

Both reflection tomography and PSDM velocity analy-
sis have been applied to GPR data. For example, Cai and
McMechan (1999) describe a method for estimating the sub-
surface EM velocity and attenuation models using a reflection
tomography algorithm. Leparoux et al. (2001) discuss the ap-
plication of PSDM migration velocity analysis to GPR data,
and Deeds and Bradford (2002) describe a case study taken
from contaminated-site characterization.

Stork (1992) presents a method of reflection tomography
that seeks to minimize RMO in CIP gathers in the postmi-

gration domain. This method combines the
computational advantages of tomography
with the inherent interpretational advan-
tage of PSDM velocity analysis. A code
that utilizes Stork’s method is available with
PromaxTM processing software, used to pro-
cess all data in this study. A typical work
flow for the application of this method is
given in Table 1. Within this framework, de-
tailed, conventional NMO/DMO processing
is unnecessary. The approach is conceptually
analogous to the image-processing stream
posed by Rajasekaran and McMechan (1992)
for seismic reflection data.

FIELD APPLICATION: EXAMPLE
FROM THE DOE HANFORD SITE

The U. S. Department of Energy’s Han-
ford site, located in southeast Washing-
ton (Figure 2), was integrally involved in
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World War II’s Manhattan Project and produced much of
the plutonium for the U.S. nuclear arsenal. These activities
resulted in the release of large amounts of radiological and
chemical waste to the environment at a number of locations
throughout the Hanford complex (Department of Energy,
1998). The 618-10 burial ground is located approximately 4
miles northeast of Hanford’s 300 area. This site contains sev-
eral pits that received solid mixed waste from the mid 1950s
until 1960 (Figure 2). The pits were later backfilled. During
a surface stabilization project in 1983, a black, oily substance
was observed bubbling to the surface above pit 4. No samples
were taken, but this substance is thought to be a potential con-
tributor to groundwater contamination (DeFord et al., 1994).
The 316-4 crib, located about 35 m southeast of 618-10 (Fig-
ure 2), consists of two buried, open-bottom tanks. Approx-
imately 200 000 liters of liquid organic and uranium wastes
were pumped into the disposal tanks and allowed to drain
into the underlying formation during the 1950s and 1960s. Ra-
diological and volatile organic contamination has been found
in several boreholes near the 618-10 and 316-4 sites (Bechtel,
1995; Department of Energy, 1997). Groundwater lies approx-
imately 18 m below the surface, and there is concern that the
observed radiological and chemical contamination will reach
the groundwater and migrate to the Columbia River, located
approximately 5 km to the east. Near-surface
sediments at the site are comprised of sur-
ficial eolian sands (∼0–5 m depth) overly-
ing the interbedded sands and gravels of the
Hanford Formation (∼5–80 m depth) (De-
partment of Energy, 1997).

This field campaign was undertaken as
part of DOE’s effort to identify and improve
methods of quantitative geophysical charac-
terization of contaminated sites, with a par-
ticular emphasis on developing detailed sub-
surface models at the Hanford site. One of
the primary objectives in this study was imag-
ing potential contaminant migration routes
within the vadose zone beneath the 618-10
burial ground. In a 1997 cone-penetrometer
(CPT) investigation, a low-permeability, ce-
mented gravelly layer was identified at a
depth of about 12 m and is suspected of play-
ing a significant role in contaminant migra-
tion (Department of Energy, 1997). This ce-
mented gravel was the primary target of the
GPR investigation.

Data acquisition and processing

In September 2002, a field technician and
I acquired 384 m of 2D multifold data,
in common-source-point mode, along three
profiles at the site (Figure 2). The acquisi-
tion procedure was similar to that described
by Fisher et al. (1992a) using the parameters
listed in Table 2. Common-source acquisition
proved to be an efficient mode of operation
over the irregular topography at the site, and
all data were acquired in less than two days.
Generally, data quality varied from excellent

to fair, with 150 to 200 ns (9–12 m) of signal penetration
(Figure 3). Departure from NMO was clearly evident in the
common-source gathers (Figure 3A), indicating significant
subsurface complexity.

Figure 2. Site location and orientation of profiles discussed in
the text.

Figure 3. (a) Common-source gathers along lines 1A (left) and 1B (right).
(b) Conventional common-offset GPR section with a 0.61-m trace spacing.
(c) A 25-fold, constant-velocity (0.125-m/ns) stack with 0.61-m CMP bins. Signif-
icant departure from NMO in the source gathers at T x = 18 m and T x = 188 m
suggests subsurface complexity. Stacking improves the S/N ratio, most evident
between 150 and 300 ns on the right-hand side of the profile.
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Premigration processing steps included a bandpass filter
(12-25-200-400 MHz), automatic gain control (20-ns time
gate), and construction of a starting depth-velocity model us-
ing sparse (∼every 200 CMPs) NMO velocity analysis. A con-
stant stacking velocity of 0.125 m/ns produced a good stack
with significant improvement in S/N ratio over the conven-
tional common-offset image (Figure 3). This improvement
in data quality is particularly evident along the southeast-
ern end of line 1, where steeply dipping clinoforms infilling
a buried palechannel are clearly evident in the stacked image

Table 2. Data acquisition parameters.

Survey type Transverse electric, constant
azimuth

GPR system Sensors and software, Pulse EKKO
100-A, 100-MHz unshielded
antennas

Min/max offset 0.91 m/8.2 m
No. receivers/source 25
Source interval 0.61 m
Receiver interval 0.30 m
Sampling interval 0.8 ns
Recording time 400 ns
No. stacks/source 16

Figure 4. (a) PSDM image of line 1, (b) Interpretation of (a), and (c) tomographic
velocity model. Horizons used for RMO analysis are indicated with dashed lines.
The velocity model is shown only where there is ray coverage. The erosional surface
at the base of U4 likely delineates a primary contaminant transport route. Pits 1
and 4 are clearly evident in both the reflection image and the velocity model. The
cemented gravel unit was encountered in well E4E at a depth of 23 m b.d.

but are difficult to identify in the common-offset image. Ad-
ditionally, coherent noise resulting from an offend reflection
from the chain-link fence is present in the common-offset sec-
tion. In the CMP gathers, this coherent noise appears as a
horizontal event and is strongly attenuated after NMO and
stacking.

Reflection tomography and PSDM

The starting depth-velocity model was constant (0.125 m/ns).
Data were migrated in the common-offset domain using a
Kirchhoff PSDM algorithm that includes topography. Note
that the datum used for migration is the ground surface at
well 699-S6-E4A (Figure 2). I picked eight or more horizons
for RMO analysis along each profile (Figures 4 and 5). RMO
was computed using semblance analysis in the CIP domain.
The first round of RMO analysis, using the horizon at approx-
imately 7.5 m depth along line 1A (Figure 4), showed a sig-
nificant velocity high associated with pit 1 and a velocity low
associated with pit 4 (Figure 6). More subtle velocity anoma-
lies were present throughout the data set. I constrained the to-
mography to allow linear vertical velocity gradients between
major RMO horizons, arbitrary lateral velocity variations, and
discontinuities across RMO horizons. Additionally, the tomo-

graphic solution was damped within one
spread length (8.2 m) of the profile ends to
minimize edge effects. A single iteration of
reflection tomography with these constraints
significantly reduced RMO throughout the
data set and produced good-quality PSDM
images (Figures 4, 5, and 7).

To illustrate the need for PSDM veloc-
ity analysis, consider CMP 320 (Figure 8) at
x = 12 m along line 1A (Figures 3 and 4).
In addition to a large lateral velocity gradi-
ent across the spread length, this CMP con-
tains reflections from the scatterer at 14 m
and the steeply dipping sides of pit 1. Dix in-
version using the stacking velocity function
results in a wildly erratic interval velocity
function that is not an accurate representa-
tion of the subsurface. Reflection tomogra-
phy produces a reasonable velocity function
and good migration results (Figure 8). Note
that the scattered energy in CMP 320 has
been migrated out of this imaging point and
is not present in CIP 320.

Interpretation

I have identified four major stratigraphic
units within the survey area. Unit divisions
are based on the strength and continu-
ity of radar reflections bounding each unit.
As an additional constraint on the inter-
pretation, I use significant divisions in the
velocity profile, although significant lateral
velocity heterogeneity exists within each
unit. Interpretation of the lithology is based
on borehole logs from wells 699-S6-E4A
and 699-S6-E4E and CPT borehole B2764
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(Figure 2), acquired as part of an earlier site investigation (De-
partment of Energy, 1997). While the borehole logs lack sig-
nificant detail in the lithologic description, three sand units
are identified in the upper 7 m below datum (b.d.): A brown
sand (S1), a black sand (S2), and a basalt sand (S3) (Figure 5).
Below this is a thick, sandy gravel unit (G1/G2). In the radar
sections, numerous reflectors are evident within each of these
coarsely defined units that are likely caused by small grain-size
changes resulting in water-content variability. In well E4E,
the target cemented gravel layer was encountered at 23 m
b.d. The cemented gravel is not noted in the E4A log. Fur-
ther constraint on the depth-to-gravel unit is taken from CPT
borehole B2764 where the cemented gravel was encountered
at 14 m b.d.

Figure 5. (a) PSDM image of line 2, (b) Interpretation of (a),
and (c) tomographic velocity model. Horizons used for RMO
analysis are indicated with dashed lines. The velocity model is
shown only where there is ray coverage. One of the 316-4 crib
disposal tanks is clearly delineated in the reflection section,
but not the velocity model. Well E4A provides the most de-
tailed available lithologic log over the depth of investigation.
Depth to the cemented gravel unit in CPT B2764 was identi-
fied as the point of refusal.

The full stratigraphic profile is most clearly observed along
line 1B (Figure 4) and line 3 (Figure 7) because the surface
sediments along line 1A (Figure 4) and line 2 (Figure 5) were
disturbed during waste disposal activities. The uppermost unit
(U1) extends from 0 to about 4 m b.d.; U1 is comprised of
the eolian sands that form the dune evident as a topographic
high along line 1B and line 2. Unit 2 (U2) extends from about
4 m to nearly 6 m b.d. This unit is characterized by generally
lower velocities. The velocity inversion associated with U2 be-
comes more pronounced toward the southeastern boundary of
the 618-10 burial ground where there is an areal topographic
low. Unit 3 (U3) extends to a depth of approximately 8 m,
and the lower bounding horizon is an erosional discontinu-
ity that marks the transition from the shallow sand-dominated
system to the deeper gravel-dominated system. This surface
appears to be approximately flat lying and planar throughout
the survey area. U3 has generally higher velocities than U1 or
U2. The U1-U3 package dips toward the southwest, with U2
reaching the surface at the northern portion of the survey area
where U1 is not present (Figure 7). U4 is a sandy gravel unit
that forms the fill of a paleochannel network that underlies the
entire site. It varies in thickness from 0 to >10 m. U4 gener-
ally has the highest velocities observed at the site. Addition-
ally, the base of U4 marks the maximum extent of radar-signal
penetration.

In unsaturated sediments, velocity is primarily controlled by
soil-moisture content (Topp et al., 1980; Olhoeft, 1986) with
higher water content resulting in lower radar velocity. Finer-
grained materials tend to have higher residual water satura-
tion from capillary forces (Bedient et al., 1994); it is reason-
able to infer that in the vadose zone, low velocities correlate
with finer-grained materials while higher velocities correlate
with coarser-grained materials. Under this assumption I inter-
pret U2 as composed of relatively fine-grained sand and U4 of
relatively coarse material. While the available lithologic logs
do not provide detailed grain-size estimates to confirm this in-
terpretion, U4 is primarily a gravel unit, which is consistent
with the interpretation.

Burial pits 1 and 4 are evident in the stacked image, where
stratigraphic reflectors are truncated (Figure 3). Numerous
scattering events from the base of the pits suggests buried
debris covered with relatively homogeneous backfill. Burial
pits 1 and 4 are clearly delineated in the PSDM image
and inverted-velocity model (Figure 4). I found no evidence
for pits 2 or 3 in either the velocity model or reflection

Figure 6. RMO along the horizon at approximately 7.5 m b.d.,
showing a high-velocity (negative RMO) anomaly associated
with pit 1 and a low-velocity (positive RMO) anomaly associ-
ated with pit 4.
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images, suggesting that the positions of these pits were incor-
rectly mapped in the historical literature. Pit 1 has a large high-
velocity anomaly associated with the buried debris located
near the base of the pit. Pit 4 has a stratified velocity struc-
ture with a velocity high located within a fill layer at the top of
the pit and a significant velocity low associated with the ma-
terial filling the deeper portion of the pit. This is opposite the
trend observed in the adjacent stratigraphic section, where the
surface velocity is slow and then increases in the deeper strata.
The trend in the velocity model is consistent with the observed
reflectivity, where the 5-m-deep reflection within pit 4 has po-
larity opposite that of the adjacent 5-m-deep stratigraphic re-
flection (Figures 3 and 4).

Figure 7. (a) PSDM reflection images of line 1 sand 3 and (b) tomographic velocity
models. Based on high-radar-velocity and borehole observations, we interpret U4 to
be comprised of relatively coarse-grained and likely high-permeability sandy grav-
els. The cemented gravel unit identified in CPT 2764 and well E4E appears to lie at
the base of U4, which defines a northwest–southeast-trending paleochannel network
that likely forms primary contaminant transport routes.

The disposal tank and disturbed surficial sediments associ-
ated with the 316-4 crib are clearly imaged in the PSDM sec-
tion (Figure 5). Historical DOE records indicated that these
were stainless steel tanks (Bergstrom et al., 1995), but this
is necessarily incorrect as there is a clear radar image from
both the top and bottom of the tank which would be impos-
sible were it constructed from electrically conductive mate-
rial. Surprisingly, there is no clear velocity anomaly associated
with the tank itself (Figure 5), since I expect the empty tank
to produce a high-velocity zone. It is important to note that
the velocity of this feature is poorly constrained because there
is no continuous horizon imaged below the tank and the di-
mensions of the tank are only about one wavelength (in air)

at the dominant signal frequency. Of fur-
ther interest is the zone of high attenua-
tion that appears to emanate from the base
of the disposal tank. This is likely caused
by increased conductivity of the sediment
column as a result of residual ion deposi-
tion from the dumped radiological contam-
inants.

As stated in the introduction, the pri-
mary objective of this study was to char-
acterize the cemented gravel layer noted in
an earlier DOE investigation (Department
of Energy, 1997). The cemented gravel was
encountered at about 14 m b.d. in CPT
borehole B2764, which correlates with the
erosional surface that forms the base of U4
along lines 2 and 3 (Figures 5 and 7). Ad-
ditionally, the lithologic log from well 699-
S6-E4E, located just beyond the southeast
end of line 1, indicates that cemented gravel
was encountered at about 23 m b.d.. This
is roughly consistent with the base of U4,
which reaches about 18 m b.d. at the south-
eastern end of line 1 and appears to con-
tinue deepening off the end of the profile.
Note that precise interpretation of the base
of U4 is difficult at this location because
of very low reflection strength, and inter-
nal inconsistencies in the E4E lithologic
log make its reliability questionable. Gen-
erally, however, I interpret the cemented
gravel as lying at or just below the ero-
sional surface that forms the paleochannel
network at the base of U4. This is likely
caliche, which typically forms just below ex-
posure surfaces (American Geologic Insti-
tute, 1972; Blatt et al., 1972).

There are two significant problems to
consider with the data set. First, the velocity
models at the intersection of lines 1 and
3 are not in good agreement, although
the general features are similar, i.e., U1,
U3, and U4 are faster and U2 is slower.
The intersection of these two profiles is
very near the end of line 1B in the region
where the tomographic solution is damped.
Also, there is a clear depositional trend to-
ward the southeast, which may result in
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Figure 8. Comparison of the results of NMO analysis and reflection tomography at
CMP 320 (12 m) on line 1A (Figures 3 and 4). The trace at offset −6 m with the
transmitter at 18 m in Figure 3 corresponds to this CMP. The NMO-corrected CMP
and migrated CIP are shown. The stacking velocity (dashed line) is a poor measure
of the rms velocity at this CMP because of strong lateral velocity gradients, scatter-
ing from debris within the pit, and steeply dipping reflectors on the pit boundary.
Dix inversion with this stacking velocity function is near the stability limit, resulting
in erratic shifts in the interval velocity function (solid line). Reflection tomography
produces a reasonable velocity function and good PSDM results. The reflection at
109 ns (negative peak) in CMP 320, from an adjacent scattering event, is migrated
out of the imaging point and therefore is not present in CIP 320.

azimuthal anistropy. Further, line 1 intersects line 3 at a loca-
tion where there is a significant lateral velocity increase along
line 3. The line 1 velocities will be preferentially biased toward
the higher velocity zone. This leads directly to the second sig-
nificant problem. The 3D complexity of both the stratigraphy
and velocity structure means that the results of 2D analysis are
contaminated with out-of-plane energy. This may only be re-
solved in detail through full 3D data acquisition and process-
ing; however, generally good agreement between the PSDM
images and available lithologic control provides a level of con-
fidence in the general conclusions of the data interpretation.

My analysis shows that both the 618-10 burial ground and
316-4 crib are underlain by a paleochannel network that has
a low-permeability cemented unit at its base. The channel fill,
U4, consists of coarse-grained and likely high-permeability
sands and gravels. It is probable that this paleochannel
network forms a prime migration route for contaminants
emanating from either the 618-10 burial ground or the
316-4 crib.

CONCLUSIONS

Reflection tomography in the postmigration domain is an
attractive tool for velocity analysis of multifold GPR data. It
combines the computational efficiency of tomographic inver-
sion with the practical advantages of data interpretation in the
postmigration domain — specifically, semblance within CIP
gathers and reflector coherence in horizon picking. As a fur-
ther benefit, the output of the method is both a depth-velocity
model and PSDM radar section.

The field example demonstrates the added benefit of CMO
data acquisition and processing methodologies. CMP/CIP
stacking significantly improved the S/N ratio in the GPR sec-
tions, leading to more confident, detailed interpretation. Re-
flection tomography in the postmigration domain made it

possible to accurately resolve significant
lateral and vertical velocity heterogene-
ity. The resulting detailed velocity models
could be interpreted directly to locate sig-
nificant features such as the waste disposal
pits within the 618-10 burial ground. Fur-
ther, the velocity models helped to guide
the interpretation of significant lithologic
units and to constrain the likely relative
grain-size distribution. Finally, the PSDM
images, coupled with the detailed velocity
models, identified a paleochannel network
underlying the site as forming likely con-
taminant migration pathways.
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