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ABSTRACT

Context. We investigate the use of saliency-map analysis to aid in searches for transient signals, such as fast radio bursts and individual
pulses from radio pulsars.
Aims. Our aim is to demonstrate that saliency maps provide the means to understand predictions from machine learning algorithms
and can be implemented in pipelines used to search for transient events.
Methods. We implemented a new deep learning methodology to predict whether any segment of the data contains a transient event.
The algorithm was trained using real and simulated data sets. We demonstrate that the algorithm is able to identify such events. The
output results are visually analysed via the use of saliency maps.
Results. We find that saliency maps can produce an enhanced image of any transient feature without the need for de-dispersion or
removal of radio frequency interference. The maps can be used to understand which features in the image were used in making the
machine learning decision and to visualise the transient event. Even though the algorithm reported here was developed to demonstrate
saliency-map analysis, we have detected a single burst event, in archival data, with dispersion measure of 41 cm−3 pc that is not
associated with any currently known pulsar.

Key words. methods: data analysis – techniques: image processing – methods: statistical – methods: numerical – pulsars: general

1. Introduction

Radio telescope observing systems continue to be used to record
high time resolution data sets. In such data sets the total intensity
of the received radio signal is sampled typically every ∼100 µs
and with moderate (e.g. ∼MHz) channel bandwidths. For most
historical data sets the samples are 1 or 2 bit digitised, but for
many current surveys higher-bit data streams are recorded. High
time resolution data sets are used to search for pulsars by seek-
ing for weak periodic signals within the data. They are also
used to search for bright, individual pulses from pulsars and
fast radio bursts (FRBs; Devine et al. 2016; Michilli et al. 2018;
Farah et al. 2019; Barsdell et al. 2012; Connor & van Leeuwen
2018).

Fast radio bursts are bright, millisecond-duration radio tran-
sients. The observed pulses are characterised by dispersion
measures (DMs) that are significantly larger than the expected
Milky Way contribution. They have been detected at flux
densities between tens of micro-janskys and tens of janskys
(Lorimer et al. 2007; Spitler et al. 2016; Connor & van Leeuwen
2018; CHIME/FRB Collaboration 2019a). Understanding the
origin of FRBs is still an active research area, with many dif-

ferent theoretical explanations (Platts et al. 2019). The first FRB
was discovered by Lorimer et al. (2007) during the reprocessing
of archival pulsar survey data, and it is now commonly referred
to as the “Lorimer burst”. A small segment of the data stream
that was used to discover the “Lorimer burst” is shown in Fig. 1.
This particular data file has 96 frequency channels (shown on the
y-axis) spanning a total bandwidth of 288 MHz and each time-
frequency sample (also referred to here as a pixel) has been 1 bit
sampled.

Most of the known FRBs have only been detected once.
However, there is now a small population of FRBs in
which repeating signals have been detected (Spitler et al. 2016;
CHIME/FRB Collaboration 2019a,b). There are likely thou-
sands of detectable events each day across the full sky, but
only a relatively small number have been published to date
because of the moderate field of view that many radio tele-
scopes have. Wide field of view telescopes such as The Canadian
Hydrogen Intensity Mapping Experiment and the Australian
Square Kilometre Array Pathfinder are now operating and a
large number of FRB events will soon be published. How-
ever, for each detected FRB event, current survey processing
methods usually produce thousands of false-positive triggers
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Fig. 1. Part of the data file containing the original FRB event: the
Lorimer burst. Each sample is 1 bit sampled, with white positive and
black negative.

(Connor & van Leeuwen 2018). Some of these candidates can be
rejected based on extra information, such as detection in multi-
ple observing beams, but many of the diagnostic plots are simply
inspected visually (Connor & van Leeuwen 2018). Future tele-
scopes, such as the Square Kilometre Array, will carry out pulsar
and FRB searches, but the enormous data rate from those tele-
scopes implies that real-time processing is likely to be required.
Real-time processing methods already operate for FRB searches
(e.g. Barsdell et al. 2012), but produce large numbers of candi-
dates (most of which are false-positive candidates).

Machine learning algorithms are increasingly taking a role
in deciding which signals to record for further analysis. Ways
to minimise their false positive rates and to maximise their
efficiency and their robustness in the presence of radio fre-
quency interference (RFI) need to be explored. Michilli et al.
(2018) designed a machine-learning classifier to identify single
pulses in a strong RFI environment, which relies on features
such as the pulse width, DM, and signal-to-noise ratio (S/N)
and has been used to discover seven pulsars. Farah et al. (2019)
detected five new FRBs in real time with the Molonglo Radio
Telescope. The pipeline adds an additional stage to the HEIM-
DALL pipeline (Barsdell et al. 2012) to classify the resulting
candidates using features extracted from time-frequency data.
Connor & van Leeuwen (2018) focused on reducing the false
positive rate from candidates obtained using a traditional search
method. They applied a deep learning method to single pulse
classification and developed a hierarchical framework for rank-
ing events by their probability of being true astrophysical tran-
sients. Zhang et al. (2018a) presented the first successful appli-
cation of deep learning to direct detection of fast radio transient
signals in raw frequency-time data. They found 72 new pulses
from the repeating fast radio burst FRB 121102 using the Green
Bank Telescope.

All these algorithms report on whether a particular candidate
(or image segment) contains a likely astrophysical burst event.
However, they generally do not provide information on what
parameters, or what features in the image were used to make
that decision, and so deep learning models are often criticized as
“black boxes” for decision making. This is primarily because the
results from non-linear fitting of the high dimensional data is dif-
ficult to explain intuitively. A pulse verification process is often

needed to identify real signals from candidates produced by the
machine learning modules. Many of these processes use visual
inspection and assume that signals can be visually detectable
directly by humans (Zhang et al. 2018a). In the presence of RFI
or complex noise patterns, direct visual inspection is likely to
miss real signals. We address this problem by ensuring that the
machine learning procedure not only predicts whether an event
is present, but also provides information on how it came to that
decision. This line of work is categorised as machine learning
interpretability.

There have been many efforts to address the problem of
understanding why a machine learning method has made a deci-
sion, and to provide users with more confidence in the model pre-
dictions (see Montavon et al. 2018). For our purpose, we wish to
identify the part of an input image that a classifier has identified
as being from an astrophysical burst event and we make use of
saliency analysis for this purpose.

Saliency-map analysis has been used for numerous ML
applications to highlight features in an input that are rel-
evant to the predictions of a model (Simonyan et al. 2013;
Sundararajan et al. 2017), but to the best of our knowledge it has
not been used on high-time resolution radio astronomy data sets
to render the features of transient events.

The work described here is explicitly linked to the saliency-
map analysis, and can be applied to the output of any deep
learning method used to search for transient events. Of course,
to demonstrate saliency-analysis we require a deep learning
method and test data sets, but we note that saliency analysis is
generally applicable and we are not attempting to convince the
reader that our method is better or worse than any other exist-
ing algorithms for the FRB searching. In Sect. 2 we describe our
machine learning algorithm, training procedure, and the test data
set that we used for this work. We describe the saliency analysis
method in Sect. 3, and conclude in Sect. 4.

2. FRB classifier and data set

2.1. Data set

To demonstrate the saliency analysis we make use of archival
data sets that are publically available from the Parkes data
archive1 (Hobbs et al. 2011). The data sets are used to train
the algorithm and to provide example observations (containing
known pulsars, FRBs, and radio frequency interference) to test
the effectiveness of the procedure.

All data sets were obtained with the Parkes telescope
using the 21 cm multibeam receiver. The primary goal for
carrying out the original observations was to search for new
pulsars (Manchester et al. 2006). The data files are in PSR-
FITS (Hotan et al. 2004) search mode format. They are two-
dimensional spectrograms (time versus frequency) that span a
frequency range from 1231 to 1516 MHz with 96 frequency
channels. The time sampling varies between the different data
files (from 125 µs to 1 ms). The archive contains more than
100 observing projects, with each observing semester for each
project stored as a data collection. Approximately 600 such data
collections are now available for public access. Even though the
observations were processed by the original science teams, new
discoveries are still being made based on these archival data
sets (recent discoveries have been reported by Pan et al. 2016;
Zhang et al. 2018b, 2019).

A single observation often contains millions of time sam-
ples. We cannot simply pass the entire data file as an image into

1 https://data.csiro.au
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a machine learning classifier as typical algorithms require much
smaller image sizes and the signals of interest (i.e. the astro-
nomical bursts) only last for very short time durations and hence
make up a tiny fraction of the entire observation. We therefore
take each observation and split the file into small segments (for
this work we use segments of 512 time samples). We divide the
segments into two categories:

1. segments containing a burst candidate;
2. segments not containing a burst candidate.

A given data set may include receiver noise, RFI, bright indi-
vidual pulses from pulsars, FRBs and other unexpected signa-
tures. RFI usually takes the form of wide-band impulsive signals
or narrow-band persistent signals, but can also mimic astronom-
ical signals (Petroff et al. 2015; Men et al. 2019).

The classifier requires a training procedure. Unfortunately,
the number of known FRBs in the Parkes data sets is relatively
low and single pulses from known pulsars all have relatively
small DM values. This implies that we cannot simply train the
algorithm on actual signals in the archival data. Instead, we inject
simulated burst events into 1000 randomly chosen data files from
the Parkes data archive. We simulated the bursts assuming the
frequency-squared dispersion law. The FRB event is therefore
parametrised by a time (corresponding to the arrival time of burst
at the highest observing frequency), the DM, a width (the FRB
is assumed to have a Gaussian profile)2, and a brightness. As we
are injecting simulated FRBs into 1 bit data we need to ensure
that we have a way to simulate different FRB brightnesses. To do
this we define the fraction of samples within the FRB envelope
that will become 1 (representing a signal above the mean level)
and how many will remain 0 (a signal below the mean level). We
note that no value that is already 1 will become a 0 in this process
to ensure that any existing signal, such as RFI, is not affected by
the simulation process.

For our training data set we simulated a wide range of pos-
sible FRB parameters. The start time of the FRB was randomly
chosen anywhere within the observation span, the DM values
ranged between 20 and 5000 pc cm−3, the saturation level mea-
sured by the percentage of pixels within the signal range turned
bright by the FRB ranged from 75% to 100%, and the width of
the FRB was chosen between 3 and 50 time samples.

We randomly selected 1000 files from data collections 1 to 3
in Table 1, from which we extracted 57 000 data segments. We
injected the simulated FRBs into 24 500 data segments. These
resulting files therefore contained the real noise signals and our
simulated FRBs. We have ensured that these specific data seg-
ments do not contain known FRBs or pulsars, although they may
contain currently unknown, but real FRB events. We also sepa-
rately generated 7500 data segments in which we simulated a
pure white-noise background and injected FRBs. These training
data sets were used to encourage the model to learn the correct
FRB patterns. These two sets of data segments form the positive
training data set while the remaining 32 500 data segments form
the negative training data set.

2 In the future we will re-train our model using a more physical
parametrisation of the FRBs, including dispersion smearing, scattering,
structures within the burst profile, and the observed frequency depen-
dence to the burst intensity. We note that our current bandwidth is rela-
tively small (256 MHz) and the channel bandwidths are relatively large
(3 MHz). Scattering is usually small for FRB events and so the predom-
inant effect is dispersion smearing (see e.g. Cordes & Chatterjee 2019).
However, dispersion smearing can be mitigated in searches for repeat-
ing events from known FRB sources as they can be carried out using
coherently de-dispersed data streams.

2.2. Deep neural networks architecture

A detailed introduction of deep learning and related terminology
can be found in Goodfellow et al. (2016). In the following, we
make use of the following terms and concepts:

– An image-based deep neural network (DNN) classifier,
F (x; θ), is a function that maps input image segments into
a category, ŷ ∈ {1,−1}, which indicates whether the segment
does or does not contain a signal of interest, respectively.

– F is a composite function, F (x; θ) =

f l( f l−1(. . . ( f 2( f 1(x; θ1); θ2)) . . . , θl−1); θl), which con-
tains multiple internal functions, f l. The function f l is
known as the lth “hidden layer” of the network.

– Image segments are often enhanced prior to being passed
into a DNN classifier. Methods such as applying a Gaussian
filter are used to smooth the input images.

– It is important to determine how well a set of parameters
models the given data. This is measured using a loss func-
tion, L(F (x; θ), y), which measures the performance of the
function F (x; θ), in which y is the true label of x ∈ X.

– The DNN procedure obtains optimal values of the parame-
ters θ. An iterative method (stochastic gradient descent algo-
rithm) is used to minimise the loss function. This relies on a
step size known as the learning rate.

– The composite function, F (x; θ), contains various hidden
layers (described above) including convolutional layers, max
pooling layers and fully connected layers. A convolutional
layer can be thought of as a smoothing operation that is
applied to the input using a matrix often referred as kernel
or filter. The properties of the matrices are defined for spe-
cific features in the input images. Pooling layers reduce the
dimensions of the data and hence simplify the computational
complexity. Fully connected layers are directly connected to
the inputs of the next layer.

– Finally, the algorithm needs to convert the numerical values
of the last layer to probabilities on the various possible clas-
sifications. A softmax function is often used for this.

Our specific DNN is trained to identify single pulse events.
F (x; θ), is a function that maps our input image segment,
{0, 1}96×512, into a category ŷ ∈ {1,−1}, which indicates that the
segment does or does not contain an astronomical burst event
respectively. We use the stochastic gradient descent algorithm
to optimise θ and fit the training data with a learning rate of
0.02.

To enhance the visual patterns within an image, each data
segment is pre-processed using a Gaussian filter that smooths
the input data, and then the segment is fed into the network for
training and prediction. We have found that applying this pre-
processing step improves the model training speed.

The first hidden layer in our F contains two parallel convo-
lutional blocks. The first has a 1 × 1 kernel with 8 filters and
the other uses a 9 × 9 kernel with 32 filters. We use ReLU as
the activation function for both blocks. The 1× 1 kernel is intro-
duced to add more non-linearity to the model in order to capture
patterns of various forms of RFI in image segments. The 9 × 9
kernel is mainly introduced to capture the continuous patterns
of the astronomical events and other non-astronomical signals.
We apply a maximum pooling layer to the output of each con-
volutional block with a 2 × 2 patch size. The output of the two
maximum pooling layers are concatenated and fed into the sec-
ond convolutional layer with a kernel size of 9×9 and 128 filters.
We then apply another maximum pooling layer to the output of
the second convolutional layer. The network stacks two more
convolutional layers with a kernel size of 9 × 9 (with filter num-
bers of 256 and 512 respectively) and maximum pooling layers
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Table 1. Data files processed to develop and demonstrate our algorithm.

Project Observing Sampling File Integration time Known Reference Usage

semester time (s) count per file (s) signals

P269 Jan 2001 0.001 2251 8400 Lorimer burst

(FRB010724),

and FRB010312

Kaspi et al. (2016a) Training and testing

P269 Oct 2000 0.001 951 2818 – Kaspi et al. (2016b) Training

P268 Aug 1997 0.00025 4615 2100 Single pulses from

known pulsars

Lyne et al. (2012a) Training and testing

P268 May 2001 0.00025 1820 2100 FRB010621 Lyne et al. (2012b) Testing

Notes. The testing data files are independent from the training data files.

before passing the output to a fully connected layer with 512
neurons. With a large number of parameters, DNN often overfits
a training data set (in particular with relatively few input exam-
ples). We added a dropout layer to improve the generalisation
of F . An additional fully connected layer with eight neurons is
stacked before a softmax function is applied to obtain the prob-
ability distribution among the event and non-event categories. In
order to improve the generalization of the model for different
input data collections, we use L2 regularisation. This regulariser
makes the model avoid learning trivial features that only present
in the training data. The DNN classifier is implemented using
Tensorflow.

We trained our neural network using the real and simulated
data sets that were described in the previous section. We then
applied the trained model to data sets containing known events
(such as the Lorimer burst and known pulsars) for demonstration
and testing purposes.

3. Saliency-map analysis

Saliency maps rank the pixels in the input image based on their
influence on a probability score in a prediction (Simonyan et al.
2013). For deep neural networks, the influence can be calcu-
lated through the derivative of the score with respect to the
input at the given pixel. To capture the variation of brightness
of smoothed pixels in a pulse, we use “integrated gradients”
(Sundararajan et al. 2017) to distinguish the astronomical burst
signature from background noise. We consider an input image, x,
that is formed by taking n steps to add a value in each pixel from
a black image x′ (each pixel has a value of 0). The integrated
gradient of pixel xi, denoted by IGi(x), is defined as:

IGi(x) = (xi − x′i )

∫ 1

α=0

∂F (x′ + α(x − x′)

∂xi

dα (1)

where F (x; θ) is the DNN classifier and α denotes the step taken
on the path of changing from x′ to x. The integrated gradients
are able to determine how different pixels in the input image
contribute to a prediction.

To demonstrate this process, we provide an example in
Fig. 2. For this observation the telescope was pointing towards
the Vela pulsar, PSR J0835−4510, and individual pulses from
the pulsar are easily detectable (the figure only shows a single
pulse). The top panel (labelled 1) is a segment of raw frequency-
time data and clearly shows the pulse as well as three wide-band,
impulsive RFI events. We show the image after smoothing with
a Gaussian filter in the middle panel (labelled 2). Our machine
learning classifier identified this region as containing an astro-
physical event. However, we need to ensure that it has correctly

Fig. 2. Demonstration of the use of saliency map to identify an indi-
vidual pulse from the Vela pulsar (PSR J0835−4510). Upper panel: raw
frequency-time image. The curved feature is a single pulse from the pul-
sar. The vertical stripes are radio interference. Central panel: smoothed
version of the raw data. The saliency map is shown in the bottom panel.

identified the pulse and not the RFI. The corresponding saliency
map is shown in the bottom panel (labelled 3). The brighter a
pixel is in this panel, the more important it was when predicting
that the data segment contains an FRB event. The classifier has
correctly identified the single pulse as a feature for its positive
classification, whilst ignoring the RFI features.

Saliency maps can also be used for feature enhancement
(Simonyan et al. 2013) and to understand why a particular image
was not classified as an astrophysical burst event. For instance,
the image in Fig. 3 was characterised as not containing an astro-
physical burst event by the classifier. Panel 1 clearly shows
narrow-band RFI around 1500 MHz as well as a weak sig-
nal occurring between time ∼0.2 and 0.3 s. This feature is not
significantly enhanced in the raw data simply by smoothing
the image (panel 2). As we have defined the saliency map,
bright pixels correspond to regions in the image that support
the hypothesis than an FRB event is present. The saliency map
shows us that there is an FRB-like event present, but there is
not sufficient evidence for the classifer to determine that this
event is real. This highlights the possibility of using saliency

A26, page 4 of 7

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201937234&pdf_id=2


C. Zhang et al.: Applying saliency-map analysis in searches for pulsars and fast radio bursts

Fig. 3. Demonstration of the use of saliency map to determine why a
plausible event was not identified as an astrophysical source. Upper
panel: burst event in the raw data. Central panel: smoothed version of
the raw data. The saliency map is shown in the lower panel.

Fig. 4. Single pulse event from PSR J1536−5433 that is not centred on
the image and not affected by periodic radio frequency interference.

analysis to enhance features in images that have an FRB-like
form, but are in some way different from the training data
set (i.e. even though the algorithm was trained on ideal FRB
events, the saliency maps can highlight similar but not identical
features).

In our first and second examples the events occurred in the
centre of the saliency map. This is coincidental, and to demon-
strate the success in saliency-map analysis when the event is

not directly in the centre of the image, in Fig. 4 we show an

example where the procedure clearly identifies and enhances a
single pulse event from PSR J1536−5433. We note that no RFI

rejection was carried out and yet the impulsive, broadband RFI
clearly present in the raw data is not present in the saliency map.

In order to explore the use of saliency maps further, we have
analysed a sub-set of our real and simulated data files using
both a traditional PRESTO single pulse search pipeline (Ransom
2001) and our ML algorithm. The PRESTO pipeline has been
described in detail by Zhang et al. (2018b, 2019). In brief, it uses
rfifind to mask strong narrow-band and short-duration broad-
band RFI. The -noclip option is turned on to avoid deleting
potential bursts. DDplan is then used to determine the DMs to
be investigated in the de-dispersion phase (set here to have 440
trials between 0 and 5000 pc cm−3). De-dispersion is carried out
using prepdata and RFI removed using the masks produced by
rfifind.

A direct comparison of candidate lists is non-trivial and an
in-depth comparison between methods and candidates will be
presented elsewhere. One challenge in comparing candidate lists
is that the PRESTO pipeline often produces multiple candidates
for the same event (with slightly different DMs, event times,
and/or widths), another challenge is that the PRESTO pipeline
is extremely versatile and can be “tuned” using different input
parameters. Our PRESTO-based pipeline grouped all the candi-
dates that occurred close together in time (within a 10 ms time
window). If the candidate with the highest S/N in a group has
a S/N higher than seven then it was manually inspected. We
found that there was an exact match between candidate lists
for candidates with S/N > 12. These particular candidates
were single pulses from known pulsars and the agreement with
PRESTO shows that the ML algorithm is sufficient for the tests
we describe here. We note that our ML algorithm is significantly
faster than the PRESTO search as our process contains no de-
dispersion, nor RFI mitigation stages.

The RFI-free and feature-enhanced saliency images can be
used to enable a direct fit for the DM of the event and to get
an estimate of the significance of the event in a way that is not
affected by RFI (and without any de-dispersion steps). To show
this we have determined the S/N for four examples shown in this
paper as determined using the PRESTO pipeline (Zhang et al.
2018b, 2019) and compared the results with those obtained from
a fit to the event in the saliency map. The raw data contain-
ing PSR J0835−4510 and PSR J1536−5433 contain impulsive
broadband RFI whereas the Lorimer burst, PSR J1057−5226 and
PSR J1744−3130 data sets have little detectable RFI. The S/N
values are listed in Table 2, where S/N1 is the signal-to-noise
ratio determined from the PRESTO pipeline and S/N2 is that
determined from our pipeline. Comparison is non-trivial as the
noise is well defined for the traditional analysis, but the noise
in a saliency map is non-Gaussian. However, we can clearly see
that the S/N1 values range from 4 (for a data set affected by RFI)
to 35 (for a bright event in a clean data set), whereas all the S/N2

values are similar.

The ML algorithm produced fewer candidates than PRESTO
for events with S/N1 values <12. A future in-depth analysis will
determine whether this is because the ML algorithm is missing
true candidates or whether PRESTO is presenting false positives.
We also found that the PRESTO-based pipeline did not identify
a few of our simulated FRB events that were injected into actual
data sets (i.e. they are false negative examples). These events
were successfully detected using the ML method. In Fig. 5, we
show two such false negative examples. We note that the pan-
els in these images differ from the saliency-map demonstrations.
Here the top panel shows the de-dispersed time series (using
the DM of the PRESTO candidate), the central panel shows
the dedispersed data as a function of time and frequency, and
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Table 2. Comparison between determining S/N using the raw data file
and the saliency map.

Event S/N1 nbin1 S/N2 nbin2 DM

(cm−3 pc)

Lorimer burst 35.18 26 55.06 14 375
PSR J0835−4510 10.54 10 58.69 14 67.97
PSR J1536−5433 4.27 12 67.16 18 147.5
PSR J1057−5226 13.08 6 49.46 14 29.69
PSR J1744−3130 6.86 18 37.15 20 192.90

Notes. We use the definition of σ=
∑

(signal − noise)/rms/
√

nbin for
our S/N value, where nbin is the best filter width in units of samples.

(a)

(b)

Fig. 5. False negative examples from the PRESTO single pulse search
pipeline on data sets in which fake FRB signals have been injected. The
sub-panels are described in the text. (a) The candidate detected by the
PRESTO pipeline has a DM of 3962 pc cm−3, whereas the actual signal
has a DM of 300 pc cm−3. (b) The S/N of a signal is distorted by RFI,
which leads to a low S/N value for the FRB event.

the bottom panels shows the raw data. In Fig. 5a, the candidate
produced by the PRESTO pipeline has a DM of 3962 pc cm−3,
whereas the simulated signal (highlighted with a black rectan-
gle) has a DM of 300 pc cm−3. Our choice of parameters when
running the PRESTO pipeline failed to detect (and remove) the
RFI that shadows the real signal (the S/N of the RFI is 242.19).

Fig. 6. Unexplained transient signal with a dispersion measure of
41 pc cm−3. The raw data are shown in the top two panels. The saliency-
map image is presented in the bottom panel.

Our machine learning algorithm correctly identified this simu-
lated FRB event with a S/N of 25.9. In Fig. 5b, the measurement
of the S/N of the simulated signal is affected by RFI. This can-
didate was found by PRESTO with a low S/N value and was
filtered out by our S/N cutoff. The machine learning algorithm
correctly detects this signal with a S/N of 29.0.

During the testing of our classifier we found a new sin-
gle pulse from an unknown source from the observation file
PM0143_012D1.sf in the data collection P268–2001MAY. In
Fig. 6, we present the raw data and the corresponding saliency
map for this potential discovery, which has a right ascension
and declination of 19:14:43 and +02:26:13, respectively. Panel
1 contains the raw time-frequency data, which is smoothed
in panel 2. The saliency map is given in panel 3. The DM
corresponding to this candidate is 41 pc cm−3, which is signifi-
cantly smaller than the Galactic contribution in the source direc-
tion. The traditional pulses search pipeline (such as PRESTO;
Ransom 2001) identified this event with a S/N of ∼7, but the
S/N in the saliency map is 23.3 and we see no other comparable
unknown event in our processing. If real (and further observa-
tions are planned of this sky region), then the source will be from
a currently unknown pulsar or a rotating radio transient (RRAT;
McLaughlin et al. 2006).

4. Conclusions

The primary goal of this paper was to highlight that saliency-
map analysis can be used to provide confidence that a machine
learning algorithm has identified a real astronomical event in a
given data set. Producing saliency maps is not computationally
intensive. Our initial implementation takes only ∼1 s to form a
saliency map for a given candidate (and this can be further opti-
mised). For this demonstration we have made use of archival
data that have been 1 bit digitised. The results presented here are
general and are directly applicable to higher-bit data streams.

We note that saliency maps are not unique to high time
resolution data sets. Source finding is being carried out in
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interferometric images to search for unusual source lobes and
jets (Norris et al. 2019). Saliency-map analysis can be used to

enhance such features in such complex images.

In summary, we have developed a new machine learning
procedure for identifying astrophysical burst events in time-
domain data streams. A detailed analysis of our algorithm and

how it compares with more traditional search method will be
published elsewhere. In this paper we have explored the use

of saliency maps to identify the signatures within the data
stream that contain the burst event. We have shown that the

saliency maps are robust in the presence of RFI and pro-
vide a method to enhance burst-like signatures in a given data
stream.

With the advent of new telescopes and improved instrumen-
tation, the ability to detect burst events using traditional meth-
ods will become harder. The enormous data volumes from the

Five-hundred-meter Aperture Spherical radio Telescope (FAST,

Mickaliger et al. 2012; Li et al. 2018) and the Square Kilometre
Array (SKA), among others, will require that computationally

efficient algorithms be developed, and it will not be possible to
view every candidate by eye. Machine learning algorithms, such

as the one described here, clearly have a role to play in extracting
the astrophysical information from such large data sets.
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