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ABSTRACT 
ABB incorporates a variety of commercial-off-the-shelf (COTS) 
components in its products. When new releases of these 
components are made available for integration and testing, source 
code is often not provided. Various regression test selection 
processes have been developed and have been shown to be cost 
effectiveness. However, the majority of these test selection 
techniques rely on access to source code for change identification. 
In this paper we present the application of the lightweight 
Integrated - Black-box Approach for Component Change 
Identification (I-BACCI) Version 3 process that select regression 
tests for applications that use COTS components. Two case 
studies, examining a total of nine new component releases, were 
conducted at ABB on products written in C/C++ to determine the 
effectiveness of I-BACCI. The results of the case studies indicate 
this process can reduce the required number of regression tests at 
least 70% without sacrificing the regression fault exposure. 

Categories and Subject Descriptors 
D.2.4 [Software/Program Verification] 

General Terms: Reliability, Verification. 

Keywords: software testing, regression testing, commercial-
off-the-shelf, COTS 

1. INTRODUCTION 
ABB1, a global power and automation technologies company, 
incorporates a variety of commercial-off-the-shelf (COTS) 
components in its products. Upon receiving a new release of a 
COTS component, users such as ABB often need to conduct 
regression testing to determine if a new component or new 
version of a component will cause problems with their existing 
software and/or hardware system. However, users of COTS 
components often do not have access to the source code, but only 
to the binary files and reference documents. 

                                                                 
1 http://www.abb.com/ 

Regression testing involves selective re-testing of a system or 
component to verify that modifications have not caused 
unintended effects and that the system or component still 
complies with its specified requirements [10]. To minimize the 
time and resource costs of regression testing, a variety of 
regression test selection (RTS) processes have been developed [4, 
8, 20]. However, most of these processes rely on source code, and 
therefore, are not suitable when source code is not available for 
analysis, such as when an application uses COTS components. 
As a result, the default RTS strategy would be to retest all the 
functions involving the glue code2 due to the lack of information. 
The retest-all strategy is straightforward but can be prohibitively 
expensive in both time and resources [8]. North Carolina State 
University and ABB are collaborating with a common research 
goal: to safely reduce the testing required when components 
change and only binary code and documentation is available. 
The theory we are building via our research is as follows: 
When components change and only binary code and 
documentation are available, regression test selection can safely 
be based upon the glue code that interfaces with sections of the 
component that changed. 
To this end, we have evolved a six-step process with supporting 
tools for RTS for COTS-based applications [32, 33]. We call our 
process the Integrated - Black-box Approach for Component 
Change Identification (I-BACCI) process. The input artifacts to 
the process are the binary code of the components (old and new 
versions) and the source code and test suite of the application. 
These artifacts are generally available to the COTS user. The 
output of the I-BACCI process is a reduced suite of regression test 
cases, related to the changes in the COTS components. 
This paper furthers our prior work in (1) presenting the results of 
two industrial case studies of using I-BACCI Version 3 to reduce 
the number of test cases in the regression test suite; (2) presenting 
detailed tool support; (3) investigating the legality of analyzing 
binary code of purchased COTS components; and (4) examining 
the product failure records for a retest-all black box testing effort 
that was executed on the product. Black-box testing, also called 
functional testing or behavioral testing, is testing that ignores the 
internal mechanisms of a system or component and focuses solely 
on the outputs generated in response to selected inputs and 
execution conditions [10]. We use these results to analyze the 
safeness and effectiveness of I-BACCI as an RTS process.  A safe 
                                                                 
2 Glue code is application code that interfaces with the COTS 

components, integrating the component with the application. 
Terms used in this paper are illustrated in Appendix A. 
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RTS process guarantees that the subset of tests selected contains 
all test cases in the original test suite that can reveal faults based 
upon the modified program [4, 14, 20]. 
The rest of this paper is organized as follows. Section 2 outlines 
the background and related work. Section 3 describes the 
I-BACCI Version 3 process and its limitations. Tool support is 
discussed in Section 4.  Section 5 presents the two case studies of 
applying I-BACCI Version 3 on two ABB products and their 
library components. Section 6 discusses our lessons learned. 
Finally, Section 7 presents conclusions and future work. 

2. BACKGROUND AND RELATED WORK 
In this section, we discuss prior work in component testing, 
regression testing, change identification, and firewall analysis. 

2.1 Testing of software components 
Poor testability, due to the lack of access to the component's 
source code and internal artifacts, is one of the challenges in user-
oriented component testing [6, 7, 26]. The functions and 
behaviors of the components can  be hard to understand because a 
third-party component user only has the access to component 
specification, user interfaces, and reference manual [7]. 
Generally, only black-box tests can be run on COTS software 
because users do not have access to the source code to analyze the 
internal implementation. Black-box test cases of COTS 
components can be based upon the specification documentation 
provided by the vendor. Alternately, the behavior could be 
determined by studying the inputs and the related outputs of the 
component. When only binary code is available, binary reverse 
engineering can be a feasible approach to automatically derive a 
design structure of a component from its binary code, such as, call 
graphs [17]. 
Harrold et al. [9] presented techniques that use component 
metadata for regression test selection of COTS components. They 
illustrated their technique with a controlled example and seven 
releases of a real component-based system, demonstrating an 
average savings of 26% of the testing effort [9]. Their techniques 
utilize three types of metadata to perform the regression test 
selection: (1) the branch coverage achieved by the test suite with 
respect to the component to associate test cases with branches; (2) 
the component version; and (3) a means to query the component 
for the branches affected by changes in the component between 
two given versions [9]. However, the component provider may 
not provide this information. In our research, we focus on using 
information that is typically available to a component user. 

2.2 Regression test selection 
The purpose of RTS processes is to reduce the high cost of retest-
all regression testing by selecting a subset of possible test cases 
[8]. In the selection of test cases, an RTS process might not be 
safe. A variety of RTS techniques [4, 8, 20] have been proposed, 
such as methods based upon path analysis techniques or dataflow 
techniques. However, these techniques rely upon source code. 
Srivastava and Thiagarajan at Microsoft have developed a test 
prioritization system, Echelon [22], that prioritizes an 
application's set of tests based on a binary code comparison of 
two versions. Echelon takes as input two versions of the program 
in binary form, and a mapping between the test suite and the lines 
of code it executes. Echelon outputs a prioritized list of test 
sequences (small groups of tests). The researchers analyzed the 

efficacy of Echelon based on two runs of a comparison between 
two binaries of a 1.8 million line of code office productivity 
application [22]. In the first run, Echelon detected 87% of the 
defects in the first two of 148 test sequences; the remaining 13% 
of the defects were not detected by any tests in the test suite.  In 
the second run of different binaries, Echelon detected 98% of the 
defects in the first three of 221 test sequences; the remaining 2% 
of the defects were not detected by any tests. 
Srivastava and Thiagarajan also discussed the advantages of 
comparing at the binary level rather than the code level: (1) easier 
to integrate into the build process because the recompilation step 
needed to collect coverage data is eliminated; and (2) all the 
changes in header files (such as constants and macro definitions) 
have been propagated to the affected procedures, simplifying the 
determination of program changes [22]. Although they have not 
published results of applying Echelon to components, in theory, 
the tool seems to be applicable to test selection for COTS 
components. However, Echelon is a large proprietary Microsoft 
internal product with a significant infrastructure and an 
underlying bytecode manipulation engine.  As will be discussed, 
I-BACCI is a lightweight, relatively simple process. 

2.3 Change identification 
A key step in choosing regression tests is applying impact 
analysis [18] to identify changes between the new release and the 
previously-tested version with the same source code base. 
However, most change identification approaches utilize the 
source code of the old and modified programs [2, 13, 19, 20, 23, 
24]. These approaches are not suitable for component testing 
when source code is not available. 
Laski and Szermer [13] proposed a formal method to identify 
modifications made in a program. Vokolos and Frankl [23, 24] 
utilized a textual differencing technique to perform regression test 
selection. Apiwattanapong et al. [2] presented a technique for 
comparing object-oriented programs that identifies both 
differences and correspondences between two versions of a 
program. The algorithm is based on a method-level representation 
that models the object-oriented features of the language. Given 
two programs, their algorithm identifies matching classes and 
methods, builds a representation for each pair of matching 
methods, and compares the representation to identify similarities 
and differences. Empirical results show the efficiency and 
effectiveness of the technique on a real program [2]. Ren et al. 
[19] developed Chianti, a change impact analysis tool for Java. 
Chianti analyzes two versions of a Java program, decomposes 
their difference into a set of atomic changes, and calculates partial 
order inter-dependencies of these changes. Change impact is then 
reported in terms of affected (regression or unit) tests whose 
execution behavior may have been modified by the applied 
changes. For each affected test, Chianti also determines a set of 
affecting changes that were responsible for the test's modified 
behavior [19]. 
Wang et al. [25] developed the Binary Matching Tool (BMAT) 
which compares two versions of a binary program without 
knowledge of the source code changes. The implementation uses 
a hashing-based algorithm and a series of heuristic methods to 
find correct matches for as many program blocks as possible. The 
algorithm first matches procedures, then basic blocks within each 
procedure. The implementation of BMAT is built on Windows 
NT® for the x86 architecture, using the Vulcan binary analysis 
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tool [21] to create an intermediate representation of x86 binaries, 
which frees the BMAT developers from the tasks of separating 
code from data and identifying program symbols. The process 
enables good matching even with shifted addresses, different 
register allocations, and small program modifications [25]. 
BMAT underlies Echelon [22] (discussed in Section 2.2) to match 
blocks in the two binaries. However, like Echelon, BMAT is a 
proprietary tool. We have developed a lightweight non-
proprietary Trivial Identifier of Differences in BInary-analysis 
Text Zapper (TID-BITZ)3 tool to perform the same function for I-
BACCI, as will be discussed in Section 4.2. 
Although a comparison between versions of documentation is 
potentially helpful [14, 16], the documentation for COTS 
components may not reflect all changes. Implementation may 
change without necessitating any documentation changes, such as 
for a code fix. Thus, users of COTS software should perform 
thorough change identification which does not rely solely on the 
component documentation. I-BACCI addresses this. 

2.4 Firewall analysis 
Leung and White [1, 14, 15, 29] developed firewall analysis for 
regression testing with integration test cases (tests that evaluate 
interactions among components [10]) in the presence of small 
changes in functionally-designed software. Firewall analysis 
limits regression testing to potentially-affected system elements 
directly dependent upon changed system elements [29, 30]. I-
BACCI utilizes firewall analysis for RTS. 
Module dependencies, control-flow dependencies, and data 
dependencies are considered in firewall analysis [29]. Affected 
areas, including modified functions, structures, and functions that 
use them, are identified. Dependencies are modeled as call graphs 
and a "firewall" is drawn around the changed functions on the call 
graph. All modules inside the firewall are unit and integration 
tested, and are integration tested with all modules not enclosed by 
the firewall [29]. Test cases that need to be re-run over these 
modules are identified and/or new test cases to exercise new code 
or functionality are generated. Kung et al. [11, 12] utilized the 
firewall concept on an object-oriented system, and White and 
Abdullah [27] expanded the firewall to address more features of 
an object-oriented system. Firewall was also utilized in the 
regression testing of graphical user interfaces [28]. 
Firewall methods can only be guaranteed to select all 
modification-revealing [20] tests and to be safe if all unit and 
integration tests initially used to test system components are 
reliable. Tests are reliable if the correctness of modules exercised 
by those tests for the tested inputs implies correctness of those 
modules for all inputs [20]. However, test suites are typically not 
reliable in practice [30], so the firewall technique may omit 
modification-revealing tests and/or may admit some non-
modification-traversing tests. Via empirical studies of industrial 
real-time systems, firewall was effective despite these theoretical 
limitations [30]. These limitations thus should not impair the 
effectiveness of I-BACCI in practice. 

3. I-BACCI VERSION 3 
The I-BACCI process is an integration of the firewall analysis 
RTS process with our Black-box Approach for Component 

                                                                 
3 http://www4.ncsu.edu/~jzheng4/TID-BITZ/index.htm 

Change Identification (BACCI) process (initially proposed in 
[31]) for identifying change. I-BACCI Version 3 involves six 
steps, as shown in Figure 1. The inputs to the I-BACCI process 
are shown in gray blocks. The first two steps are done via the 
BACCI process (in dash-dotted line frame), which produces a 
report on changed functions and the calling relationships among 
functions in the components. The remaining four steps are done 
via firewall analysis (in dashed line frame), which requires the 
glue code functions, the full test suite for the application, and the 
output of BACCI. 

3.1 I-BACCI process 
There are two sub-steps for the first step of the BACCI process: 
(1a) decomposing4 the binary files of the component; and (1b) 
filtering trivial information to facilitate comparisons by 
differencing tools. Prior to distribution, component source code is 
compiled into binary code formats, such as .lib, .dll, or .class files. 
Information on the data structure, functions, and function calling 
relationships of the source code is stored in the binary files 
according to pre-defined formats, such as Common Object File 
Format (COFF)5 [33], so that an external system is able to find 
and call the functions in the corresponding code sections. 
The output of the first sub-step should be formatted conveniently 
for differencing tools to identify changes between releases. The 
output of the second sub-step should be formatted conveniently 
for a graph generation tool to build call graphs. Often the first 
sub-step can be accomplished by parsing tools available for the 
language/architecture. For example, 32-bit COFF binary files can 
be examined by the Microsoft COFF Binary File Dumper 
(DUMPBIN)5. The DUMPBIN output is suitable as input to 
differencing tools. The second sub-step is frequently necessary 
because the output from the first sub-step may contain trivial 
information such as timestamps and file pointers, which are 
"noise" for the change identification. Generally, the second sub-
step cannot be done via existing tools. Therefore, we have created 
the Decomposer and Trivial Information Zapper (D-TIZ)6 to 
perform the decomposition and remove trivial information. D-TIZ 
is described more fully in Section 4.1. 

The second step of the I-BACCI process is to compare code 
sections between two versions. In I-BACCI Version 1, the output 
of D-TIZ was fed into the commercial differencing tool Araxis 
Merge7 to generate reports showing the changed functions. 
However, a large number of false positives were observed in I-
BACCI Version 1, which increased the number of functions in the 
application that were unnecessarily identified for retesting.   
Source code of the component was examined to determine the 
cause of the false positives. We found that a large amount of false 
positives were caused by the changes in registers used and 
addresses of variables/functions. Therefore, we have created TID-
BITZ to identify real code changes only, eliminating differences 
due to registers and addresses. The algorithm used in TID-BITZ 
will be introduced in detail in Section 4.2. 

                                                                 
4 We use the term decomposing to refer to breaking up the binary 

code down into constituent elements, such as code sections and 
relocation tables. 

5 MSDN Library - Visual Studio .NET 2003 
6 http://www4.ncsu.edu/~jzheng4/D-TIZ/index.htm 
7 http://www.araxis.com/ 
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Figure 1:  I-BACCI Version 3 Regression Test Selection Process 

The third and fourth steps of the I-BACCI process produce 
function call graphs. The input for Step 3 is the calling 
relationships among functions in a component, and the input for 
Step 4 is the calling relationships for the glue code. In Step 4, 
only the exported component functions8 and the glue code 
functions calling them need to be included in the call graphs. In 
the first two versions of I-BACCI, the call graphs were drawn and 
analyzed manually. We have created Call-graph Analyzer – 
Affected Function Identifier (CAAFI)9 (as will be discussed in 
Section 4.3) to represent and analyze the call graphs of the 
components automatically in I-BACCI Version 3. The call graphs 
for the glue code are still drawn and analyzed manually via 
adjacency-matrix representation [5] because no proper existing 
tool was found to represent call graphs for source code. The call 
graphs can be drawn using graph generation tools such as 
GraphViz10, and the call graphs generated from the two steps can 
be integrated together to identify affected glue code functions. 

In the fifth step, the affected glue code functions are identified 
using directed graph theory algorithms. These are the functions 

                                                                 
8 Exported component functions are functions within the COTS 

component that interfaces with application, as illustrated in 
Appendix A.  

9 http://www4.ncsu.edu/~jzheng4/CAAFI/index.htm 
10 An open source tool, http://www.graphviz.org/ 

within the application that are potentially affected by the changed 
function(s) in the component, and therefore need to be re-tested.  
Analysis starts from each component function identified as 
changed, and that change is propagated along the call graphs from 
Step 4 until the glue code functions are reached. 

The method discussed in the prior paragraph is especially suitable 
when there are only a few function changes in the new version of 
the component, but many glue code functions that directly call 
these functions. An alternative method can be used when there are 
only a few glue code functions and but many component function 
changes that directly call component functions. Analysis may 
start from the glue code functions and examine the component 
functions being called by them along the call graphs, until a 
changed component function is found or all the leaves are reached 
but no changed component functions are found. In the former 
situation, the initial glue code function is affected by the change 
in the component, so that it needs to be re-tested; the latter 
situation indicates the initial glue code function does not need to 
be tested. The output of Step 5 is a list of all affected glue code 
functions which need to be re-tested. 

CAAFI identifies the affected component functions. Affected glue 
code functions can be identified based on the changed and/or 
affected component functions. The algorithm used in CAAFI will 
be discussed in detail in Section 4.3. 

Component binary 
code (old version) 

Component binary 
code (new version) 

Glue code functions

Step 1: Decompose both old and new versions of binary code (DUMPBIN+D-TIZ)

Function code sections 
for both versions 

Calling relationships 
for the new version 

Step 2: Compare code sections 
of the two versions (TID-BITZ) 

Step 3: Draw call graphs for the new 
version of the component (CAAFI) 

Differencing reports Call graphs (new version) 

Step 5: Identify affected glue code functions by tracing the 
affected component functions along the call graphs (CAAFI) 

Step 4: Draw call graphs for the 
glue code functions which calls 
component functions (manually) 

Call graphs (glue code functions) 

Affected glue code functions 
All test cases for the glue 
code functions, mapped to 
the functions they cover

Step 6: Select test cases that cover the affected glue code functions (manually)

Reduced set of test cases 

I-BACCI Process
Version 3

BACCI 
Process 

Firewall  
Analysis 
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In the sixth step, the set of test cases which are mapped to the 
glue code functions they cover are used to select test cases that 
cover only the affected glue code functions, as identified by the 
steps above. The I-BACCI process has the potential to reduce the 
set of regression test cases because it focuses on the affected glue 
code functions and ignores the unaffected areas in the application. 

3.2 Limitations of I-BACCI 
I-BACCI shares an acknowledged technical limitation with all 
existing firewall methods: the potential for reporting false 
negatives in situations where binary differences are due to factors 
other than changes in source code (e.g. build tools, environment, 
or target platform). Although I-BACCI does work with the binary 
files for the component, and such differences are potentially 
detectable from binary file comparisons, the current method of 
analysis precludes identification of such differences. 

The second limitation of I-BACCI is its potential for identifying 
false positives by assuming, in tracing the call graphs, that any 
uses of called functions with changed binaries will be affected by 
the change. However, an actual use of a changed function might 
never exercise the changed logic or data. With further 
development of I-BACCI, these unneeded tests may be eliminated 
from the regression suite. However, this limitation does not 
degrade the level of safeness of the I-BACCI method below that 
of its underlying firewall RTS technique. 

Finally, I-BACCI requires (as input) test suites which are 
traceable to the glue code functions they cover, in order to 
perform RTS. 

4. TOOL SUPPORT 
In this section, three tools that were developed and used in I-
BACCI Version 3 are described. More details and pseudocode for 
all the tools is available online3,6,9. 

4.1 D-TIZ 
D-TIZ is used in the first step of the I-BACCI process with 
DUMPBIN. Information on the functions and structures of the 
source code is stored in some areas of the binary files according 
to pre-defined formats, so that a system is able to call the 
functions in corresponding code sections. DUMPBIN translates 
the illegible binary library files into readable plain text. An 
example of the output of DUMPBIN is shown in Appendix B. 
Function names, binary code representation of the functions, and 
relocation tables are all clearly described in the output text of 
DUMPBIN. D-TIZ scans the output of DUMPBIN, saves the code 
sections of functions into separate files, and collects and saves the 
relocation tables of the functions into a text file (henceforth called 
"relocation table set"). The function list is fed into TID-BITZ to 
perform differencing. CAAFI utilizes the relocation table set to 
generate and analyze call graphs of the components. Currently D-
TIZ can only be used with library (.lib) files, but we are currently 
extending to handle additional component types, such as dynamic 
link library (DLL). 

4.2 TID-BITZ 
A large number of false positives were observed in the initial case 
study of I-BACCI Version 1 [33], which increased the number of 
glue code functions that were identified for retesting. To explore 

the cause of the false positives, the analyzer examined the source 
code and the associated binary library files of the component. A 
large amount of false positives were caused by changes in 
registers used and addresses of variables and functions, which 
typically would not cause functional changes in the code. 

For example, as shown in bold in Appendix B, the binary code 
8B89A0060000 means "copy the operand in the address of 
register ECX plus offset 0x06A0 to register ECX", where 8B89 
is the instruction and A0060000 is the address offset11. 
Therefore, in this example, the only difference in binary is that 
the address offset was changed from A0060000 to CC060000. 
Further examination of the source code showed that seven new 
function declarations and one new variable definition were added 
before the variable state was defined in class SM_USM_envoy 
in one of the header files included in the source file of Release 
B2. As a result, the offset of the variable state was changed 
accordingly. In this case, the binary code change identified is not 
a real change and can be ignored in the change identification. We 
call binary code like 8B89A0060000 is an example of a "binary 
code comparison false positive pattern." Many such false positive 
patterns were found in the initial case studies. The full list of these 
patterns can be found online2. The TID-BITZ tool was created to 
reduce the false positives, and then I-BACCI was promoted to 
Version 2 to include the use of this tool in Step 2 [32]. TID-BITZ 
did reduce the false positive rate to less than 8% in the case 
studies that will be discussed in Section 5, as shown in Table 1. 

However, TID-BITZ may introduce false negatives by 
eliminating real code changes. As shown in Table 1, there were 
no false negative without using TID-BITZ. The use of TID-BITZ 
introduced less than 2% false negatives in our case studies. The 
high false positive rate without TID-BITZ would lead to much 
more affected functions in both component and application. 

Table 1. TID-BITZ Results  
(FP is false positive; FN is false negative.) 

Comparisons
% of FPs
without 

TID-BITZ

% of FPs 
with 

TID-BITZ 

% of FNs 
without 

TID-BITZ 

% of FNs
with 

TID-BITZ
A1 vs. A2 90.1% 5.6% 0% 0% 

A2 vs. A3 0% 0% 0% 0% 

A3 vs. A4 0% 0% 0% 0% 

A4 vs. A5 0% 0% 0% 0% 

A5 vs. A6 0% 0% 0% 0% 

B1 vs. B2 59.3% 4.9% 0% 0.5% 

B2 vs. B3 12.4% 6.1% 0% 1.6% 

B3 vs. B4 0% 0% 0% 0% 

B4 vs. B5 76.9% 7.7% 0% 0% 

4.3 CAAFI 
Due to the large amount of functions in the components, it is 
time-consuming to identify affected functions given changed 
functions in the components according to the calling relationships 

                                                                 
11 http://developer.intel.com/design/pentium4/manuals/index_new 

.htm 
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produced in Step 3 and 4. CAAFI was created in I-BACCI 
Version 3 to save analysis time and resources. The input to 
CAAFI is the relocation table set generated by D-TIZ, and 
changed functions identified by TID-BITZ. First, the relocation 
table set of a component is converted into an adjacency-matrix [5] 
to represent call graphs of the functions in the component. For 
each changed function, CAAFI then backtracks the call graphs to 
identify all functions that directly or indirectly call the changed 
function. The output includes a list of all affected functions in the 
component, and the subgraphs that show how the functions are 
affected by each changed function. For each case study, CAAFI 
reduced the time cost from approximately 16 person hours to less 
than three minutes. 

5. CASE STUDIES 
Case studies of ABB products have been conducted on I-BACCI 
Version 1 and Version 2 [32, 33]. For I-BACCI Version 1, an 
initial case study (henceforth called Case 1) had been conducted 
on a 757 thousand lines of code (KLOC) ABB application 
(henceforth called Application A) written in C/C++. Application 
A uses a 67 KLOC internal ABB software component (henceforth 
called Component A) of library (.lib) files written in C. Six 
incremental releases of Component A were analyzed and 
compared (henceforth referred to as Release A1 through Release 
A6, respectively). Each Component A release contains a library 
file with size of about 800 kilobyte. The initial result of the case 
study indicated that I-BACCI Version 1 can reduce the number of 
regression tests by 40% on average [31]. Some releases required 
no retesting, as no changes in the component affected the product 
using the component. Other releases appeared to require full 
retesting; however, TID-BITZ had not yet been created to reduce 
false positives. 

I-BACCI Version 2 was applied on a second case study 
(henceforth called Case 2) conducted on a 40 KLOC ABB 
application (henceforth called Application B) written in C/C++. 
This product uses a 30 KLOC internal ABB software component 
(henceforth called Component B) of library (.lib) files written in 
C. Five incremental releases of Component B were analyzed and 
compared (henceforth referred to as Release B1 through Release 
B5, respectively) to study the effectiveness of I-BACCI Version 2 
for safely reducing regression test cases. Each Component B 
release contains eight libraries with total size of 1.39 ~ 1.65 
megabyte. The full, retest-all strategy takes over four man months 
of effort to run. With TID-BITZ incorporated into I-BACCI 
Version 2 to reduce false positives, this case study showed that on 
average 54% of the number of regression tests can be reduced 
[32]. 

These software combinations were chosen for these case studies 
because (1) the numbers of test cases for each function of the 
applications were available; (2) multiple releases of the 
components were available; (3) the high cost of executing the 
retest-all strategy demonstrates the potential value of achieving 
regression test reductions. 

In this paper, we report the re-analysis of both case studies with I-
BACCI Version 3 which includes all the three tools discussed in 
Section 4. Additionally, we report the safeness of I-BACCI based 
upon an examination of the failure records of retest-all black-box 
testing. 

5.1 I-BACCI Version 3 on library files 
The library files analyzed in the two case studies contain the raw 
binary code of many object files. The library files are organized 
in segments similar to the COFF file format [33]. The calling 
relationships among functions in the whole component can be 
ascertained by tracing the calls in the relocation tables throughout 
the library file. 

The analyzer (the fist author of this paper) conducted the first five 
steps of I-BACCI Version 3. During the first step of the I-BACCI 
process, each library file in each of the releases was translated 
into plain text using DUMPBIN. D-TIZ was used to scan the 
output of DUMPBIN, save the code sections of functions into 
separate files, and obtain the relocation table of each function. For 
the second step, the TID-BITZ tool was used to compare the 
functions among the releases and to generate differencing reports. 
This change identification part (Step 1 and 2) of the case studies 
was conducted on an IBM T42 laptop with one Intel® Pentium® 
M 1.8GHz processor and one gigabyte RAM. Completing the first 
step of the process with DUMPBIN and D-TIZ took 22 seconds 
and 29 seconds in total for Case 1 and 2, respectively, once the 
cache was warm. TID-BITZ then spent about one second on each 
comparison and generating a differencing report. 

In the third, fourth, and fifth steps, call graphs were drawn for 
changed functions to identify the affected glue code functions by 
tracing the affected component functions along the call graphs. 
CAAFI took about 90 seconds and 170 seconds, respectively, to 
identify affected component functions for Case 1 and 2. The 
remaining manual work for each case study, including drawing 
call graphs for the glue code functions (Step 4) and identifying 
affected glue code functions (part of Step 5) in the application 
source code, took the analyzer less than two person hours. The 
results of the identified changes for all comparisons and all call 
graphs for the components were preliminarily verified by the 
analyzer, using source code for the component to determine the 
accuracy of the analysis post hoc. Then, the second author 
determined the numbers and percent reduction of the regression 
test cases needed, based on the list of all the affected glue code 
functions and the original test suite. The second author also 
verified the efficacy of the RTS process by examining the failure 
records of retest-all black-box testing. With the help of the tools, 
the whole I-BACCI process was done in approximately two 
person hours for each case study. 

5.2 Results of I-BACCI Version 3 on Case 1 
The results of applying I-BACCI Version 3 on Case 1 
(Application A and Component A) are shown in Table 2.  The 
interface between Application A’s glue code functions and 
Component A was examined, to establish a baseline of affected 
functions in the application. In total, 60 functions (in 50 C++ 
files) in Application A call 89 functions of Component A. In the 
worst case, all 60 functions would be affected by the changes in 
the component and would need to be re-tested. 

The first analysis was conducted between Release A1 and Release 
A2 of Component A. The BACCI analysis showed that 18 
functions were changed out of the 941 functions in Release A2, 
including three new functions. However, firewall analysis showed 
that 319 exported functions in Component A were affected by the 
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identified changes. All 60 functions in Application A were 
affected. As a result, there was no regression test case reduction. 

The second analysis correctly identified 23 changed component 
functions, and 71 exported functions in the component were 
affected by the identified changes. Only two glue code functions 
call the affected exported component functions. Therefore, we 
achieved 98.7% regression test case reduction. 

The latter three analyses identified only a few changes and no 
function in Application A calls any affected functions in the 
components, although the changes did affect some exported 
functions in the components. Therefore, we achieved 100% 
regression test case reduction for these three comparisons.  
Overall, approximately an average 80% test case reduction was 
achieved for these five new releases. 

The second author examined the failure records of retest-all 
black-box testing.  There were no regression test failures found. 

Table 2. Case 1 Results by I-BACCI Version 3 

Comparisons 
Metrics 

1 vs 2 2 vs 3 3 vs 4 4 vs 5 5 vs 6
Total changed functions 
identified 18 23 1 10 3 

True positive ratio12 100% 100% 100% 100% 100%

False positive ratio13 5.6% 0% 0% 0% 0% 
Affected exported 
component functions14 319 71 2 55 39 

% of affected exported 
component functions 96.4% 21.5% 0.6% 16.6% 11.8%

Affected glue code 
functions15 60 2 0 0 0 

% of affected glue code 
functions 100% 3.3% 0% 0% 0% 

Total test cases needed 592 8 0 0 0 

% of test cases reduction 0% 98.7% 100% 100% 100%
Actual regression failures 
found 0 0 0 0 0 

Regression failures detected 
by reduced test suite 0 0 0 0 0 

 

Compared to the results of I-BACCI Version 1 on this case, the 
regression test cases reduction increased from 40% to 80%, on 
average [33], indicating the utility of the TID-BITZ tool. 

                                                                 
12 True positives ratio is number of real changed functions found 

divided by total number of real changed functions. 
13 False positive ratio is number of identified changed functions 

that are not really changes, divided by number of (correctly and 
incorrectly) identified changed functions. 

14 Affected exported component functions are functions within the 
COTS component that interfaces with application, either 
changed or affected by other component functions, as illustrated 
in Appendix A. 

15 Affected glue code functions are functions within the glue code 
that directly call affected exported component functions, as 
illustrated in Appendix A. 

Additionally, the postmortem source code difference analysis 
showed that the change identification was correct except that one 
false positive existed in the comparison between Release A1 and 
Release A2. No false negative was found in all analyses. 

5.3 Results of I-BACCI Version 3 on Case 2 
Similarly, the results of applying I-BACCI Version 3 on Case 2 
(Application B and Component B) are shown in Table 3. 

Table 3. Case 2 Results with I-BACCI Version 3 

Comparisons 
Metrics 

1 vs 2 2 vs 3 3 vs 4 4 vs 5
Total changed functions 
identified 338 1238 4 13 

True positive ratio 99.5% 98. 4% 100% 100%

False positive ratio 4.9% 6.1% 0% 7.7%
Affected exported component 
functions 84 122 1 8 

% of affected exported 
component functions 68.3% 100% 0.8% 6.6%

Affected glue code functions 38 59 1 6 
% of affected glue code 
functions 82.6% 100% 1.7% 10.7%

Total test cases needed 151 215 11 20 

% test cases reduction 30% 0% 95% 91% 
Actual regression failures 
found 4 8 1 0 

Regression failures detected by 
reduced test suite 4 8 1 0 

 

The interfaces between Application B's glue code functions and 
the Component B were also examined to establish a baseline of 
affected functions in the application. The glue code functions 
changed in Release B3. For the former version of glue code 
functions (i.e. in Release 2), there are 123 exported functions in 
the component. In total, 46 glue code functions (in six C files) call 
81 out of the 123 exported functions of the component. In the 
worst case, all of the 46 functions would be affected by the 
changes in the component and would need to be re-tested. 
Similarly, at most 59 glue code functions in the latter version 
would be affected. 

The first analysis was conducted between Release B1 and Release 
B2 of the component. The BACCI analysis showed that 388 
functions were changed out of 1143 functions in Release B2. 
Firewall analysis showed that 84 exported functions in 
Component B were affected by the identified changes and 38 glue 
code functions were affected. As a result, 30% of the regression 
test cases can be reduced. 

More reduction was achieved in the latter two comparisons: only 
5% and 9% of the test cases needed to be re-run. However, due to 
the great extent of changes between Release B2 and B3, no 
regression test case reduction was found. 

Examination on the failure records of retest-all black-box testing 
indicated the safeness of I-BACCI Version 3 process as all 13 
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regression test failures would be detected by the reduced 
regression test suite. 

In the second case study, source code difference analysis showed 
that the TID-BITZ tool was able to reduce false positives to only 
6% on average while still having a low false negative rate (about 
1%), as shown in Table 1. The false negatives were caused 
because a changed function contained a function call which was 
replaced by another function call. TID-BITZ ignored the address 
changes of the changed function call. Additionally, with the help 
of CAAFI, the time cost of the whole process reduced from about 
24 person hours [32] to two hours. As shown in the results of the 
two case studies, I-BACCI is more effective when there are small 
incremental changes between revisions. 

5.4 Case Study Limitations 
A limitation of the case studies is that all the applications and 
components used were software developed by ABB Inc. involving 
.lib library files. We chose to conduct our research in this manner 
because, ultimately, we needed to check the accuracy of our 
process and needed to develop and evolve the support tools by 
manually examining source code. We strived to maintain as much 
objectivity as possible in our work.  The first author conducted 
the I-BACCI process in both case studies. The second author then 
revealed the actual changes and the black-box testing results. 

6. LESSONS LEARNED 
We list the experiences with our effort of regression test selection 
when source code is not available in order of importance as 
follows: 

• We gathered 28 license agreements to investigate the legality 
of analyzing binary code of purchased COTS components. 
Relevant sentences in the license agreements were reviewed 
by lawyers of North Carolina State University. The lawyers 
deemed that the approaches and algorithms used in I-BACCI 
process are legal due to the purpose of the analysis.  Many of 
the license agreements of commercial components prohibit 
the user of components from reverse engineering, 
decompiling, disassembling, or otherwise attempting to 
discover the source code of the software except to the extent 
that this restriction is expressly prohibited by law. Copyright 
law does not prohibit the analysis on the code, only prohibit 
reproducing the components, making derivative works, or 
distributing copies of the products. The purpose of our 
research is to reduce the testing required when components 
change and only binary code and documentation is available. 
The information of the components that we need in the 
analyses is in function level (function signatures and 
function calling relationships) instead of the source code or 
any logic/algorithm of the software. 

• Currently the TID-BITZ tool works only when the releases 
of components are built by the same compiler. An initial run 
of I-BACCI on the second and fourth comparisons of Case 1 
revealed that more than 95% of the initially-identified 
changes were not real changes (a.k.a. false positives). A re-
analysis on versions rebuilt by the same compiler showed the 
results discussed in Section 5.2. 

• In Case 2, all the regression test failures can be detected by 
the reduced regression test suite. However, for Case 1, no 

regression test failures were found. Therefore, we could not 
obtain support for the safeness of I-BACCI through this case 
study. In the future, we will select case studies that contain 
regression test failures. 

7. CONCLUSIONS AND FUTURE WORK 
ABB desires a method of selecting regression tests when the 
COTS components included in their applications change. In this 
paper, we proposed Version 3 of the I-BACCI process for 
regression test selection for applications that use software 
components when source code is not available. Two case studies 
were examined to verify the potential efficacy of this process. The 
results showed that I-BACCI is an effective RTS process for 
COTS-based applications. We achieved at least 70% regression 
test case reduction for the nine new releases of these two case 
studies. The safeness of the RTS process had been verified by 
examining the failure records of retest-all black-box testing. No 
failures would have escaped our reduced test suite. I-BACCI can 
most beneficial when there are small incremental changes 
between revisions. These results supported our theory: 

When components change and only binary code and 
documentation are available, regression test selection can safely 
be based upon the glue code that interfaces with sections of the 
component that changed. 

We plan to pursue several directions in our future work. First, 
additional breadth is required to expand this process to adapt to 
more of the COTS file types and programming languages. We 
plan to analyze more components in the various formats which 
can be examined by DUMPBIN, such as dynamic link libraries 
and executable files, as well as different component types such as 
the container/control model, in which user programs act as 
containers for third party controls. Additionally, to address the 
limitations of I-BACCI which are discussed in Section 3.2, we 
will explore other approaches, such as applying other code-based 
regression selection techniques and examining other available 
artifacts of COTS components. Also, we will consider changes 
caused by factors other than source code (e.g. build tools, 
environment, and target platforms), and improve the supporting 
tools to remove as many false negatives as possible. 
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Appendix A. Illustration of the terms 

 
 

Appendix B. An example of DUMPBIN output 
int SM_USM_envoy::GetState(int s) {                     Source code in both Release B1 and B2 
   return state==s; 
} 
 

SECTION HEADER #78              Corresponding section in the output of DUMPBIN for Release B1 
   .text name 
       0 physical address 
       0 virtual address 
      20 size of raw data 

722B file pointer to raw data 
       0 file pointer to relocation table 
       0 file pointer to line numbers 
       0 number of relocations 
       0 number of line numbers 
60501020 flags 
         Code 
         Communal; sym= "public: virtual int __thiscall SM_USM_envoy::GetState(int)" 
         16 byte align 
         Execute Read 
RAW DATA #78 
  00000000: 8B 89 A0 06 00 00 8B 54 24 04 33 C0 3B CA 0F 94  
  00000010: C0 C2 04 00 90 90 90 90 90 90 90 90 90 90 90 90  
 

SECTION HEADER #79              Corresponding section in the output of DUMPBIN for Release B2 
   .text name 
       0 physical address 
       0 virtual address 
      20 size of raw data 
    73D1 file pointer to raw data 
       0 file pointer to relocation table 
       0 file pointer to line numbers 
       0 number of relocations 
       0 number of line numbers 
60501020 flags 
         Code 
         Communal; sym= "public: virtual int __thiscall SM_USM_envoy::GetState(int)" 
         16 byte align 
         Execute Read 
RAW DATA #79 
  00000000: 8B 89 CC 06 00 00 8B 54 24 04 33 C0 3B CA 0F 94  
  00000010: C0 C2 04 00 90 90 90 90 90 90 90 90 90 90 90 90  
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Each circle stands for a function.  
Each arrow connector stands for a function call. 
The dotted line comparts application and component functions. 
Black circles stand for the changed functions. 

Black circles with letter ‘N’ stand for the added functions. 
Gray circles stand for the affected functions (functions that are 
affected by the changed or added component functions). 
White circles stand for the unchanged or unaffected functions. 
Circles with letter ‘G’ and ‘E’ stand for the glue code functions
and exported component functions, respectively. 
Real line squares stand for the firewalls. Functions in the 
firewall are the affected glue code functions. 
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