
Applying Regression Test Selection for COTS-based
Applications

Jiang Zheng1, Brian Robinson2, Laurie Williams1, Karen Smiley2
1 Department of Computer Science, North Carolina State University, Raleigh, NC, 27695

{jzheng4, lawilli3}@ncsu.edu
2 ABB Inc., US Corporate Research

{brian.p.robinson, karen.smiley}@us.abb.com

ABSTRACT
ABB incorporates a variety of commercial-off-the-shelf (COTS)
components in its products. When new releases of these
components are made available for integration and testing, source
code is often not provided. Various regression test selection
processes have been developed and have been shown to be cost
effectiveness. However, the majority of these test selection
techniques rely on access to source code for change identification.
In this paper we present the application of the lightweight
Integrated - Black-box Approach for Component Change
Identification (I-BACCI) Version 3 process that select regression
tests for applications that use COTS components. Two case
studies, examining a total of nine new component releases, were
conducted at ABB on products written in C/C++ to determine the
effectiveness of I-BACCI. The results of the case studies indicate
this process can reduce the required number of regression tests at
least 70% without sacrificing the regression fault exposure.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]

General Terms: Reliability, Verification.

Keywords: software testing, regression testing, commercial-
off-the-shelf, COTS

1. INTRODUCTION
ABB1, a global power and automation technologies company,
incorporates a variety of commercial-off-the-shelf (COTS)
components in its products. Upon receiving a new release of a
COTS component, users such as ABB often need to conduct
regression testing to determine if a new component or new
version of a component will cause problems with their existing
software and/or hardware system. However, users of COTS
components often do not have access to the source code, but only
to the binary files and reference documents.

1 http://www.abb.com/

Regression testing involves selective re-testing of a system or
component to verify that modifications have not caused
unintended effects and that the system or component still
complies with its specified requirements [10]. To minimize the
time and resource costs of regression testing, a variety of
regression test selection (RTS) processes have been developed [4,
8, 20]. However, most of these processes rely on source code, and
therefore, are not suitable when source code is not available for
analysis, such as when an application uses COTS components.
As a result, the default RTS strategy would be to retest all the
functions involving the glue code2 due to the lack of information.
The retest-all strategy is straightforward but can be prohibitively
expensive in both time and resources [8]. North Carolina State
University and ABB are collaborating with a common research
goal: to safely reduce the testing required when components
change and only binary code and documentation is available.
The theory we are building via our research is as follows:
When components change and only binary code and
documentation are available, regression test selection can safely
be based upon the glue code that interfaces with sections of the
component that changed.
To this end, we have evolved a six-step process with supporting
tools for RTS for COTS-based applications [32, 33]. We call our
process the Integrated - Black-box Approach for Component
Change Identification (I-BACCI) process. The input artifacts to
the process are the binary code of the components (old and new
versions) and the source code and test suite of the application.
These artifacts are generally available to the COTS user. The
output of the I-BACCI process is a reduced suite of regression test
cases, related to the changes in the COTS components.
This paper furthers our prior work in (1) presenting the results of
two industrial case studies of using I-BACCI Version 3 to reduce
the number of test cases in the regression test suite; (2) presenting
detailed tool support; (3) investigating the legality of analyzing
binary code of purchased COTS components; and (4) examining
the product failure records for a retest-all black box testing effort
that was executed on the product. Black-box testing, also called
functional testing or behavioral testing, is testing that ignores the
internal mechanisms of a system or component and focuses solely
on the outputs generated in response to selected inputs and
execution conditions [10]. We use these results to analyze the
safeness and effectiveness of I-BACCI as an RTS process. A safe

2 Glue code is application code that interfaces with the COTS

components, integrating the component with the application.
Terms used in this paper are illustrated in Appendix A.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’06, May 20-28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005…$5.00.

512

RTS process guarantees that the subset of tests selected contains
all test cases in the original test suite that can reveal faults based
upon the modified program [4, 14, 20].
The rest of this paper is organized as follows. Section 2 outlines
the background and related work. Section 3 describes the
I-BACCI Version 3 process and its limitations. Tool support is
discussed in Section 4. Section 5 presents the two case studies of
applying I-BACCI Version 3 on two ABB products and their
library components. Section 6 discusses our lessons learned.
Finally, Section 7 presents conclusions and future work.

2. BACKGROUND AND RELATED WORK
In this section, we discuss prior work in component testing,
regression testing, change identification, and firewall analysis.

2.1 Testing of software components
Poor testability, due to the lack of access to the component's
source code and internal artifacts, is one of the challenges in user-
oriented component testing [6, 7, 26]. The functions and
behaviors of the components can be hard to understand because a
third-party component user only has the access to component
specification, user interfaces, and reference manual [7].
Generally, only black-box tests can be run on COTS software
because users do not have access to the source code to analyze the
internal implementation. Black-box test cases of COTS
components can be based upon the specification documentation
provided by the vendor. Alternately, the behavior could be
determined by studying the inputs and the related outputs of the
component. When only binary code is available, binary reverse
engineering can be a feasible approach to automatically derive a
design structure of a component from its binary code, such as, call
graphs [17].
Harrold et al. [9] presented techniques that use component
metadata for regression test selection of COTS components. They
illustrated their technique with a controlled example and seven
releases of a real component-based system, demonstrating an
average savings of 26% of the testing effort [9]. Their techniques
utilize three types of metadata to perform the regression test
selection: (1) the branch coverage achieved by the test suite with
respect to the component to associate test cases with branches; (2)
the component version; and (3) a means to query the component
for the branches affected by changes in the component between
two given versions [9]. However, the component provider may
not provide this information. In our research, we focus on using
information that is typically available to a component user.

2.2 Regression test selection
The purpose of RTS processes is to reduce the high cost of retest-
all regression testing by selecting a subset of possible test cases
[8]. In the selection of test cases, an RTS process might not be
safe. A variety of RTS techniques [4, 8, 20] have been proposed,
such as methods based upon path analysis techniques or dataflow
techniques. However, these techniques rely upon source code.
Srivastava and Thiagarajan at Microsoft have developed a test
prioritization system, Echelon [22], that prioritizes an
application's set of tests based on a binary code comparison of
two versions. Echelon takes as input two versions of the program
in binary form, and a mapping between the test suite and the lines
of code it executes. Echelon outputs a prioritized list of test
sequences (small groups of tests). The researchers analyzed the

efficacy of Echelon based on two runs of a comparison between
two binaries of a 1.8 million line of code office productivity
application [22]. In the first run, Echelon detected 87% of the
defects in the first two of 148 test sequences; the remaining 13%
of the defects were not detected by any tests in the test suite. In
the second run of different binaries, Echelon detected 98% of the
defects in the first three of 221 test sequences; the remaining 2%
of the defects were not detected by any tests.
Srivastava and Thiagarajan also discussed the advantages of
comparing at the binary level rather than the code level: (1) easier
to integrate into the build process because the recompilation step
needed to collect coverage data is eliminated; and (2) all the
changes in header files (such as constants and macro definitions)
have been propagated to the affected procedures, simplifying the
determination of program changes [22]. Although they have not
published results of applying Echelon to components, in theory,
the tool seems to be applicable to test selection for COTS
components. However, Echelon is a large proprietary Microsoft
internal product with a significant infrastructure and an
underlying bytecode manipulation engine. As will be discussed,
I-BACCI is a lightweight, relatively simple process.

2.3 Change identification
A key step in choosing regression tests is applying impact
analysis [18] to identify changes between the new release and the
previously-tested version with the same source code base.
However, most change identification approaches utilize the
source code of the old and modified programs [2, 13, 19, 20, 23,
24]. These approaches are not suitable for component testing
when source code is not available.
Laski and Szermer [13] proposed a formal method to identify
modifications made in a program. Vokolos and Frankl [23, 24]
utilized a textual differencing technique to perform regression test
selection. Apiwattanapong et al. [2] presented a technique for
comparing object-oriented programs that identifies both
differences and correspondences between two versions of a
program. The algorithm is based on a method-level representation
that models the object-oriented features of the language. Given
two programs, their algorithm identifies matching classes and
methods, builds a representation for each pair of matching
methods, and compares the representation to identify similarities
and differences. Empirical results show the efficiency and
effectiveness of the technique on a real program [2]. Ren et al.
[19] developed Chianti, a change impact analysis tool for Java.
Chianti analyzes two versions of a Java program, decomposes
their difference into a set of atomic changes, and calculates partial
order inter-dependencies of these changes. Change impact is then
reported in terms of affected (regression or unit) tests whose
execution behavior may have been modified by the applied
changes. For each affected test, Chianti also determines a set of
affecting changes that were responsible for the test's modified
behavior [19].
Wang et al. [25] developed the Binary Matching Tool (BMAT)
which compares two versions of a binary program without
knowledge of the source code changes. The implementation uses
a hashing-based algorithm and a series of heuristic methods to
find correct matches for as many program blocks as possible. The
algorithm first matches procedures, then basic blocks within each
procedure. The implementation of BMAT is built on Windows
NT® for the x86 architecture, using the Vulcan binary analysis

513

tool [21] to create an intermediate representation of x86 binaries,
which frees the BMAT developers from the tasks of separating
code from data and identifying program symbols. The process
enables good matching even with shifted addresses, different
register allocations, and small program modifications [25].
BMAT underlies Echelon [22] (discussed in Section 2.2) to match
blocks in the two binaries. However, like Echelon, BMAT is a
proprietary tool. We have developed a lightweight non-
proprietary Trivial Identifier of Differences in BInary-analysis
Text Zapper (TID-BITZ)3 tool to perform the same function for I-
BACCI, as will be discussed in Section 4.2.
Although a comparison between versions of documentation is
potentially helpful [14, 16], the documentation for COTS
components may not reflect all changes. Implementation may
change without necessitating any documentation changes, such as
for a code fix. Thus, users of COTS software should perform
thorough change identification which does not rely solely on the
component documentation. I-BACCI addresses this.

2.4 Firewall analysis
Leung and White [1, 14, 15, 29] developed firewall analysis for
regression testing with integration test cases (tests that evaluate
interactions among components [10]) in the presence of small
changes in functionally-designed software. Firewall analysis
limits regression testing to potentially-affected system elements
directly dependent upon changed system elements [29, 30]. I-
BACCI utilizes firewall analysis for RTS.
Module dependencies, control-flow dependencies, and data
dependencies are considered in firewall analysis [29]. Affected
areas, including modified functions, structures, and functions that
use them, are identified. Dependencies are modeled as call graphs
and a "firewall" is drawn around the changed functions on the call
graph. All modules inside the firewall are unit and integration
tested, and are integration tested with all modules not enclosed by
the firewall [29]. Test cases that need to be re-run over these
modules are identified and/or new test cases to exercise new code
or functionality are generated. Kung et al. [11, 12] utilized the
firewall concept on an object-oriented system, and White and
Abdullah [27] expanded the firewall to address more features of
an object-oriented system. Firewall was also utilized in the
regression testing of graphical user interfaces [28].
Firewall methods can only be guaranteed to select all
modification-revealing [20] tests and to be safe if all unit and
integration tests initially used to test system components are
reliable. Tests are reliable if the correctness of modules exercised
by those tests for the tested inputs implies correctness of those
modules for all inputs [20]. However, test suites are typically not
reliable in practice [30], so the firewall technique may omit
modification-revealing tests and/or may admit some non-
modification-traversing tests. Via empirical studies of industrial
real-time systems, firewall was effective despite these theoretical
limitations [30]. These limitations thus should not impair the
effectiveness of I-BACCI in practice.

3. I-BACCI VERSION 3
The I-BACCI process is an integration of the firewall analysis
RTS process with our Black-box Approach for Component

3 http://www4.ncsu.edu/~jzheng4/TID-BITZ/index.htm

Change Identification (BACCI) process (initially proposed in
[31]) for identifying change. I-BACCI Version 3 involves six
steps, as shown in Figure 1. The inputs to the I-BACCI process
are shown in gray blocks. The first two steps are done via the
BACCI process (in dash-dotted line frame), which produces a
report on changed functions and the calling relationships among
functions in the components. The remaining four steps are done
via firewall analysis (in dashed line frame), which requires the
glue code functions, the full test suite for the application, and the
output of BACCI.

3.1 I-BACCI process
There are two sub-steps for the first step of the BACCI process:
(1a) decomposing4 the binary files of the component; and (1b)
filtering trivial information to facilitate comparisons by
differencing tools. Prior to distribution, component source code is
compiled into binary code formats, such as .lib, .dll, or .class files.
Information on the data structure, functions, and function calling
relationships of the source code is stored in the binary files
according to pre-defined formats, such as Common Object File
Format (COFF)5 [33], so that an external system is able to find
and call the functions in the corresponding code sections.
The output of the first sub-step should be formatted conveniently
for differencing tools to identify changes between releases. The
output of the second sub-step should be formatted conveniently
for a graph generation tool to build call graphs. Often the first
sub-step can be accomplished by parsing tools available for the
language/architecture. For example, 32-bit COFF binary files can
be examined by the Microsoft COFF Binary File Dumper
(DUMPBIN)5. The DUMPBIN output is suitable as input to
differencing tools. The second sub-step is frequently necessary
because the output from the first sub-step may contain trivial
information such as timestamps and file pointers, which are
"noise" for the change identification. Generally, the second sub-
step cannot be done via existing tools. Therefore, we have created
the Decomposer and Trivial Information Zapper (D-TIZ)6 to
perform the decomposition and remove trivial information. D-TIZ
is described more fully in Section 4.1.

The second step of the I-BACCI process is to compare code
sections between two versions. In I-BACCI Version 1, the output
of D-TIZ was fed into the commercial differencing tool Araxis
Merge7 to generate reports showing the changed functions.
However, a large number of false positives were observed in I-
BACCI Version 1, which increased the number of functions in the
application that were unnecessarily identified for retesting.
Source code of the component was examined to determine the
cause of the false positives. We found that a large amount of false
positives were caused by the changes in registers used and
addresses of variables/functions. Therefore, we have created TID-
BITZ to identify real code changes only, eliminating differences
due to registers and addresses. The algorithm used in TID-BITZ
will be introduced in detail in Section 4.2.

4 We use the term decomposing to refer to breaking up the binary

code down into constituent elements, such as code sections and
relocation tables.

5 MSDN Library - Visual Studio .NET 2003
6 http://www4.ncsu.edu/~jzheng4/D-TIZ/index.htm
7 http://www.araxis.com/

514

Figure 1: I-BACCI Version 3 Regression Test Selection Process

The third and fourth steps of the I-BACCI process produce
function call graphs. The input for Step 3 is the calling
relationships among functions in a component, and the input for
Step 4 is the calling relationships for the glue code. In Step 4,
only the exported component functions8 and the glue code
functions calling them need to be included in the call graphs. In
the first two versions of I-BACCI, the call graphs were drawn and
analyzed manually. We have created Call-graph Analyzer –
Affected Function Identifier (CAAFI)9 (as will be discussed in
Section 4.3) to represent and analyze the call graphs of the
components automatically in I-BACCI Version 3. The call graphs
for the glue code are still drawn and analyzed manually via
adjacency-matrix representation [5] because no proper existing
tool was found to represent call graphs for source code. The call
graphs can be drawn using graph generation tools such as
GraphViz10, and the call graphs generated from the two steps can
be integrated together to identify affected glue code functions.

In the fifth step, the affected glue code functions are identified
using directed graph theory algorithms. These are the functions

8 Exported component functions are functions within the COTS

component that interfaces with application, as illustrated in
Appendix A.

9 http://www4.ncsu.edu/~jzheng4/CAAFI/index.htm
10 An open source tool, http://www.graphviz.org/

within the application that are potentially affected by the changed
function(s) in the component, and therefore need to be re-tested.
Analysis starts from each component function identified as
changed, and that change is propagated along the call graphs from
Step 4 until the glue code functions are reached.

The method discussed in the prior paragraph is especially suitable
when there are only a few function changes in the new version of
the component, but many glue code functions that directly call
these functions. An alternative method can be used when there are
only a few glue code functions and but many component function
changes that directly call component functions. Analysis may
start from the glue code functions and examine the component
functions being called by them along the call graphs, until a
changed component function is found or all the leaves are reached
but no changed component functions are found. In the former
situation, the initial glue code function is affected by the change
in the component, so that it needs to be re-tested; the latter
situation indicates the initial glue code function does not need to
be tested. The output of Step 5 is a list of all affected glue code
functions which need to be re-tested.

CAAFI identifies the affected component functions. Affected glue
code functions can be identified based on the changed and/or
affected component functions. The algorithm used in CAAFI will
be discussed in detail in Section 4.3.

Component binary
code (old version)

Component binary
code (new version)

Glue code functions

Step 1: Decompose both old and new versions of binary code (DUMPBIN+D-TIZ)

Function code sections
for both versions

Calling relationships
for the new version

Step 2: Compare code sections
of the two versions (TID-BITZ)

Step 3: Draw call graphs for the new
version of the component (CAAFI)

Differencing reports Call graphs (new version)

Step 5: Identify affected glue code functions by tracing the
affected component functions along the call graphs (CAAFI)

Step 4: Draw call graphs for the
glue code functions which calls
component functions (manually)

Call graphs (glue code functions)

Affected glue code functions
All test cases for the glue
code functions, mapped to
the functions they cover

Step 6: Select test cases that cover the affected glue code functions (manually)

Reduced set of test cases

I-BACCI Process
Version 3

BACCI
Process

Firewall
Analysis

515

In the sixth step, the set of test cases which are mapped to the
glue code functions they cover are used to select test cases that
cover only the affected glue code functions, as identified by the
steps above. The I-BACCI process has the potential to reduce the
set of regression test cases because it focuses on the affected glue
code functions and ignores the unaffected areas in the application.

3.2 Limitations of I-BACCI
I-BACCI shares an acknowledged technical limitation with all
existing firewall methods: the potential for reporting false
negatives in situations where binary differences are due to factors
other than changes in source code (e.g. build tools, environment,
or target platform). Although I-BACCI does work with the binary
files for the component, and such differences are potentially
detectable from binary file comparisons, the current method of
analysis precludes identification of such differences.

The second limitation of I-BACCI is its potential for identifying
false positives by assuming, in tracing the call graphs, that any
uses of called functions with changed binaries will be affected by
the change. However, an actual use of a changed function might
never exercise the changed logic or data. With further
development of I-BACCI, these unneeded tests may be eliminated
from the regression suite. However, this limitation does not
degrade the level of safeness of the I-BACCI method below that
of its underlying firewall RTS technique.

Finally, I-BACCI requires (as input) test suites which are
traceable to the glue code functions they cover, in order to
perform RTS.

4. TOOL SUPPORT
In this section, three tools that were developed and used in I-
BACCI Version 3 are described. More details and pseudocode for
all the tools is available online3,6,9.

4.1 D-TIZ
D-TIZ is used in the first step of the I-BACCI process with
DUMPBIN. Information on the functions and structures of the
source code is stored in some areas of the binary files according
to pre-defined formats, so that a system is able to call the
functions in corresponding code sections. DUMPBIN translates
the illegible binary library files into readable plain text. An
example of the output of DUMPBIN is shown in Appendix B.
Function names, binary code representation of the functions, and
relocation tables are all clearly described in the output text of
DUMPBIN. D-TIZ scans the output of DUMPBIN, saves the code
sections of functions into separate files, and collects and saves the
relocation tables of the functions into a text file (henceforth called
"relocation table set"). The function list is fed into TID-BITZ to
perform differencing. CAAFI utilizes the relocation table set to
generate and analyze call graphs of the components. Currently D-
TIZ can only be used with library (.lib) files, but we are currently
extending to handle additional component types, such as dynamic
link library (DLL).

4.2 TID-BITZ
A large number of false positives were observed in the initial case
study of I-BACCI Version 1 [33], which increased the number of
glue code functions that were identified for retesting. To explore

the cause of the false positives, the analyzer examined the source
code and the associated binary library files of the component. A
large amount of false positives were caused by changes in
registers used and addresses of variables and functions, which
typically would not cause functional changes in the code.

For example, as shown in bold in Appendix B, the binary code
8B89A0060000 means "copy the operand in the address of
register ECX plus offset 0x06A0 to register ECX", where 8B89
is the instruction and A0060000 is the address offset11.
Therefore, in this example, the only difference in binary is that
the address offset was changed from A0060000 to CC060000.
Further examination of the source code showed that seven new
function declarations and one new variable definition were added
before the variable state was defined in class SM_USM_envoy
in one of the header files included in the source file of Release
B2. As a result, the offset of the variable state was changed
accordingly. In this case, the binary code change identified is not
a real change and can be ignored in the change identification. We
call binary code like 8B89A0060000 is an example of a "binary
code comparison false positive pattern." Many such false positive
patterns were found in the initial case studies. The full list of these
patterns can be found online2. The TID-BITZ tool was created to
reduce the false positives, and then I-BACCI was promoted to
Version 2 to include the use of this tool in Step 2 [32]. TID-BITZ
did reduce the false positive rate to less than 8% in the case
studies that will be discussed in Section 5, as shown in Table 1.

However, TID-BITZ may introduce false negatives by
eliminating real code changes. As shown in Table 1, there were
no false negative without using TID-BITZ. The use of TID-BITZ
introduced less than 2% false negatives in our case studies. The
high false positive rate without TID-BITZ would lead to much
more affected functions in both component and application.

Table 1. TID-BITZ Results
(FP is false positive; FN is false negative.)

Comparisons
% of FPs
without

TID-BITZ

% of FPs
with

TID-BITZ

% of FNs
without

TID-BITZ

% of FNs
with

TID-BITZ
A1 vs. A2 90.1% 5.6% 0% 0%

A2 vs. A3 0% 0% 0% 0%

A3 vs. A4 0% 0% 0% 0%

A4 vs. A5 0% 0% 0% 0%

A5 vs. A6 0% 0% 0% 0%

B1 vs. B2 59.3% 4.9% 0% 0.5%

B2 vs. B3 12.4% 6.1% 0% 1.6%

B3 vs. B4 0% 0% 0% 0%

B4 vs. B5 76.9% 7.7% 0% 0%

4.3 CAAFI
Due to the large amount of functions in the components, it is
time-consuming to identify affected functions given changed
functions in the components according to the calling relationships

11 http://developer.intel.com/design/pentium4/manuals/index_new

.htm

516

produced in Step 3 and 4. CAAFI was created in I-BACCI
Version 3 to save analysis time and resources. The input to
CAAFI is the relocation table set generated by D-TIZ, and
changed functions identified by TID-BITZ. First, the relocation
table set of a component is converted into an adjacency-matrix [5]
to represent call graphs of the functions in the component. For
each changed function, CAAFI then backtracks the call graphs to
identify all functions that directly or indirectly call the changed
function. The output includes a list of all affected functions in the
component, and the subgraphs that show how the functions are
affected by each changed function. For each case study, CAAFI
reduced the time cost from approximately 16 person hours to less
than three minutes.

5. CASE STUDIES
Case studies of ABB products have been conducted on I-BACCI
Version 1 and Version 2 [32, 33]. For I-BACCI Version 1, an
initial case study (henceforth called Case 1) had been conducted
on a 757 thousand lines of code (KLOC) ABB application
(henceforth called Application A) written in C/C++. Application
A uses a 67 KLOC internal ABB software component (henceforth
called Component A) of library (.lib) files written in C. Six
incremental releases of Component A were analyzed and
compared (henceforth referred to as Release A1 through Release
A6, respectively). Each Component A release contains a library
file with size of about 800 kilobyte. The initial result of the case
study indicated that I-BACCI Version 1 can reduce the number of
regression tests by 40% on average [31]. Some releases required
no retesting, as no changes in the component affected the product
using the component. Other releases appeared to require full
retesting; however, TID-BITZ had not yet been created to reduce
false positives.

I-BACCI Version 2 was applied on a second case study
(henceforth called Case 2) conducted on a 40 KLOC ABB
application (henceforth called Application B) written in C/C++.
This product uses a 30 KLOC internal ABB software component
(henceforth called Component B) of library (.lib) files written in
C. Five incremental releases of Component B were analyzed and
compared (henceforth referred to as Release B1 through Release
B5, respectively) to study the effectiveness of I-BACCI Version 2
for safely reducing regression test cases. Each Component B
release contains eight libraries with total size of 1.39 ~ 1.65
megabyte. The full, retest-all strategy takes over four man months
of effort to run. With TID-BITZ incorporated into I-BACCI
Version 2 to reduce false positives, this case study showed that on
average 54% of the number of regression tests can be reduced
[32].

These software combinations were chosen for these case studies
because (1) the numbers of test cases for each function of the
applications were available; (2) multiple releases of the
components were available; (3) the high cost of executing the
retest-all strategy demonstrates the potential value of achieving
regression test reductions.

In this paper, we report the re-analysis of both case studies with I-
BACCI Version 3 which includes all the three tools discussed in
Section 4. Additionally, we report the safeness of I-BACCI based
upon an examination of the failure records of retest-all black-box
testing.

5.1 I-BACCI Version 3 on library files
The library files analyzed in the two case studies contain the raw
binary code of many object files. The library files are organized
in segments similar to the COFF file format [33]. The calling
relationships among functions in the whole component can be
ascertained by tracing the calls in the relocation tables throughout
the library file.

The analyzer (the fist author of this paper) conducted the first five
steps of I-BACCI Version 3. During the first step of the I-BACCI
process, each library file in each of the releases was translated
into plain text using DUMPBIN. D-TIZ was used to scan the
output of DUMPBIN, save the code sections of functions into
separate files, and obtain the relocation table of each function. For
the second step, the TID-BITZ tool was used to compare the
functions among the releases and to generate differencing reports.
This change identification part (Step 1 and 2) of the case studies
was conducted on an IBM T42 laptop with one Intel® Pentium®
M 1.8GHz processor and one gigabyte RAM. Completing the first
step of the process with DUMPBIN and D-TIZ took 22 seconds
and 29 seconds in total for Case 1 and 2, respectively, once the
cache was warm. TID-BITZ then spent about one second on each
comparison and generating a differencing report.

In the third, fourth, and fifth steps, call graphs were drawn for
changed functions to identify the affected glue code functions by
tracing the affected component functions along the call graphs.
CAAFI took about 90 seconds and 170 seconds, respectively, to
identify affected component functions for Case 1 and 2. The
remaining manual work for each case study, including drawing
call graphs for the glue code functions (Step 4) and identifying
affected glue code functions (part of Step 5) in the application
source code, took the analyzer less than two person hours. The
results of the identified changes for all comparisons and all call
graphs for the components were preliminarily verified by the
analyzer, using source code for the component to determine the
accuracy of the analysis post hoc. Then, the second author
determined the numbers and percent reduction of the regression
test cases needed, based on the list of all the affected glue code
functions and the original test suite. The second author also
verified the efficacy of the RTS process by examining the failure
records of retest-all black-box testing. With the help of the tools,
the whole I-BACCI process was done in approximately two
person hours for each case study.

5.2 Results of I-BACCI Version 3 on Case 1
The results of applying I-BACCI Version 3 on Case 1
(Application A and Component A) are shown in Table 2. The
interface between Application A’s glue code functions and
Component A was examined, to establish a baseline of affected
functions in the application. In total, 60 functions (in 50 C++
files) in Application A call 89 functions of Component A. In the
worst case, all 60 functions would be affected by the changes in
the component and would need to be re-tested.

The first analysis was conducted between Release A1 and Release
A2 of Component A. The BACCI analysis showed that 18
functions were changed out of the 941 functions in Release A2,
including three new functions. However, firewall analysis showed
that 319 exported functions in Component A were affected by the

517

identified changes. All 60 functions in Application A were
affected. As a result, there was no regression test case reduction.

The second analysis correctly identified 23 changed component
functions, and 71 exported functions in the component were
affected by the identified changes. Only two glue code functions
call the affected exported component functions. Therefore, we
achieved 98.7% regression test case reduction.

The latter three analyses identified only a few changes and no
function in Application A calls any affected functions in the
components, although the changes did affect some exported
functions in the components. Therefore, we achieved 100%
regression test case reduction for these three comparisons.
Overall, approximately an average 80% test case reduction was
achieved for these five new releases.

The second author examined the failure records of retest-all
black-box testing. There were no regression test failures found.

Table 2. Case 1 Results by I-BACCI Version 3

Comparisons
Metrics

1 vs 2 2 vs 3 3 vs 4 4 vs 5 5 vs 6
Total changed functions
identified 18 23 1 10 3

True positive ratio12 100% 100% 100% 100% 100%

False positive ratio13 5.6% 0% 0% 0% 0%
Affected exported
component functions14 319 71 2 55 39

% of affected exported
component functions 96.4% 21.5% 0.6% 16.6% 11.8%

Affected glue code
functions15 60 2 0 0 0

% of affected glue code
functions 100% 3.3% 0% 0% 0%

Total test cases needed 592 8 0 0 0

% of test cases reduction 0% 98.7% 100% 100% 100%
Actual regression failures
found 0 0 0 0 0

Regression failures detected
by reduced test suite 0 0 0 0 0

Compared to the results of I-BACCI Version 1 on this case, the
regression test cases reduction increased from 40% to 80%, on
average [33], indicating the utility of the TID-BITZ tool.

12 True positives ratio is number of real changed functions found

divided by total number of real changed functions.
13 False positive ratio is number of identified changed functions

that are not really changes, divided by number of (correctly and
incorrectly) identified changed functions.

14 Affected exported component functions are functions within the
COTS component that interfaces with application, either
changed or affected by other component functions, as illustrated
in Appendix A.

15 Affected glue code functions are functions within the glue code
that directly call affected exported component functions, as
illustrated in Appendix A.

Additionally, the postmortem source code difference analysis
showed that the change identification was correct except that one
false positive existed in the comparison between Release A1 and
Release A2. No false negative was found in all analyses.

5.3 Results of I-BACCI Version 3 on Case 2
Similarly, the results of applying I-BACCI Version 3 on Case 2
(Application B and Component B) are shown in Table 3.

Table 3. Case 2 Results with I-BACCI Version 3

Comparisons
Metrics

1 vs 2 2 vs 3 3 vs 4 4 vs 5
Total changed functions
identified 338 1238 4 13

True positive ratio 99.5% 98. 4% 100% 100%

False positive ratio 4.9% 6.1% 0% 7.7%
Affected exported component
functions 84 122 1 8

% of affected exported
component functions 68.3% 100% 0.8% 6.6%

Affected glue code functions 38 59 1 6
% of affected glue code
functions 82.6% 100% 1.7% 10.7%

Total test cases needed 151 215 11 20

% test cases reduction 30% 0% 95% 91%
Actual regression failures
found 4 8 1 0

Regression failures detected by
reduced test suite 4 8 1 0

The interfaces between Application B's glue code functions and
the Component B were also examined to establish a baseline of
affected functions in the application. The glue code functions
changed in Release B3. For the former version of glue code
functions (i.e. in Release 2), there are 123 exported functions in
the component. In total, 46 glue code functions (in six C files) call
81 out of the 123 exported functions of the component. In the
worst case, all of the 46 functions would be affected by the
changes in the component and would need to be re-tested.
Similarly, at most 59 glue code functions in the latter version
would be affected.

The first analysis was conducted between Release B1 and Release
B2 of the component. The BACCI analysis showed that 388
functions were changed out of 1143 functions in Release B2.
Firewall analysis showed that 84 exported functions in
Component B were affected by the identified changes and 38 glue
code functions were affected. As a result, 30% of the regression
test cases can be reduced.

More reduction was achieved in the latter two comparisons: only
5% and 9% of the test cases needed to be re-run. However, due to
the great extent of changes between Release B2 and B3, no
regression test case reduction was found.

Examination on the failure records of retest-all black-box testing
indicated the safeness of I-BACCI Version 3 process as all 13

518

regression test failures would be detected by the reduced
regression test suite.

In the second case study, source code difference analysis showed
that the TID-BITZ tool was able to reduce false positives to only
6% on average while still having a low false negative rate (about
1%), as shown in Table 1. The false negatives were caused
because a changed function contained a function call which was
replaced by another function call. TID-BITZ ignored the address
changes of the changed function call. Additionally, with the help
of CAAFI, the time cost of the whole process reduced from about
24 person hours [32] to two hours. As shown in the results of the
two case studies, I-BACCI is more effective when there are small
incremental changes between revisions.

5.4 Case Study Limitations
A limitation of the case studies is that all the applications and
components used were software developed by ABB Inc. involving
.lib library files. We chose to conduct our research in this manner
because, ultimately, we needed to check the accuracy of our
process and needed to develop and evolve the support tools by
manually examining source code. We strived to maintain as much
objectivity as possible in our work. The first author conducted
the I-BACCI process in both case studies. The second author then
revealed the actual changes and the black-box testing results.

6. LESSONS LEARNED
We list the experiences with our effort of regression test selection
when source code is not available in order of importance as
follows:

• We gathered 28 license agreements to investigate the legality
of analyzing binary code of purchased COTS components.
Relevant sentences in the license agreements were reviewed
by lawyers of North Carolina State University. The lawyers
deemed that the approaches and algorithms used in I-BACCI
process are legal due to the purpose of the analysis. Many of
the license agreements of commercial components prohibit
the user of components from reverse engineering,
decompiling, disassembling, or otherwise attempting to
discover the source code of the software except to the extent
that this restriction is expressly prohibited by law. Copyright
law does not prohibit the analysis on the code, only prohibit
reproducing the components, making derivative works, or
distributing copies of the products. The purpose of our
research is to reduce the testing required when components
change and only binary code and documentation is available.
The information of the components that we need in the
analyses is in function level (function signatures and
function calling relationships) instead of the source code or
any logic/algorithm of the software.

• Currently the TID-BITZ tool works only when the releases
of components are built by the same compiler. An initial run
of I-BACCI on the second and fourth comparisons of Case 1
revealed that more than 95% of the initially-identified
changes were not real changes (a.k.a. false positives). A re-
analysis on versions rebuilt by the same compiler showed the
results discussed in Section 5.2.

• In Case 2, all the regression test failures can be detected by
the reduced regression test suite. However, for Case 1, no

regression test failures were found. Therefore, we could not
obtain support for the safeness of I-BACCI through this case
study. In the future, we will select case studies that contain
regression test failures.

7. CONCLUSIONS AND FUTURE WORK
ABB desires a method of selecting regression tests when the
COTS components included in their applications change. In this
paper, we proposed Version 3 of the I-BACCI process for
regression test selection for applications that use software
components when source code is not available. Two case studies
were examined to verify the potential efficacy of this process. The
results showed that I-BACCI is an effective RTS process for
COTS-based applications. We achieved at least 70% regression
test case reduction for the nine new releases of these two case
studies. The safeness of the RTS process had been verified by
examining the failure records of retest-all black-box testing. No
failures would have escaped our reduced test suite. I-BACCI can
most beneficial when there are small incremental changes
between revisions. These results supported our theory:

When components change and only binary code and
documentation are available, regression test selection can safely
be based upon the glue code that interfaces with sections of the
component that changed.

We plan to pursue several directions in our future work. First,
additional breadth is required to expand this process to adapt to
more of the COTS file types and programming languages. We
plan to analyze more components in the various formats which
can be examined by DUMPBIN, such as dynamic link libraries
and executable files, as well as different component types such as
the container/control model, in which user programs act as
containers for third party controls. Additionally, to address the
limitations of I-BACCI which are discussed in Section 3.2, we
will explore other approaches, such as applying other code-based
regression selection techniques and examining other available
artifacts of COTS components. Also, we will consider changes
caused by factors other than source code (e.g. build tools,
environment, and target platforms), and improve the supporting
tools to remove as many false negatives as possible.

8. ACKNOWLEDGEMENTS
This research was supported by a research grant from ABB
Corporate Research. We would like to thank Dr. Tao Xie and the
North Carolina State University Software Engineering Realsearch
Reading Group for their helpful suggestions. Additionally, we
thank North Carolina State University council Mrs. Judy Curry
and Mr. David Drooz for their help in analyzing component
licensing agreements.

9. REFERENCES
[1] Abdullah, K., Kimble, J., and White, L., "Correcting for

Unreliable Regression Integration Testing," International
Conference on Software Maintenance, Nice, France, 1995,
pp. 232-241.

[2] Apiwattanapong, T., Orso, A., and Harrold, M. J., "A
Differencing Algorithm for Object-Oriented Programs," 19th
International Conference on Automated Software
Engineering (ASE'04), Linz, Austria, 2004, pp. 2-13.

519

[3] Basili, V. R. and Boehm, B., "COTS-Based systems Top 10
List," IEEE Computer, vol. 24, no. 5, 2001, pp. 91-93.

[4] Bible, J., Rothermel, G., and Rosenblum, D., "A
Comparative Study of Course- and Fine-Grained Safe
Regression Test-Selection Techniques," ACM Transactions
on Software Engineering and Methodology, 10(2), 2001, pp.
149-183.

[5] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.,
Introduction to Algorithms, Second Edition. Cambridge,
Massachusetts London, England: The MIT Press and
McGraw-Hill, 2001.

[6] Gao, J. and Wu, Y., "Testing Component-Based Software -
Issues, Challenges, and Solutions," in 3rd International
Conference on COTS-Based Software Systems, Redondo
Beach, 2004.

[7] Gao, J. Z., Tsao, H.-S. J., and Wu, Y., Testing and Quality
Assurance for Component-Based Software. Boston: Artech
House, 2003.

[8] Graves, T. L., Harrold, M. J., Kim, Y. M., Porter, A., and
Rothermel, G., "An Empirical Study of Regression Test
Selection Techniques," ACM Transactions on Software
Engineering and Methodology, 10(2), 2001, pp. 184-208.

[9] Harrold, M. J., Orso, A., Rosenblum, D., Rothermel, G.,
Soffa, M. L., and Do, H., "Using Component Metacontents
to Support the Regression Testing of Component-Based
Software," IEEE International Conference on Software
Maintenance, Florence, Italy, 2001, pp. 716-725.

[10] IEEE, "IEEE Standard Glossary of Software Engineering
Terminology," IEEE Standard 610.12, 1990.

[11] Kung, D., Gao, J., Hsia, P., Wen, F., Toyoshima, Y., and
Chen, C., "Change Impact Identification in Object-Oriented
Software Maintenance," International Conference on
Software Maintenance, Victoria, Canada, 1994, pp. 202-211.

[12] Kung, D., Gao, J., Hsia, P., Wen, F., Toyoshima, Y., and
Chen, C., "Class Firewall, Test Order and Regression
Testing of Object-Oriented Programs," Journal of Object-
Oriented Programming, Vol. 8, No. 2, 1995, pp. 51-65.

[13] Laski, J. and Szermer, W., "Identification of program
modifications and its applications in software maintenance,"
International Conference on Software Maintenance, 1992,
pp. 282-290.

[14] Leung, H. and White, L., "A Study of Integration Testing
and Software Regression at the Integration Level,"
International Conference on Software Maintenance, San
Diego, 1990, pp. 290-301.

[15] Leung, H. and White, L., "Insights into Testing and
Regression Testing Global Variables," Journal of Software
Maintenance, Vol. 2, No. 4, 1991, pp. 209-222.

[16] Mayrhauser, A. v., Mraz, R. T., and Walls, J., "Domain
Based Regression Testing," International Conference on
Software Maintenance, 1994, pp. 26-35.

[17] Memon, A. M., "A process and role-based taxonomy of
techniques to make testable COTS components," in Testing
Commercial-off-the-shelf Components and Systems, S.
Beydeda and V. Gruhn, Eds. Berlin, Germany: Springer-
Verlag, 2005, pp. 109-140.

[18] Orso, A., Apiwattanapong, R., Law, J., Rothermel, G., and
Harrold, M. J., "An empirical comparison of dynamic impact

analysis algorithms," International Conference on Software
Engineering, Edinburgh, Scotland, 2004, pp. 491-500.

[19] Ren, X., Ryder, B. G., Stoerzer, M., and Tip, F., "Chianti: A
Change Impact Analysis Tool for Java Programs," the 27th
International Conference on Software Engineering, St. Louis,
MO, USA, 2005, pp. 664-665.

[20] Rothermel, G. and Harrold, M., "Analyzing regression test
selection techniques," IEEE Trans. on Software Engineering,
22(8), 1996, pp. 529-551.

[21] Srivastava, A., "Vulcan," TR-99-76, MSR 1999.
[22] Srivastava, A. and Thiagarajan, J., "Effectively prioritizing

tests in development environment," ACM SIGSOFT
International Symposium on Software Testing and Analysis,
Roma, Italy, 2002, pp. 97-106.

[23] Vokolos, F. and Frankl, P., "Pythia: A regression test
selection tool based on textual differencing," 3rd
International Conference on Reliability, Quality and Safety
of Software-intensive System, Athens, Greece, 1997, pp. 3-
21.

[24] Vokolos, F. and Frankl, P., "Empirical evaluation of the
textual differencing regression testing technique,"
International Conference on Software Maintenance, 1998,
pp. 44-53.

[25] Wang, Z., Pierce, K., and McFarling, S., "BMAT: A Binary
Matching Tool for Stale Profile Propagation," The Journal of
Instruction-Level Parallelism, Vol. 2, 2000.

[26] Weyuker, E. J., "Testing Component-Based Software: A
Cautionary Tale," IEEE Software, 15(5), 1998, pp. 54-59.

[27] White, L. and Abdullah, K., "A Firewall Approach for the
Regression Testing of Object-Oriented Software," in
Software Quality Week, San Francisco, 1997.

[28] White, L., Almezen, H., and Sastry, S., "Firewall Regression
Testing of GUI Sequences and Their Interactions,"
International Conference on Software Maintenance,
Amsterdam, The Netherlands, 2003, pp. 398-409.

[29] White, L. and Leung, H., "A Firewall Concept for both
Control-Flow and Data Flow in Regression Integration
Testing," International Conference on Software
Maintenance, Orlando, 1992, pp. 262-271.

[30] White, L. and Robinson, B., "Industrial Real-Time
Regression Testing and Analysis Using Firewall,"
International Conference on Software Maintenance, Chicago,
2004, pp. 18-27.

[31] Zheng, J., Robinson, B., Williams, L., and Smiley, K., "A
Process for Identifying Changes When Source Code is Not
Available," the 2nd International Workshop on Models and
Processes for the Evaluation of off-the-shelf Components
(MPEC '05), St. Louis, MO, 2005.

[32] Zheng, J., Robinson, B., Williams, L., and Smiley, K., "A
Lightweight Process for Change Identification and
Regression Test Selection in Using COTS Components," the
5th International Conference on COTS-Based Software
Systems, Orlando, FL, USA, 2006, pp. 137-143.

[33] Zheng, J., Robinson, B., Williams, L., and Smiley, K., "An
Initial Study of a Lightweight Process for Change
Identification and Regression Test Selection When Source
Code is Not Available," the 16th IEEE International
Symposium on Software Reliability Engineering, Chicago,
IL, USA, November, 2005, pp. 225-234.

520

Appendix A. Illustration of the terms

Appendix B. An example of DUMPBIN output
int SM_USM_envoy::GetState(int s) { Source code in both Release B1 and B2
 return state==s;
}

SECTION HEADER #78 Corresponding section in the output of DUMPBIN for Release B1
 .text name
 0 physical address
 0 virtual address
 20 size of raw data

722B file pointer to raw data
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
60501020 flags
 Code
 Communal; sym= "public: virtual int __thiscall SM_USM_envoy::GetState(int)"
 16 byte align
 Execute Read
RAW DATA #78
 00000000: 8B 89 A0 06 00 00 8B 54 24 04 33 C0 3B CA 0F 94
 00000010: C0 C2 04 00 90 90 90 90 90 90 90 90 90 90 90 90

SECTION HEADER #79 Corresponding section in the output of DUMPBIN for Release B2
 .text name
 0 physical address
 0 virtual address
 20 size of raw data
 73D1 file pointer to raw data
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
60501020 flags
 Code
 Communal; sym= "public: virtual int __thiscall SM_USM_envoy::GetState(int)"
 16 byte align
 Execute Read
RAW DATA #79
 00000000: 8B 89 CC 06 00 00 8B 54 24 04 33 C0 3B CA 0F 94
 00000010: C0 C2 04 00 90 90 90 90 90 90 90 90 90 90 90 90

Component

Application

Glue code
functions

Exported
component
functions

G G

E

G

E

E

G

E

N

N

Each circle stands for a function.
Each arrow connector stands for a function call.
The dotted line comparts application and component functions.
Black circles stand for the changed functions.

Black circles with letter ‘N’ stand for the added functions.
Gray circles stand for the affected functions (functions that are
affected by the changed or added component functions).
White circles stand for the unchanged or unaffected functions.
Circles with letter ‘G’ and ‘E’ stand for the glue code functions
and exported component functions, respectively.
Real line squares stand for the firewalls. Functions in the
firewall are the affected glue code functions.

Legend

G E

521

