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Abstract  

In anticipation of a rapid increase in the 

number of civil Unmanned Aircraft System 

(UAS) operations, NASA is researching 

prototype technologies for a UAS Traffic 

Management (UTM) system that will investigate 

airspace integration requirements for enabling 

safe, efficient low-altitude operations. One 

aspect a UTM system must consider is the 

correlation between UAS operations (such as 

vehicles, operation areas and durations), UAS 

performance requirements, and the risk to 

people and property in the operational area. 

This paper investigates the potential application 

of the International Civil Aviation 

Organization’s (ICAO) Required Navigation 

Performance (RNP) concept to relate 

operational risk with trajectory conformance 

requirements. The approach is to first define a 

method to quantify operational risk and then 

define the RNP level requirement as a function 

of the operational risk. Greater operational risk 

corresponds to more accurate RNP level, or 

smaller tolerable Total System Error (TSE). 

Data from 19 small UAS flights are used to 

develop and validate a formula that defines this 

relationship. An approach to assessing UAS 

RNP conformance capability using vehicle 

modeling and wind field simulation is developed 

to investigate how this formula may be applied 

in a future UTM system. The results indicate the 

modeled vehicle’s flight path is robust to the 

simulated wind variation, and it can meet RNP 

level requirements calculated by the formula. 

The results also indicate how vehicle-modeling 

fidelity may be improved to adequately verify 

assessed RNP level. 

1 Introduction  

 

In the past decade, interest in civil applications 
of Unmanned Aircraft System (UAS), such as 
infrastructure inspection, crop monitoring, 
emergency response, goods delivery, and 
entertainment, has grown [1-6]. A 2016 study [7] 
estimated the addressable market value of these 
applications at US$127 billion, and found that 
there are more than 200 manufacturers currently 
producing civil UAS to meet the global demand. 
In the United States alone, about 400,000 UAS 
were sold during 2015 for civil use, and more 
than 1 million UAS are expected to be sold in 
2016 [8]. To address the challenge of ensuring 
safety with growing UAS operations, the 
Federal Aviation Administration (FAA) 
announced Federal Aviation Regulations Small 
Unmanned Aircraft Rule (FAR Part 107) that 
allows for the routine use of UAS that weigh 
less than 25 kg under a set of conditions [9]. As 
the initial step, the FAA’s rule limits flights to 
daylight and Visual-Line-Of-Sight (VLOS) 
operations. However, less restricted operations 
are expected to be allowed in the future, 
facilitated by advances in UAS technologies and 
increased insight into operational safety and 
privacy issues, leading to an exponential growth 
of the number of operations [10, 11]. 
      Anticipating a rapid increase in the number 
of UAS operations, NASA is researching 
prototype technologies for a UAS Traffic 
Management (UTM) system and airspace 
integration requirements that will enable safe, 
efficient low-altitude operations [12]. In a 
potential UTM system architecture, information 
about UAS operations, (e.g., vehicles, planned 
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operational areas and durations), airspace 
constraints (e.g., Temporary Flight 
Restrictions), and data to support safe airspace 
operations (e.g., terrain and obstacle 
information and low altitude wind forecast), are 
made available to UAS operators and the 
general public. One area of investigation is the 
relation between UAS performance 
requirements and the risk to people and property 
in the operational area [13]. For example, 
requirements for command and control radio 
link redundancy, aircraft position report 
accuracy, and trajectory conformance would be 
more stringent for goods delivery in urban areas 
than for pipeline inspections in remote areas 
because of the differences in potential risk to 
people and property in the operational areas.  
      The focus of this paper is the development 
of a quantitative framework to correlate 
operational risk with trajectory conformance 
requirements, where the International Civil 
Aviation Organization’s (ICAO) Required 
Navigation Performance (RNP) concept is 
applied to specify the latter. RNP is a type of 
navigation specification that defines the 
required accuracy for lateral flight path [14], 
and aircraft conducting RNP operations must 
remain within that lateral accuracy for 95 
percent of the trajectory [15]. RNP is used 
widely in commercial aviation to reduce air 
traffic congestion, decrease aviation fuel 
consumption, and protect the environment [14]. 
      The approach to developing this framework 
consisted of defining a method to quantify 
operational risk and, then, defining RNP level as 
a function of the operational risk. In this 
framework, greater operational risk corresponds 
to a more accurate RNP level or, equivalently, 
to a smaller tolerable Total System Error (TSE). 
Data and operational constraints from a flight 
test of a preliminary UTM system prototype are 
used to provide rationale for a formula that 
defines this relationship. To facilitate 
application of this relation in traffic 
management, an approach is developed to assess 
small UAS RNP level based on a vehicle model 
and a wind field generated using Computational 
Fluid Dynamics (CFD). The results lead to a 
recommendation of steps that can be taken to 

increase vehicle-modeling fidelity and to verify 
assessed RNP level. 

2 Application of RNP in Small UAS Traffic 

Management 

2.1 Brief Overview of RNP and TSE 

RNP is a type of Performance-Based Navigation 
(PBN) specification [14]. It is a method of 
navigation that permits aircraft operation on any 
desired flight path within the coverage of 
ground- or space-based navigation aids, or 
within the navigational capability of self-
contained aids such as Inertial Navigation 
System (INS), or within the coverage and the 
navigational capability of the two. RNP 
specification includes onboard performance 
monitoring and alerting capability [15].  

The lateral accuracy value of RNP is 
typically specified in the format of the acronym 
“RNP” followed by the distance in nautical 
miles (NM) from the intended flight path 
centerline (e.g., RNP 10 indicates 10NM lateral 
accuracy). All aircraft conducting RNP 
operations must have position error of less than 
the specified distance for 95 percent of the 
trajectory [16]. This position error is the 
displacement perpendicular to desired path, and 
it consists of the following three errors: 
Navigation System Error (NSE), Flight 
Technical Error (FTE), and Path Definition 
Error (PDE). These three errors are assumed to 
be independent, normally distributed with zero 
mean, and their sum is Total System Error 
(TSE) [14]. Fig. 1 illustrates the components of 
the RNP path error definition. Aircraft 

 
Figure 1. Components of RNP path error  
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manufacturers typically use statistical test 
results of flight data, including TSE statistics, 
for certifying RNP systems (e.g., 95th percentile 
TSE of 10NM for RNP 10) [16]. 

2.2 A Heuristic Relation between Operational 

Risk and RNP Level 

Safe integration of UAS into the National 
Airspace System (NAS) requires a clear 
understanding of UAS operational risk to other 
airspace users and persons and property on the 
surface [17]. However, risk is difficult to 
quantify because it involves many different 
variables, ranging from technological failures to 
human factors [18, 19]. In this paper, the risk of 

a UAS operation, ξ, is quantified with data from 
test of a preliminary UTM system prototype, 
listed in Table 1. The following simplifying 
assumptions are used. 
 

• Densities of people, properties, and airborne 
users in the operational area are assumed 
known and distributed uniformly. The sum 
of these densities is denoted by 

ρ_vulnerability, (1), and intended as a single 
quantity to represent people and assets that 
are vulnerable to contact with UAS.  

• Quantity ρ_vulnerability is assumed 
constant throughout the operation.  

• Vehicle failures and operational blunders are 
implicitly incorporated. Risk exposure is 
defined as being proportional to the duration 
of the operation.  

• The UAS’s Kinetic Energy, KE, (2), is used 
to assess its impact on people and assets.  

 

With these assumptions, risk ξ is defined in (3) 
with a unit of J•s/m2.  
 
   

Table 1. Preliminary UTM system prototype data 

Variable Name Description 

Area_boundary Boundary of the operational area 

MTOW UAS Max. Takeoff Weight (kg) 

Vmax UAS Max. speed (m/s) 

dT Duration of operation (s) 

 
 
 

ρ_vulnerability = ρ_people + ρ_property +  

ρ_airborne_user    (1) 

KE = 0.5∗ MTOW ∗ Vmax
2
   (2) 

ξ = ρ_vulnerability ∗ KE ∗ dT     (3) 
 

      One way to interpret quantity ξ is to use the 
concept of Action Density, AD. Action is 
calculated by multiplying KE with dT, and is 
“an abstract quantity that describes the overall 
motion of a physical system” [21]. AD is 
calculated by multiplying Action with the 
densities of people, properties, and airborne 

users in the operational area, ρ_vulnerability. 

Therefore, increase in AD indicates increased 
UAS movement over the operational area or 
increase in the potential impact on people and 
assets in that area, or both. 
      To relate operational risk to trajectory 
conformance, the RNP level requirement 

denoted here by λ is defined as a reciprocal 

function of ξ and three parameters, a, b, and c 

(4). Fig. 2 illustrates this function, where the 
vertical asymptote a sets a threshold for risk 
awareness - operational risk less than a is 
ignored; the horizontal asymptote b sets the 
technological limit of RNP level - i.e., b is the 
most accurate RNP level that can be achieved 
by UAS (equivalently, the smallest attainable 
TSE); and c, which sets the degrees of 
curvature, reflects the sensitivity of RNP level 
to a given operational risk - i.e., for the same 
operational risk, the RNP level requirement 
varies depending on c. 

 

λ =
c

ξ − a
+ b    (4) 

 
      The value of a is set based on VLOS 
operational constraints and current small 
quadrotor UAS endurance. Table 2 has the 
variables and their values used for the 
calculation of a, (5), with clarifying notes in the 
rightmost column. The implication of this value 
is that the risk of operating a very light UAS 
(about 0.25kg) in VLOS condition with only the 
operator of the UAS in the area is low enough to 
be ignored. 
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Table 2. Variables and values used for a 

Variable Name Value Note 

ρ_vulnerability
a
  1.02E-05m-2 One person, one car, 

and no other airspace 

users in circular 

operational area with 

a diameter of 250m 
KE

a 
249J MTOW=.25kg (FAA 

registration exception 

limit [20]), 

Vmax=44.7m/s (FAR 

Part 107 speed limit) 
dT

a 
1800s Endurance of popular 

quadrotor small UAS 
 

a =  ρ_vulnerability
a
 * KE

a * dT
a
  

= 4.58J•s/m2        (5) 
 
      The value of b is set to 3m, based on the 
analysis of error in the position relative to the 
commanded path. This analysis is based on 
recent studies on autonomous helicopter 
operations [22, 23, 24, 25]. 
      The choice of an appropriate value for c is 
based here on a study of 19 VLOS UAS 
operations conducted during a test of 
preliminary UTM system prototype. This test 
took place at an inactive airfield in the middle of 
agricultural fields with limited habitation at 
Crows Landing, California, USA. Up to two 
spatially separated operations were concurrently 
conducted in the test, with single UAS flown in 
each operational area. Additional details of the 
test are available in [26]. The aspects of this test 
relevant to this paper are as follows: 
 

• Most of the operations had flight durations 
less than 15 minutes. 

• The patterns flown mimicked an area-
monitoring Concept of Operations (ConOps) 
where a UAS is used to survey or inspect 
terrestrial objects.  

• Notice to Airmen (NOTAM) and 
operational procedures were used to ensure 
that only the test UAS were in the test area. 

• An average of eight people and four cars 
were in the vicinity of the operational area.  

 
Under these operational conditions, the value of 
c is set to 1570J•s/m: this value associates the 

75th percentile of risk of the 19 operations (ξc = 

20.8J•s/m2) with RNP level requirement of λc = 

100m (6). The implication of this value is that 
for an operational risk, 20.8J•s/m2, aircraft is 
required to remain laterally within 100m from 
its planned path for 95 percent of the total 
trajectory. 
 

c = (λc
-b) * (ξc

-a)      

   = (100m-3m) * (20.8J•s/m
2
 - 4.58J•s/m

2
)  

= 1570J•s/m          (6) 
 
      The graph in Fig. 2 is shown with the 
quantified a, b, and c (7). 
 

λ =
1570

ξ − 4.58
+3   (7) 

 
      Fig. 3 shows the 95th percentile of lateral 
flight plan conformance error of the five 
multirotor UAS flown at the test, with the 

corresponding ξ. Each UAS has multiple values 

of ξ in Fig. 3 as they flew multiple operations 
with different durations (dT). Table 3 describes 
the legend and explanations. 
 

      Table 3. Information about Multirotor UAS 

operated at the UTM Event 

UAS 

ID 

MTOW(kg) Vmax(m/s) Fig. 3 Symbol 

UAS1 1.68 5 I 

UAS2 3.31 5 X 

UAS3 10.9 5 S 

UAS4 3.99 18 D 

UAS5 5.0 12.5 A 

      

 
Figure 2. RNP level requirement vs. operational risk 
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      Fig. 3 shows that most operations conducted 
by UAS1, and a few by UAS2, represented by 
symbols “I” and “X” respectively, carried 
operational risk smaller than a.  This indicates 
that the risk of these operations is low enough to 
not require a RNP precision level. The lateral 
conformance errors of the remaining UAS 
operations were less than the RNP level 
requirement given by (7). However, all of these 
errors were calculated from the aircraft reported 
positions and the true positions were unknown. 
Therefore, there is not enough information to 
determine whether the required RNP levels 
were met. 

2.3 UTM Application 

The relationship (7) between operational risk 
and RNP level proposed in Subsection 2.2 is an 
initial research effort. Further refinement is 
required before such a relationship is ready for 
application in the UTM system. These 
refinements include the development of 
methods to estimate the number and distribution 
of people, properties, and airborne users in the 
operational area as time-dependent variables 

(i.e., to drop the assumption that ρ_vulnerability 
is constant). Use of additional factors other than 
KE, such as potential energy and composition of 
the vehicle, to define Action should be 
considered in assessing the impact of UAS on 
people and assets. Further research is required 
to determine the suitability of the formula for 

computing operational risk (3) for various UAS 
applications. 
      One potential application of the relationship 
between operational risk and RNP level is in 
adjusting the RNP level based on the number of 
planned operations in the same area. For 
example, a more accurate RNP level will be 
required if more flights will be concurrently 
conducted in the same area, as this will increase 

ξ (i.e., increase in ρ_airborne_user (1)). 
Another potential application is to adjust the 
RNP level that varies over time based on 
population density. For example, the RNP level 
for operations over a popular summer vacation 
area would be different in the summer versus 
the rest of the year because of changes in the 
number of people and cars in the town (i.e., 

changes in ρ_people and ρ_property (1)). 
      To enable the use of the RNP concept in 
traffic management of UAS, a method to 
measure UAS’s achievable lateral flight path 
precision is needed. Operational eligibility will 
be determined by comparing this precision with 
RNP level requirement. The following Section 
describes a modeling and simulation approach 
to assessing achievable RNP levels of UAS by 
estimating their TSEs. 

3 UAS TSE Assessment with Vehicle 

Modeling and Wind Field Information 

3.1 Description of Approach 

A largely non-homogeneous fleet of UAVs will 
be operating in low altitude and will likely be 
commercially developed. Due to intellectual 
property concerns, the operators may not 
provide detailed specifications of the control 
system to the UTM system. In addition, the 
huge variety of UAVs makes modeling each 
control system prohibitive and flight data for 
these vehicles may not exist. Therefore, the 
UTM system will need a generalized, simple 
trajectory prediction model that 1) does not rely 
on detailed knowledge of the control system and 
2) predicts the UAV flight dynamics in the 
presence of urban winds, without the loss of 
sufficient accuracy. The output of this model 

 
Figure 3. 95

th
 percentile lateral flight plan 

conformance error vs. operational risk 
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should provide a reasonable TSE for equation 
(7). 
 This section outlines the development of a 
simple trajectory model that simulates the 
performance of a quadrotor in the presence of 
urban wind field. It is assumed that some 
information from the manufacturer about the 
vehicle is available, such as its dimension and 
performance, but detailed information about its 
control system is not available. 
 The trajectory model must determine the 
feasibility of the vehicle’s intended flight 
operation, given the current flight conditions 
and vehicle characteristics, without significant 
computation time. This model is not a substitute 
for a vehicle’s control system. Rather, it must 
estimate the limits of a UAS’s capabilities to 
inform the TSE assessment (assume the NSE 
and PDE are zero).  
 The requirements stated above are met by 
implementing a simplified trajectory model with 
a gain scheduled PID controller. This was 
selected for its simplicity and because most 
quadrotors control systems implement 
linearized models with PID controllers.  
 The gain table was determined using genetic 
optimization because this method is a gradient-
free search method, immune to problems related 
to local optima. Thus, guaranteeing a gain 
solution for every run and enabling the 
incorporation wind field compensation in the 
control system. The following subsections 
describe the methodology. 
 
3.1 Quadrotor Dynamics 

  A summary of the derivation for the equations 
of motion (EOMs) that describe the dynamics of 
a symmetric quadrotor is included. For a 
detailed write-up of this derivation, see [27]. 
One of the simplest multi-rotor small UAS 
configurations is a “+” configuration where 
positive forward motion of the vehicle is 
parallel with the x-axis in the body frame. 
Quadrotor UAS are considered to be under-
actuated because they utilize four rotors to 
control six degrees-of-freedom.   

The two major reference frames are the 
vehicle-fixed body frame and the Earth-fixed 
North-East-Up (NEU) inertial frame. The body-
frame is attached to the center of gravity of the 

quadrotor. The NEU frame is attached to the 
location of the ground station tracking the 
vehicle.  

The quadrotor is treated as a point mass with 
spherical aerodynamic characteristics (i.e., 
constant drag coefficient in all directions). Lift 
and nonlinear aerodynamic effects will be 
neglected. The model is simplified by 
linearizing using a small angle approximation.  

The above assumptions and formulation 
generate the governing equations for the 
quadrotor as shown below. 

 

!!φ =
F
L
−F

R( )l

J
X

 

 

(8)  

!!θ =
F
F
−F

B( )l

J
Y

 

 

(9) 

!!ψ =
K −F

F
+F

R
−F

B
+F

L( )l

J
Z

 

 

(10) 

!!X = −cos φ( )sin θ( )
F

m
+
D

X

m
 

 

(11) 

!!Y = sin φ( )
F

m
+
D
Y

m
 

 

(12) 

!!Z = cos φ( )cos θ( )
F

m
− g+

D
Z

m
 (13) 

 

where φ is the roll angle, θ is the pitch angle, ψ 
is the yaw angle, F is total force, FL,R,F,B are the 
resultant forces from each rotor (left, right, 
front, and back), DX,Y,Z are the drag force in the 
direction of the relative velocity, g is gravity, m 
is mass of the vehicle, l is the distance from the 
rotor to the vehicle center of gravity, JX,Y,Z are 
the moments of inertia, and K is gain of the 
motor that drives the rotor. Two dots above a 
letter (diaeresis) are used to indicate 
accelerations. 

The set of the rotational equations (8, 9, 10) 
is uncoupled and depends only on the forces 
generated by the vehicle, whereas the 
translational set (11, 12, 13), depends on: the 
attitude angles, the total force generated by all 
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rotors and the applied external forces. By 
assuming a constant yaw of zero, the 
translational equations describe motion in the 
inertial NEU system with origin located at either 
a ground station or the initial position of the 
vehicle. 

The effect of the wind field on the trajectory 
is determined via the drag terms in the 
translational EOMs. 

    

!
Uwind = uwind îNEU + vwind ĵNEU +wwind k̂NEU  

(14) 

 
It is assumed that the wind-generated lift is 

negligible and the drag coefficient/area is 
constant. The wind velocity vector (14) is then 
added to the vehicle velocity vector as follows: 

 

!
V =
!
Vvehicle −Rb

NEU
!
Uwind

=Vxîb +Vy ĵb +Vzk̂b

 (15) 

 

where 
!
V
vehicle

 is the vehicle velocity in the body 

axis and R
b

NEU  is the transformation matrix 

from the NEU axis to the body axis. Equation 
(15) is included in the drag term as follows: 

!
D = −

1

2
CDArefρ VX

2
îb +VY

2
ĵb +VZ

2
k̂b

"
#

$
%  

(16) 

 
where CD is the drag coefficient, Aref is the 

reference area of the vehicle, and ρ is the 
density. 

 
3.2 Control Methodology 

The intermediate control laws for commanded 
total force, roll angle, and pitch angle are 
derived by first treating the left-hand sides of 
(11, 12, 13) as commanded accelerations and 
then solving for the commanded total force 
(thrust) using (13). The newly derived force 
equation is substituted into (11, 12) to determine 
the rest of the parameters: 
 

F =

m a
Z

c
+ g−

D
Z

m

"

#
$

%

&
'

cos φ c( )cos θ c( )
 (17) 

 

φ c
= tan

−1

a
Y

c −
D
Y

m

"

#
$

%

&
'cos θ( )

a
Z

c
+ g−

D
Z

m

"

#

$
$
$
$

%

&

'
'
'
'

 

(18) 

θ c
= tan

−1

− a
X

c −
D

X

m

"

#
$

%

&
'

a
Z

c
+ g−

D
Z

m

"

#

$
$
$
$

%

&

'
'
'
'

 

 

(19) 

where a
X,Y ,Z

c  are the acceleration commands in 

the X, Y, and Z directions.  
The linear equations of motion (8-13), 

represent the plant in the control system block 
diagram shown in Fig 4.  
    For this model, an outer-loop PID controller 
is used to reduce steady-state error in reaching a 
waypoint, and inner-loop PD controller is used 
to reflect the fast attitude dynamics of multi-
rotor vehicles (20).  

PID = K per +Kd

der

dt
+Kl er dτ

0

t

∫  
(20) 

 
The inputs to the control system are the 

desired waypoints that define the operation, and 
the outputs are controls that drive the equations 
of motion to generate the desired trajectory. The 
inner-loop of the control system in Fig. 4 
controls attitude, while the outer-loop controls 
vehicle position. The outer-loop system will be 
used to determine commanded accelerations that 
will in turn, determine total thrust and 
commanded attitude angles using Eqns. (17, 18, 

 
Figure 4. Quadrotor control system diagram 
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19). The inner-loop system will take this 
information and output torques to achieve an 
intended orientation. The integrative term, in 
(20), will become more influential as error 
accumulates, driving the vehicle closer to its 
intended destination. Additionally, this term 
adds to the vehicle’s robustness to wind 
disturbances provided there is no degradation in 
stability.  

The control system shown in Fig. 4 uses 
constant gains for the inner-loop controllers and 
gain scheduling in the outer loop to adapt to 
varying wind conditions. The gain schedule 
table is determined using the Artificial Bee 
Colony (ABC) genetic optimization method (see 
[28, 29]). This method is a gradient-free search 
method, immune to problems related to local 
optima. Since this trajectory model is a proof of 
concept, the ABC method was selected because 
the code was open source and successfully 
applied in references [28,] and [29]. A diagram 
from [28] is modified to illustrate this paper’s 
implementation of the ABC method in Fig. 5. 

The design variables in the optimization 
are the PID gains for each controller for a given 
wind magnitude (not for each wind component). 
The minimum and maximum wind magnitudes 
were extracted from the wind field model and 
gains were determined at each wind condition, 
in increments of ΔINCR = 3 . 

!
U

wind
min

:ΔINCR :
!
U

wind
max

"
#

$
%=

−5 3 : 3 : 5 3"
#

$
% m / s

 (21) 

 

The cost function used to find the gains at each 
controller is a function of six parameters and 
weighting coefficients. These parameters are the 
TSE at the final waypoint (tsefinal), Integrated 
Time Absolute Error (ITAE), Percent Overshoot 
(%OS), Rise Time (Trise), Settling Time (Tsettling) 
and the Number of oscillations in the trajectory 
(Nring). The objective function, (22), is sum of 
these costs. 
 

Ji=X,Y ,Z = R1 tse final( )
2

+ R
2
ITAE( )

2
+

R
3
%OS( )

2
+

R
4
Trise + R5Tsettling + R6Nring

J = JX + JY + JZ + RTfinal

 (22) 

 
3.3 Vehicle and Wind Models 
The test vehicle for this simulation is the 
AscTec Pelican Quadrotor UAS (AscTec) [30]. 
This vehicle is 0.651m long with a rotor 
diameter of approximately 25.4cm and length of 
32.5cm. It has a MTOW of 1.65kg and a take off 
thrust of 36N. The specifications indicate that 
this vehicle can tolerate a wind speed up to 
10m/s, but does not indicate whether this is a 
sustained wind or gust value. Based on the 
assumption of a spherical aerodynamic model, 
CD is set to a constant 0.5, with a constant Aref 
of 0.33m2. 
 The flow over a single building was 
simulated in the open source CFD solver, 
OpenFOAM 1 . OpenFOAM solves the 3 
dimensional (3D) incompressible Navier-Stokes 
equations, which provides velocity vectors at 
each of the discretized points in the OpenFOAM 
volume solution, in and around the building. 
OpenFOAM was chosen because it has 
functionality to model the Atmospheric 
Boundary Layer, which plays a large role in 
characterizing the wind field at low altitude. 
Fig. 6 shows the wind vectors corresponding to 
a cross section of the flow volume at a specific 
altitude, where the spectrum of red to blue wind 
vectors indicate high speed and low speed 
respectively. Using the flight dynamics model, 

                                                
1 www.openfoam.com 

 

 

 
Figure 5. Block diagram of the ABC algorithm 

integrated with the quadrotor control system 

simulation 
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the vehicle was flown through the 3D wind field 
generated from OpenFOAM. 
 The integrated vehicle and wind field model 
was tested via two operational test profiles. The 
first test profile examines the vehicle’s 
resilience to varying wind speeds when flying 
through the wake behind the building. The 
second test profile examines the vehicle’s 
resilience to sustained, high wind speeds when 
flying near the side of the building. The flight 
plan segments consist of: 1) Ascent, 2) Uni-
directional Forward Flight, 3) Uni-directional 
Backward Flight, and 4) Descent. 
 

3.4 Test Results 
The results for the first test profile are shown in 
Fig. 7-9, and the second profile in Fig. 10-13. 
The first test profile shows that the system is 
able to maintain an altitude of 3 meters and 
manages to arrive at the final destination at 
almost the same time as the no-wind trajectory 
(Fig. 7). The control system also does 
exceptionally well at tracking the desired 
position with very little deviation from the no-
wind path (Fig. 8). Thus, even when the wind 
field is constantly varying due to the wake 
vortices behind the building (Fig. 9), the flight 
path is robust to the wind variation. The 

corresponding TSE (RNP, λ) for this case is < 
2m, based on the ground track deviations in Fig. 
8. This indicates that this vehicle can fly within 

all operational risk scenarios, ξ (Fig. 3). 

      The RNP (λ) for the 2nd test profile is < 2m 
(Fig. 11), indicating that the vehicle can fly in 

all operational risk scenarios, ξ (Fig. 3). 
However, the vehicle requires approximately 
seven-times the nominal flight time to complete 
the trajectory (see Fig. 10) indicating that the 
vehicle has the potential to be carried away with 
wind if the sustained wind magnitudes increase 

 
Figure 6. Altitude slice of the flow field around a 

single building with a window 

 
Figure 7. Altitude vs. time, 1

st
 test profile 

 
Figure 8. Ground track, 1

st
 test profile 

 
Figure 9. Magnitude of each wind components at 

each time point in the trajectory, 1
st
 test profile 
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above the current conditions (Fig. 12). 
 The constant force of the wind on the 
vehicle exposes the region of poor performance 
in the PID. Given that typical quadrotors 
implement simple PID controllers, application 
of the RNP concept could be extended to the 
time dimension in a future study to incorporate 

consequences of using the simple controllers in 
meeting arrival times to specified locations. 
 At this point it is important to understand 
the reasons for the modeled poor performance 
shown in Fig. 10. This will allow for further 
identifications of requirements on the vehicle 
control system to ensure robust navigation 
performance for safe operation. The poor 
performance of the controller may be due to the 
small angle approximation assumption applied 
to simplify the model. To test this, the small 
angle approximation was relaxed and the 2nd test 
profile was computed again. 
      The resulting altitude profile (Fig. 13) shows 
that the vehicle arrived at its final destination 
approximately two seconds later than in the no-
wind condition and the ground track deviation 
(Fig. 14) is very small. This indicates achievable 
RNP level for this vehicle in the simulated wind 

 
Figure 10. Altitude vs. time, 2

nd
 test profile, with 

high sustained winds and small angle 

approximation 

 
Figure 11. Ground track, 2

nd
 test profile 

 
Figure 12. Magnitude of each wind components at 

each time point in the trajectory, 2
nd

 test profile 

 
Figure 13. Altitude vs. time, 2

nd
 test profile, with 

relaxed small angle approximation 

 

 
Figure 14. Ground track, 2

nd
 test profile, with 

relaxed small angle approximation 
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condition is below b, and it can fly within all 

operational risk scenarios, ξ (Fig. 3). 
      The effect of the small-angle assumption in 
the vehicle model on the vehicle performance in 
winds highlights the risks of linearization. The 
small-angle linearization restricts the maximum 
pitch and roll angle. As a result, the simplified 
model indicates that the UAS cannot safely fly 
in sustained wind flows with speeds greater than 
5m/s. When compared with the UAS 
manufacturer’s stated wind limitation of 10m/s, 
which is likely conservative, this result indicates 
that the equations of motion and control model 
need to be improved to properly reflect 
nonlinear dynamics. This will provide more 
accurate RNP information for future 
applications. 
 
3.5 Future Improvement of the Model 
Analyses in the previous Subsections show that 
a linear model of a small UAS is not sufficient 
for addressing the contribution of wind, when 
the control system is largely unknown. It was 
expected that the linear model would not be able 
to handle all non-linear effects, but this study 
was meant to identify the envelope of wind 
disturbances where the vehicle can maintain 
stability and control. However, the model 
revealed that another level of fidelity must be 
added in order to compensate for exposure to an 
urban wind field. This model was used as a 
starting point because the objective is to 
implement the simplest model and 
implementation of the highest fidelity would 
require highly detailed vehicle information. 
 Development of a higher fidelity generalized 
model should be approached on four fronts: 
aerodynamics, flight mechanics modeling, 
control system, and urban wind field modeling. 
First, the aerodynamics of UAS must be 
modeled more accurately such that the effects of 
the wind disturbance correctly reflect the 
aerodynamics in each axis. UAS also 
experiences aerodynamic moments and lift 
depending on the vehicle’s configuration, e.g. 
‘+’ or ‘x’ configuration, for example. These 
forces impact how the control system maintains 
the vehicle’s trajectory and stability. Second, 
UAS will not be limited to the linear region of 
operation as higher wind speeds and turbulent 

flows will require significant fast-time changes 
in pitch, roll, and yaw angles for maintaining 
flight trajectory. Therefore, the model must 
account for gyroscopic and other nonlinear 
effects that significantly influence the total 
dynamics of the system. Third, the task of 
dealing with the wide range of nonlinear 
aerodynamics and dynamic effects may require 
a model of a nonlinear control system. This 
implementation will require a trade-off in 
fidelity since this model will need to be broadly 
applicable to different types of UAS, e.g. fixed 
wing, multirotors, etc. Finally, fidelity of the 
urban wind environment should be increased by 
including multi-building configurations and 
varying the inflow condition. The inflow 
condition is the initial condition velocity profile 
that corresponds to the prevailing wind speed 
and terrain. 
 To further the UAS RNP level assessment, 
efforts are being made to compare the modeled 
trajectory with actual flight trajectory. 
Specifically:  
 
•  Carrier Phase Differential GPS is being 

incorporated in small UAS to provide true 
position.  

•  A weather-sensing payload is being 
developed to collect three-dimensional wind 
information.  

•  A wind tunnel test has been conducted to 
examine aerodynamic moments and lift of 
small multirotor UAS [31]. Results from this 
test will be used to refine the vehicle EOMs. 

4. Conclusions 

This paper investigates an application of the 
Required Navigation Performance (RNP) 
concept for traffic management of small 
Unmanned Aircraft System (UAS) by relating 
operational risk to a trajectory conformance 
requirement. First, a method to quantify 
operational risk is introduced. Then, a reciprocal 
function is defined to relate greater operational 
risk to more accurate RNP level, or 
equivalently, to smaller Total System Error 
(TSE) requirement. Visual Line of Sight 
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operational constraints and data from 19 small 
UAS flights were used to set values of three 
parameters used in this function: a threshold for 
risk awareness, the technological limit of RNP 
level that can be achieved by UAS, and the 
sensitivity factor of RNP level to a given 
operational risk. One potential application of the 
relationship between operational risk and RNP 
level is in adjusting the RNP level based on the 
number of planned operations in the same area. 
Another potential application is to adjust the 
RNP level that varies over time based on 
population density. To enable such applications, 
the vehicles’ RNP level information is needed. 
Simulation results showed that the vehicle 
model and Computational Fluid Dynamics 
generated wind field information could be used 
to assess achievable RNP level of UAS, but 
further development of a more generalized 
model is needed to properly incorporate 
nonlinear dynamics for determining UAS RNP 
levels with increased accuracy. 
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