
Scientific Programming 10 (2002) 271–289 271
IOS Press

Applying scheduling and tuning to on-line

parallel tomography

Shava Smallena, Henri Casanovab,c and Francine Bermanb,c

aComputer Science Department, Indiana University, Bloomington, IN 47404-7104, USA

Tel.: +1 812 855 4081; Fax: +1 812 855 4829; E-mail: ssmallen@cs.indiana.edu
bComputer Science and Engineering Department, University of California, San Diego, 9500 Gilman Dr, La Jolla,

CA 92093-0114, USA

E-mail: {casanova,berman}@cs.ucsd.edu
cSan Diego Supercomputer Center, 9500 Gilman Dr, La Jolla, CA 92093-0505, USA

Abstract. Tomography is a popular technique to reconstruct the three-dimensional structure of an object from a series of two-

dimensional projections. Tomography is resource-intensive and deployment of a parallel implementation onto Computational

Grid platforms has been studied in previous work. In this work, we address on-line execution of the application where computation

is performed as data is collected from an on-line instrument. The goal is to compute incremental 3-D reconstructions that provide

quasi-real-time feedback to the user.

We model on-line parallel tomography as a tunable application: trade-offs between resolution of the reconstruction and frequency

of feedback can be used to accommodate various resource availabilities. We demonstrate that application scheduling/tuning can

be framed as multiple constrained optimization problems and evaluate our methodology in simulation. Our results show that

prediction of dynamic network performance is key to efficient scheduling and that tunability allows for production runs of on-line

parallel tomography in Computational Grid environments.

1. Introduction

Tomography is a widely used technique to recon-

struct the three-dimensional structure of an object from

a series of two-dimensional projections [1]. Fur-

thermore, several tomography algorithms are inher-

ently parallel [1–3]. With these algorithms, the three-

dimensional volume or tomogram can be decomposed

into slices such that each slice is computed indepen-

dently.

One can envision two scenarios for running parallel

tomography: off-line and on-line. In off-line paral-

lel tomography, the user runs tomography on a dataset

that resides on secondary storage to obtain a single,

high-resolution tomogram as quickly as possible. Con-

versely, on-line parallel tomography operates on data

as it is collected from an on-line instrument. The goal is

to compute successive tomograms in quasi-real-time to

provide feedback on the quality of the data acquisition.

In previous work, we and our collaborators devel-
oped a parallel implementation of off-line tomography
called GTOMO (Grid TOMOgraphy) [4]. This imple-
mentation is currently used in production at the Na-
tional Center for Microscopy and Imaging Research
(NCMIR). GTOMO is used to reconstruct the three-
dimensional structure of biological specimens at the
cellular and sub-cellular level using two-dimensional
projections collected from a powerful electron micro-
scope.

In this paper, we address the on-line scenario. We
target on-line parallel tomography to a Computational

Grid (or Grid for short) [5,6] composed of multi-user
workstation clusters and supercomputers. Executing
applications in this type of computing environment
can be challenging because resource availability is dy-
namic. Our results show that quasi-real-time execu-
tion of on-line parallel tomography can be achieved us-
ing a strategy that combines application tunability [7]
with application-level scheduling [8,9]. This strategy

ISSN 1058-9244/02/$8.00  2002, ACM. Reprinted with permission from Proceedings of ACM Supercomputing 2001, 10–16 November,

Denver, CO, USA. ACM portal: www.acm.org.

272 S. Smallen et al. / Applying scheduling and tuning to on-line parallel tomography

has been incorporated into GTOMO and will be put in

production at NCMIR.

This paper is organized as follows. In Section 2,

we briefly review our work on off-line parallel tomog-

raphy and describe application-level scheduling. We

also describe on-line parallel tomography and motivate

its implementation as a tunable application. Section 3

details our scheduling strategy for deploying on-line

parallel tomography on a Grid. Simulation results are

given in Section 4. Section 5 discusses related work

and Section 6 concludes the paper.

2. From off-line to on-line

2.1. Tomography at NCMIR

During a tomography experiment at NCMIR, a spec-

imen is placed under an electron microscope and ro-

tated about a single axis while p projections are ac-

quired using a charge-coupled device (CCD) camera.

Typically 61 projections are acquired. The size of each

projection depends on the resolution of the CCD cam-

era, currently either 1k × 1k or 2k × 2k.

We define a tomography experiment as E =
(p, x, y, z) where p is the number of projections, x

and y are the dimensions of the projections and z is

the thickness of the object; x, y, and z are measured

in pixels. Given the resolution of the CCD cameras,

(61, 1024, 1024, 300) and (61, 2048, 2048, 600) are

representative examples of NCMIR experiments.

The tomography reconstruction techniques used by

NCMIR (R-weighted backprojection [10], ART [11],

SIRT [12]) are embarrassingly parallel. Figure 1 illus-

trates the parallelism of these techniques. The informa-

tion required to produce the ith X-Z slice of the three-

dimensional volume (or tomogram) is the i th scanline

from all projections. Therefore, the three-dimensional

volume can be decomposed into a series of X-Z slices

where each slice is computed independently of the oth-

ers.

2.2. Off-line parallel tomography

The target computing platform for NCMIR is a Grid

composed of multi-user workstation clusters and su-

percomputers under different administrative domains.

Leveraging this type of platform is challenging because

resources are heterogeneous, dynamic, and under dif-

ferent administrative policies. Fortunately, several Grid

infrastructure projects [13–17] are available to facilitate

running an application across different administrative

domains. Our implementation of off-line parallel to-

mography, GTOMO [4], uses services from the Globus

toolkit [13] for remote job management, security, and

interprocess communication. To address the hetero-

geneous, dynamic properties of a Grid [5], we use an

application-level scheduling strategy.

An AppLeS (application-level scheduler) [8] inte-

grates with the target application to develop a sched-

ule for deploying the application in a Grid environ-

ment. The scheduler makes predictions of the perfor-

mance the application may experience on prospective

resources at execution time. Using these predictions, a

potentially performance-efficient schedule for the ap-

plication is identified and deployed [18–20,4]. In the

case of GTOMO, an embarrassingly parallel applica-

tion, it is natural to use self-scheduling [21]. We opted

for a greedy work queue algorithm where computation

is assigned to processors as soon as they become avail-

able. The algorithm is also coupled with a resource

selection strategy that co-allocates the execution of par-

allel tomography over workstations and immediately

available supercomputer nodes.

The architecture of GTOMO is displayed in Fig. 2. A

multi-threaded reader process reads input data (called

sinograms) from disk and sends that data to ptomo

processes. Each ptomo process performs a part of the

reconstruction and sends reconstructed slices to a writer

process which writes the data back to disk. The figure

also displays a driver process which controls the work

queue and coordinates the interactions among all the

different processes.

2.3. On-line Parallel Tomography

Currently, NCMIR users run tomography on their

data after they collect it from the electron microscope

(off-line). Upon visualization of their data, they some-

times discover a misconfiguration of the microscope or

might find a more interesting area of the specimen to

study. In such cases, users must modify the microscope

parameters and acquire a new dataset. This requires at

least 45 additional minutes and increases beam damage

to the specimen [22]. It would therefore be extremely

useful to provide feedback to the user by computing

incremental tomograms during the acquisition process.

2.3.1. Extensions to GTOMO

To incrementally compute a tomogram, we update

the ith slice of the tomogram with the ith scanline of

each projection as it is acquired from the electron mi-

S. Smallen et al. / Applying scheduling and tuning to on-line parallel tomography 273

Z

X

Y

specimen

projectio
n

scanline

Fig. 1. Parallelism of tomography (adapted from [3]). The information required to reconstruct the ith X-Z slice is the ith scanline from all

projections.

writerreader

driver

slicesinogram

sinogram

ptomo ptomo ptomo

disk disk

slice

Fig. 2. Off-line GTOMO architecture.

croscope. Achieving this in real-time requires a recon-
struction technique that is fast and augmentable. An
augmentable technique allows each successive compu-
tation to build upon the previous computation without
repeating work. Fortunately, the R-weighted backpro-

jection technique [10] fulfills both requirements.
The implementation of the R-weighted backprojec-

tion method as an augmentable technique mandates a
modification of the GTOMO application. It requires
that we send the ith scanline from each projection to

274 S. Smallen et al. / Applying scheduling and tuning to on-line parallel tomography

the same ptomo process so that it may process the infor-

mation into the same slice. Therefore, the work queue

approach described in Section 2.2 is no longer viable

and we replace it with a static work allocation strategy.

We leave rescheduling for future work.

The structure of on-line GTOMO is shown in Fig. 3.

The electron microscope sends a projection to the pre-

processor every a seconds. The preprocessor divides

the projection into sections, where each section con-

tains multiple scanlines. The scanlines in each sec-

tion will be processed in parallel by ptomo processes.

All ptomos will periodically send their slices to the

writer in order to update the tomogram. A visualiza-

tion program will then display updated tomograms to

the user. The driver coordinates interactions among all

other processes.

2.3.2. Tunability

Because on-line parallel tomography is resource-

intensive, we want to consider its execution on dynamic

Grids with differing resource capabilities. Therefore,

we have designed our implementation of on-line paral-

lel tomography to be tunable. A tunable application is

characterized by the availability of alternate configura-

tions, where each configuration corresponds to a differ-

ent execution path and resource usage [7]. In this work,

tunability allows us to express trade-offs between to-

mogram resolution and the frequency of tomogram up-

dates. We next illustrate its usage through an example.

We define the acquisition period, a, as the time to ac-

quire a projection from NCMIR’s electron microscope.

NCMIR is currently targeting an acquisition period of

45 seconds; therefore, we use this value throughout our

work. Consider a (61, 2048, 2048, 600) experiment

(see Section 2.1) which yields a tomogram of about 9.4

GB. If we place our writer on a machine with an ob-

servable bandwidth of 100 Mb/s, it will take 768 sec-

onds to transfer the whole tomogram. To avoid over-

loading the network, we send only one tomogram at

a time. So for this experiment, successive tomograms

should be sent at least 768 seconds apart. Since a pro-

jection is processed every 45 seconds, we can send a

tomogram every ⌈ 768

45
⌉ = 18 projections. We call each

send a refresh and say that the number of processed

projections per refresh is 18. The period of the refresh

is 18 × 45 = 810 seconds, approximately 14 minutes.

After surveying the requirements of NCMIR users, it

appears that no user would tolerate a refresh periods

which is over 10 minutes.

Now, suppose we reduce the resolution of the projec-

tions by a factor of 2 in each dimension. For the time

being we consider a simple averaging strategy [23].

The tomogram would then be 1.2 GB, 8 times smaller.

Thus, it would take only 96 seconds to transfer each

tomogram, yielding an acceptable refresh period of 135

seconds. Note that further reductions are possible but

in order to yield a sufficiently detailed tomogram for

NCMIR users, the projections should not be reduced

beyond 256× 256 pixels.

Two parameters, therefore, determine the quality of

on-line parallel tomography: reduction factor and pro-

jections per refresh. The reduction factor (f) is a scalar

value that specifies a reduction of the size of a projec-

tion in each dimension. If we have a projection of size

x× y, after reduction, we will have a projection of size
x
f
× y

f
. Increasing the reduction factor decreases the

number of slices and the amount of computation and

communication per slice. The projections per refresh

(r) parameter refers to the number of new projections

processed into each successive tomogram refresh. An

increase in r reduces the frequency of refreshes sent to

the user and thus reduces the amount of communica-

tion.

3. Scheduling

We have defined the pair (f, r) that determines the

configuration of the application. If enough resources

were available, users would always choose (1, 1) which

would result in the highest resolution tomogram being

refreshed at the highest frequency possible. Given in-

sufficient resources, in practice users need to choose

an alternate configuration when the ideal configuration

is infeasible. This choice depends on each user’s re-

quirements; therefore our scheduler aims at assisting

users in selecting an appropriate configuration. At run-

time, the scheduler discovers which pairs are feasible

and allows users to chose a pair that best fits their re-

quirements for execution. The process of discovering

feasible pairs is described in the following subsections.

3.1. Constraints for on-line tomography

We evaluate on-line parallel tomography as a soft

real-time application, one that is characterized by the

execution of tasks which have soft deadlines [24]. That

is, the usefulness of the task decreases as the tardiness

of the task increases [24,25]. Given the discussion in

Section 2.3, our soft deadlines are:

(i) the computation time of one projection is less

than the acquisition period,

S. Smallen et al. / Applying scheduling and tuning to on-line parallel tomography 275

writerpreprocessor

driver

slice

projection

scanlines

tomogram

ptomo ptomo ptomo

Fig. 3. On-line GTOMO architecture.

(ii) the transfer time of a tomogram is less than the
refresh period.

Our goal is to find a configuration of the application for
which all deadlines are met.

Consider a tomography experiment (p, x, y, z) and

a pair (f, r). Our scheduler must allocate work to
resources. For a set of compute resources M , we define
a work allocation as a set W :

W = {wm : m ∈ M} (1)

where wm is the number of tomogram slices allocated

to processor m.
We have the two following constraints:

∀m ∈ M wm � 0 (2)
∑

m∈M

wm =
y

f
(3)

since there are a total of y
f

tomogram slices to compute.
In the following two sections we derive constraints for
the computation deadline and the communication dead-

line.

3.2. Computation deadline

The soft deadline for computation can be written as:

∀m ∈ M Tcomp(m) � a, (4)

where Tcomp(m) is the time to backproject a single
projection into wm slices on processor m and a is the

acquisition period.

A simple analysis of the augmentable R-weighted
backprojection algorithm used for the tomographic re-
construction shows that

Tcomp(m) ≈ tppm ×
x

f
×

z

f
× wm, (5)

where tppm is the time to process a single pixel of a
tomogram slice on dedicated processor m.

We model two types of compute resources: time-
shared workstations and space-shared supercomputers.
Let TSR be the set of time-shared workstations and
SSR be the set of space-shared supercomputers such
that

M = TSR ∪ SSR. (6)

On a time-shared workstation,

Tcomp(m) =
tppm

cpum

×
x

f
×

z

f
× wm, (7)

where cpum is the fraction of CPU available on proces-
sor m. In practice we obtain a prediction for the value of
cpum from the Network Weather Service (NWS) [26].
Likewise, for a space-shared supercomputer,

Tcomp(m) =
tppm

um

×
x

f
×

z

f
× wm, (8)

where um is the number of unused nodes on m that are
immediately available for execution. As done in [4],
we opt to use MPP processors only when they are im-
mediately available. This avoids unpredictable queue
waiting times which are prohibitive for our scenario of a
soft real-time application. In practice we can obtain um

from batch schedulers such as the Maui Scheduler [27].

276 S. Smallen et al. / Applying scheduling and tuning to on-line parallel tomography

3.3. Communication deadline

The soft deadline for data transfers can be written as:

∀m ∈ M Tcomm(m) � r × a, (9)

where Tcomm(m) is the time for m to transfer wm slices

to the writer.

Given that tomogram slices are generally several

megabytes in size, we use the following approximation

of the equation in [28]:

Tcomm(m) ≈
wm × (x

f
× z

f
× sz)

Bm

, (10)

where sz is the number of bits used to represent a pixel

and Bm is the bandwidth between processor m and

the writer. We can obtain predictions for Bm from the

NWS [26].

Note this model assumes a fully connected network

where each processor has a dedicated link to the writer.

However resources are usually connected by way of

shared network links [29,30]. Therefore, we incorpo-

rate network topology information into our model in or-

der to determine a more effective work allocation. We

group resources into subnets, where a subnet contains

a set of compute resources which share a network link

to the writer. Let S be the set of subnets such that
⋃

Si∈S

Si = M. (11)

and Si is a subnet. In practice, the subnet groupings in

S can be obtained using a tool like ENV [31].

The following additional transfer constraint can then

be introduced into our model:

∀Si ∈ S Tcomm(Si) � r × a (12)

where Tcomm(Si) is the time for all compute resources

in Si to transfer
∑

m∈Si

wm slices to the writer. For

Equation 10, we can now write:

Tcomm(Si) ≈

(

∑

m∈Si

wm

)

×
x

f
×

z

f
× sz

BSi

(13)

where BSi
is the capacity of the subnet link. Note that

because we assume a heterogeneous network, Equa-

tion 13 complements Equation 10 rather than invalidat-

ing it.

We do not introduce any constraints into our model

for input data transfers (i.e., projection data sent from

the preprocessor to the ptomos). The input data is one

order of magnitude smaller than the output data and its

transfer time is amortized into the acquisition period.

Finally, our scheduling algorithm assumes that the

user provides bounds on the tunable parameters, hence

the last couple of constraints:

fmin � f � fmax (14)

rmin � r � rmax (15)

All our constraints are summarized in Fig. 4.

3.4. Scheduling and tuning: an optimization problem

Our goal is to present the user with a set of feasible

pairs (f, r) (i.e., pairs for which there exists a work

allocation that satisfies the constraints in Fig. 4). One

approach is exhaustive search: for each pair (f, r), one

can solve the system in Fig. 4 to find a possible work

allocation. A more efficient approach is to solve two

optimization problems:

(i) fix f and minimize r,

(ii) fix r and minimize f ,

where both problems are subject to the constraints in

Fig. 4. This approach can be easily extended to a

larger number of tuning parameters whereas exhaustive

search does not scale (see Section 6). Finally, an added

advantage of this approach is that it filters out sub-

optimal triples. For example, suppose that triples (1, 1)
and (1, 2) are feasible. We assume that users would

alway choose (1, 1) over (1, 2).
We describe here how these optimization problems

can be solved. First, we see that optimization prob-

lem (i) becomes linear upon substitution of f . This is a

clear advantage as there are numerous linear program-

ming solvers available for download [32]. However,

for (ii) the system remains nonlinear. While nonlinear

programming solvers are available [33], as a first ap-

proach, we opt to use a more simple technique. We ex-

ploit the discreteness and small range of f to reduce the

nonlinear program to multiple linear programs using

substitution. All linear programs are then solved and

the optimal solution is chosen. For our linear solver,

we have chosen to use the lp solve package [34].

Ideally, our optimal solution would be found by for-

mulating the linear program as an integer program. An

integer program is a linear program where all vari-

ables are constrained to be integers [35]. However,

integer programs are harder to solve than linear pro-

grams [32]. Our experiments indicate that a mixed-

integer approach, where wm is expressed as continuous

variables and all others as integer variables is efficient.

S. Smallen et al. / Applying scheduling and tuning to on-line parallel tomography 277

Fig. 4. Constraints for on-line parallel tomography.

The drawback of this approach is that the values found

for wm ∈ R must be rounded to integers (since it does

not make sense to allocate fractional slices to ptomos).

Therefore, the result is an approximate solution. We

evaluate its effectiveness in Section 4.3.1.

4. Experimental results

In this section, we evaluate the on-line GTOMO

scheduler using simulation. Section 4.1 describes our

simulator and Section 4.2 describes our simulated Grid

environment. We then show two sets of results. In

Section 4.3, we show that using dynamic system infor-

mation improves scheduler performance. In the second

set of results, described in Section 4.4, we demonstrate

that tunability is a fundamental concept for production

on-line parallel tomography runs in a Grid environment.

4.1. Simulator Description

In order to evaluate our scheduler performance, we

execute the application with multiple scheduling strate-

gies under the same environmental conditions. How-

ever, achieving repeatable environmental conditions

is not possible in a Grid environment [5]. One ap-

proach is to run back-to-back experiments [4,19,20].

However, this is not appropriate for tomography given

the long makespan of the application. Therefore, we

employ simulation [36]. We wrote a simulator us-

ing Simgrid [37], a discrete-event simulation toolkit

which provides APIs for studying scheduling algo-

rithms in distributed systems. Simgrid allows us to

implement a discrete-event simulator and provides a

notion of tasks (e.g., computations, data transfers) and

resources (e.g., processors, network links). Tasks can
have dependencies among them and are scheduled on

resources. Resources behaviors are modeled by ser-

vice rates that can be modeled using traces from real

resources (e.g., CPU availability, network link band-

width). Such traces are commonly available by exist-

ing resource monitoring tools such as the NWS [26].

Furthermore, Simgrid makes it possible to create ar-

bitrary resource interconnect topologies. The Simgrid

approach has been verified in [37] and has been used

to evaluate scheduling algorithms for parameter sweep

applications [36,38]. Similar trace-based resource sim-

ulation approaches have also been applied in projects

such as Bricks [39].

In our simulator, we model four types of tasks based

on profile information from the application:

1. acquire: acquire a projection from the microscope
2. scanline transfer: send a scanline from the prepro-

cessor to a ptomo
3. backproject computation: backproject a scanline

to a slice
4. slice transfer: send a slice from a ptomo to the

writer

For the simulation of a single run, there are p ac-

quires. For each acquire, there are y
f

scanline transfers

and y

f
backprojection computations. Given the value

278 S. Smallen et al. / Applying scheduling and tuning to on-line parallel tomography

knackgappy hamming crepitusgolgi

hi ranvier

10010

1000
10010

10 10

Cisco
2916XL

Cisco
6509

Blue Horizon

NCMIR

SDSC

OC-3

250 MHz250 MHz450 MHz200 MHz175 MHz

195 MHz 200 MHz

375 MHz X 1152

Fig. 5. NCMIR Grid topology.

hamming

Blue
Horizon

hi ranvier gappy knack golgi crepitus

Fig. 6. ENV representation of NCMIR Grid topology.

of the refresh period, r, there can also be y

f
slice trans-

fers following the backprojection computations. Re-

sources are modeled as a Grid containing multi-user

workstations and space-shared supercomputers.

4.2. Case Study: NCMIR Grid

We simulate a set of resources modeled after a sub-

set of the real computational environment at NCMIR.

The real network topology is shown in Fig. 5. It is

composed of a cluster of 7 workstations at NCMIR and

the Blue Horizon SP/2 at the San Diego Supercomputer

Center (SDSC). Since our goal is to develop a method

that is applicable in any environment, we use a tool to

automatically discover the topology and build a rele-

vant model that can be used for scheduling. In this

work we used ENV [31]. Figure 6 shows the ENV rep-

resentation of the topology relative to hamming. The

machine hamming was used both as the preprocessor

and writer machine because it had the highest band-

width capacity. Note that due to the switched network

and hamming’s 1 Gb/s NIC, almost all machines ap-

peared as if they had dedicated network links to ham-

ming. The exceptions were golgi and crepitus which

both have 100 Mb/s NICs. In this case, the ENV tool

detected some network interference at the switch. We

therefore modeled golgi and crepitus as sharing the

same network link in our simulations. Note that at the

time of the experiments we did not have any knowledge

of the network topology within SDSC. This further jus-

S. Smallen et al. / Applying scheduling and tuning to on-line parallel tomography 279

0 45 90

estimated refresh period
 (45 secs)

actual refresh period
 (50 secs)

Key

= 5
l

relative refresh lateness
(5 secs)

1

1 2

2

Fig. 7. Example timeline (partial) of an on-line parallel tomography experiment. The estimated refresh period (45 seconds) is shown in light gray

while the actual refresh period (50 seconds) is shown in dark gray. The ∆l for both the first and second refresh is 5 seconds.

Table 1

Summary statistics for the CPU availability traces

mean std cv min max

gappy 0.996 0.016 0.016 0.815 1.000

golgi 0.700 0.231 0.330 0.109 0.939
knack 0.896 0.118 0.132 0.377 0.986

crepitus 0.925 0.060 0.065 0.401 0.940

ranvier 0.981 0.042 0.043 0.394 0.994

hi 0.832 0.207 0.249 0.426 1.000

tifies the use of a tool like ENV as network topology
information is not always available and changes over
time. ENV gives us a way to model possible contention
among resources that share network links to the writer
process.

To model load on NCMIR workstations, we col-
lected CPU availability traces using the NWS from May
19th until May 26th 2001. During this time, we also
collected a node availability trace from Blue Horizon
to model its load using the Maui Scheduler command
showbf [27]. Similarly, bandwidth traces were col-
lected from all machines to hamming. The sample
period for both CPU availability and bandwidth were
set to the NWS defaults, 10 and 120 seconds respec-
tively. The sample period for the Blue Horizon traces
was 5 minutes. Summary statistics for the traces are
displayed in Tables 1, 2, and 3. For each trace, the table
shows the mean (mean), the standard deviation (std),
the coefficient of variance (cv), the minimum (min),
and the maximum (max) trace values.

All the results hereafter were obtained with our
Simgrid-based simulator using an acquisition period of
45 seconds (see Section 2.3.2).

4.3. Work allocation results

We evaluate the performance of the tomography ap-
plication in terms of soft deadline violations (see Sec-

Table 2

Summary statistics for the bandwidth traces (Mb/s)

mean std cv min max

gappy 8.335 0.778 0.093 3.484 9.145

knack 5.966 2.355 0.395 0.616 9.005

golgi/crepitus 70.223 19.657 0.280 3.104 81.361

ranvier 3.613 0.242 0.067 0.620 9.005

hi 7.820 2.230 0.285 0.353 13.074

horizon 32.754 7.009 0.214 0.180 41.933

Table 3

Summary statistics for node availability trace

mean std cv min max

Blue Horizon 31.1 48.3 1.5 0.0 492.0

wwa

wwa+bwwwa+cpu

AppLeS

Fig. 8. UML diagram describing scheduler characteristics.

tion 3.1). Our performance metric is relative refresh

lateness (∆l), that is the difference between the pre-

dicted and actual refresh times with respect to the late-

ness of the previous refresh. Therefore, low ∆ l infer

better real-time execution. We illustrate ∆l with an

example shown in Fig. 7.

We compare our scheduler, AppLeS, to three sched-

ulers: wwa, wwa+cpu, and wwa+bw. Weighted work

allocation, or wwa, corresponds to a simple strategy

280 S. Smallen et al. / Applying scheduling and tuning to on-line parallel tomography

0 1 2 3 4 5 6 7 8 9
10

0

10
1

10
2

10
3

10
4

hours

m
e
a
n
 ∆

l

wwa
wwa+cpu
wwa+bw
AppLeS

Fig. 9. The mean ∆l for the simulation period of May 22, 2001 from 8:00 A.M.–5:00 P.M. is plotted for each scheduler.

that a user might employ: it performs work allocation

based only on the relative processor benchmark of the

application in dedicated mode. The second scheduler,

wwa+cpu, assumes that compute resources are shared

among multiple users. It extends wwa by utilizing dy-

namic CPU load information. This corresponds to users

that might run a system command such as uptime to

find out CPU availability before executing their appli-
cation. The wwa+bw scheduler assumes only dynamic

bandwidth information and no CPU load information.

The AppLeS scheduler, as described in Section 3, as-

sumes that both compute and network resources are

shared among multiple users. The relationship between

the four schedulers is illustrated using an UML diagram

in Fig. 8.

We conducted two distinct sets of experiments: par-

tially trace-driven simulations and completely trace-

driven simulations. In both sets of simulations,we fixed

the pair (f, r) and use the schedulers to determine work

allocation. The following results were obtained using

a 1k × 1k dataset. For each set we simulate 1004 runs

of the application throughout the week starting every

10 minutes. Simulations were also run for a 2k × 2k

dataset but since the dataset was always reduced by a

factor of 2, the simulation results were identical to the

1k × 1k set.

4.3.1. Partially trace-driven simulations

In this set of experiments, we simulated runs where

the schedulers had access to perfect load predictions.

This represents the optimal running environment for

the schedulers since the performance predictions made

at the beginning of execution are valid throughout the

entire execution. At the start of each simulation, we

used the trace to determine a constant resource load for

the duration of the simulation. This allows us to test

our scheduling strategy in different Grid conditions, but

without dynamic Grid resource behaviors.

Figure 9 shows the simulation results of the 1k× 1k

experiment using the traces collected on May 22, 2001

from 8:00 A.M. to 5:00 P.M. We plot the mean relative

refresh lateness for each scheduler over the nine hour

simulation period. In these simulations, it is clear that

the AppLeS scheduler outperforms all the other sched-

S. Smallen et al. / Applying scheduling and tuning to on-line parallel tomography 281

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relative refresh lateness (seconds)

c
u
m

u
la

ti
ve

 f
ra

c
ti
o
n
 o

f
re

fr
e
s
h
e
s

wwa
wwa+cpu
wwa+bw
AppLeS

Fig. 10. Partially trace-driven simulations: the cumulative distribution functions of ∆l for each scheduler.

ulers. It is followed by the wwa+bw scheduler which

outperforms both the wwa and wwa+cpu schedulers

indicating that communication is the dominant factor

in application performance. Surprisingly, we see that

the wwa scheduler appears to do better than wwa+cpu.

Upon further investigation, we see that the wwa sched-

uler allocates most of its work to crepitus, one of the

machines with high bandwidth capacity to hamming

(see Table 2). Conversely, the wwa+cpu scheduler al-

located a higher amount of work to Blue Horizon be-

cause it detected a drop in CPU availability on crepi-

tus. While Blue Horizon had higher CPU availabil-

ity, it had a lower bandwidth capacity to hamming.

Therefore, wwa did better than wwa+cpu. Thus in

these simulations, CPU availability information was

not useful unless it was accompanied with bandwidth

information (i.e., AppLeS outperforms wwa+bw). We

are currently running simulations on different types of

Grids where wwa+cpu outperforms wwa.

Figure 10 shows the results of simulating the 1k×1k

dataset throughout the whole week of traces. For each

scheduler, we plot the cumulative distribution function

Table 4

Average deviation from best scheduler based on cumu-

lative ∆l

scheduler partially completely

trace-driven trace-driven

avg std avg std

wwa 783.70 715.63 237.01 190.22

wwa+cpu 1116.17 604.16 544.59 305.12

wwa+bw 159.04 159.56 74.21 93.11

AppLeS 0.08 2.49 49.94 96.33

of ∆l. A point (x, y) on the graph represents that y

percent of the refreshes were less than or equal to x

seconds late. Here, we see that 2% of the refreshes
arrived late for the AppLeS scheduler due to the ap-
proximation strategy described in Section 3.4. 1% of
these refreshes were less than or equal to 1 second late,
0.9% were less than or equal to 10 seconds late, and the
remaining 0.1% refreshes were less than or equal to 50
seconds late. In these cases, low bandwidth affected the
impact of rounding (to get an approximate solution).
In particular, the case where ∆l was approximately 40
seconds late, the bandwidth to the machine hi was quite
low at approximately 444 Kb/s.

282 S. Smallen et al. / Applying scheduling and tuning to on-line parallel tomography

wwa wwa+cpu wwa+bw AppLeS
0

200

400

600

800

1000

1200

scheduler

n
u
m

b
e
r

o
f
ru

n
s

1st
2nd
3rd
4th

Fig. 11. Partially trace-driven simulations: scheduler ranking based on cumulative ∆l.

To compare the simulation results for the schedulers

on a run-to-run basis, we plotted the number of times

each scheduler ranked first, second, third, and fourth

place based on cumulative ∆l (i.e.,
∑

∆l for each

run) in Fig. 11. Ranking for this graph was decided as

follows:

(i) For a single run, scheduler i received a rank k if

k − 1 schedulers beat it.

(ii) For a single run, if more than one scheduler had

the the same cumulative relative refresh lateness,

they received the same rank.

To measure the magnitude of difference from the best,

we calculated the average deviation (avg) from best

scheduler based on cumulative ∆l for each run. We

also calculate the standard deviation (std). The results

are displayed in the first and second columns of Table 4.

4.3.2. Completely trace-driven simulations

In this set of experiments, we used traces to de-

termine resource load variation throughout simula-

tion. Therefore, these simulations are completely trace-

driven. Consequently, the initial load predictions may

be imperfect throughout the simulated period. In other

words, these simulation results show the impact of dy-

namic Grid resource behavior on scheduling.

Figure 12 shows the results of the simulations in a

cumulative distribution function plot. Comparing this

to the previous set of simulations, we see how imper-

fect predictions degrade the performance of the Ap-

pLeS scheduler. Here 42.9% of the refreshes arrive

late compared to 2% in the partially trace-driven sim-

ulations. Although, we note that only 3.4% of the re-

freshes arrive later than 600 seconds (the upper bound

of tolerance for NCMIR users). We also plotted the

scheduler rankings in Fig. 13. These results show that

the AppLeS scheduler was in first place 55% of the

time compared to almost 100% in the partially trace-

driven simulations. The average deviations from best

scheduler are displayed in the third column of Table 4

and the standard deviations are displayed in the fourth

column.

Comparing the performance of the AppLeS to the

other schedulers, we see that it ranked first in more

runs than the other schedulers. Furthermore, on aver-

age the AppLeS scheduler showed a 24.27 second im-

provement in cumulative ∆l per run over the wwa+bw

scheduler (see Table 4). We are currently running fur-

S. Smallen et al. / Applying scheduling and tuning to on-line parallel tomography 283

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relative refresh lateness (seconds)

c
u
m

u
la

ti
ve

 f
ra

c
ti
o
n
 o

f
re

fr
e
s
h
e
s wwa

wwa+cpu
wwa+bw
AppLeS

Fig. 12. Completely trace-driven simulations: the cumulative distribution functions of ∆l for each scheduler.

ther simulations on Grids with differing levels of dy-

namic resource availability to evaluate the effects of

dynamic Grid behavior on scheduler performance. As

mentioned in Section 2.3.1, the benefit of rescheduling

(to cope with imperfect predictions) is left for future

work.

4.4. Evaluation of tunability

In Section 2.3.2, we motivated the design of on-line

parallel tomography as a tunable application for dy-

namic Grid environments. In this section, we assess the

usefulness of tunability. We say that tunability is use-

ful if changing the configuration at run-time (from the

previous configuration) results in a better configuration

for the user and/or better real-time execution than not

changing the configuration. We study how the config-

uration of on-line parallel tomography would change

for a user running back-to-back experiments during a

one-week period at NCMIR (see Section 4.2).

We consider two different on-line parallel tomogra-

phy experiments:

E1 = (45, 61, 1024, 1024, 300),

E2 = (45, 61, 2048, 2048, 600).

As described in Section 2.2, these two experiments

are representative of the size of experiments run by

NCMIR users and correspond to datasets collected

from 1k× 1k CCD and 2k× 2k CCD cameras respec-

tively. Based on NCMIR user preferences (as discussed

in Section 2.3.2), we set the following constraints for

E1 experiments:

1 � f � 4

1 � r � 13,

and for E2 experiments:

1 � f � 8

1 � r � 13.

We simulated scheduler decisions every 10 minutes

throughout the simulated week leading to 1004 recon-

structions for each experiment type. The range of (f, r)
pairs found by the AppLeS scheduler for the E1 exper-

284 S. Smallen et al. / Applying scheduling and tuning to on-line parallel tomography

wwa wwa+cpu wwa+bw AppLeS
0

200

400

600

800

1000

1200

scheduler

n
u
m

b
e
r

o
f
ru

n
s

1st
2nd
3rd
4th

Fig. 13. Completely trace-driven simulations: scheduler ranking based on cumulative ∆l.

iment is displayed in Fig. 14; the range of (f, r) pairs

for the E2 experiment is displayed in Fig. 15. For each

pair, we show the percentage of the time it was feasible

and optimal throughout the week. The percentage is

visually depicted as variable-size ×’s. Recall that our

method filters out sub-optimal pairs (see Section 3.4).

At this point we do not specify any model for the user

pair selection criteria. For instance, if both pairs (1, 2)
and (2, 1) are feasible for a given experiment, we plot

both pairs in the figure and qualify both pairs as “opti-

mal”.

For both type of experiments the majority of feasi-

ble optimal pairs take two values: (1, 2) and (2, 1) for

E1 experiments; (2, 2) and (3, 1) for E2 experiments.

Note also that since the projections are larger for E2

experiments, the scheduler opts for higher reduction

factor values. These results indicate that in the NCMIR

environment, different values for f and r should be

used in order to best satisfy users’ criteria. We are cur-

rently running experiments for many synthetic Grid en-

vironments modeled after real traces from actual Grid

testbeds. Our preliminary results show that implement-

ing tunability as part of on-line parallel tomography is

critical over a wide range of computing environments.

In addition, in many cases the feasible optimal (f, r)
pairs take wider ranges of values than what we observe
for the NCMIR Grid. We will report on those results
in an upcoming research article.

In order to quantify the benefits of tunability as per-
ceived by a user throughout time, we also performed
the following experiment. We model a user who would
choose a pair (f, r) and then watch how that pair
changes over time for back-to-back tomographic re-
constructions. For these experiments, we assume a
simple user model. We assumed that the user would
always choose pairs that have the lowest f . We use
the number of changes within a specified time period
to measure the usefulness of tunability. For example,
when the triple change frequency is low, we say that
tunability is not useful. In other words, it is likely that
a user could use the same configuration from run to run
and not experience a significant drop in performance.
Conversely, when the triple change frequency is high,
we say that tunability is useful. We predict that a user
running with the same configuration from run to run
would experience significant performance drops and/or
would under-utilize the resources.

We simulated tomographic reconstructions every 50
minutes throughout the week of traces (recall that a

S. Smallen et al. / Applying scheduling and tuning to on-line parallel tomography 285

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

10

11

12

42.20%

4.24%

2.99%

0.30%

0.10%

0.05%

0.05%

0.05%

49.93%

0.05%

0.05%

f

r

Fig. 14. (f, r) pairs found for (61, 1024, 1024, 300) experiment.

Table 5

Evaluation of tunability using number of changes of the “best”

tunable pair (f, r) over a week on the NCMIR Grid

Experiment type % of % of % of

changes changes for f changes for r

1k × 1k 25.2% 0.0% 25.2%

2k × 2k 25.1% 22.9% 19.2%

reconstruction takes 45 minutes). This corresponds
to a user running 201 back-to-back reconstructions

throughout the week. We performed simulations for
1k × 1k and 2k × 2k experiments, totaling 402 appli-

cation simulations. For each reconstruction, we em-
ulated the user and chose the “best” (f, r) pair while

monitoring changes of that pair from one experiment
to the next.

First, we illustrate the usefulness of tunability by
example. Figure 16 shows some of the pairs found on

May 21, 2001. Suppose, the user starts a reconstruction
at 8:00 a.m. using the pair (3,1). If the user used the

same configuration pair throughout the day, the user
would not have been able to take advantage of the better

configuration pairs available at 8:50 a.m. and 10:40

a.m. Conversely, the user would have observed very

bad performance at 9:50 a.m. because there would not

have been enough resources available to support the

configuration pair (3,1).

In total, we found that the (f, r) pair changed 51

times out of the 201 reconstructions for the E1 experi-

ments. All changes were caused by the tuning of r. For

the E2 experiments, pairs changed 50 times out of the

201 reconstructions. In these 50 changes, 48 involved

tuning of r, and 38 involved tuning of f . These results

are summarized in Table 5 using percentages. In about

25% of the cases, is was a good choice to tune the appli-

cation configuration (for both the 1k× 1k and 2k× 2k

datasets) rather than using the previous configuration.

5. Related work

On-line parallel tomography has also been addressed

as part of the Computed Microtomography (CMT)

project [40,41]. Projections are collected from the Ad-

vanced Photon Source (APS) at Argonne National Lab-

286 S. Smallen et al. / Applying scheduling and tuning to on-line parallel tomography

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

10

11

12

44.72%

50.63%

2.22%

0.05%

2.27%

0.05%

0.05%

f

r

Fig. 15. (f, r) pairs found for (61, 2048, 2048, 600) experiment.

(3,1) (2,2) (3,2) (2,2)

8:00 9:00 10:00 11:00

Fig. 16. Sample of configuration pairs chosen by our user model on

May 21, 2001.

oratory, processed by an SGI Origin 2000, and visual-
ized on an ImmersaDesk [42] or in a CAVE [43]. The
CMT on-line parallel tomography code specifically tar-
gets high-speed networks and supercomputers and is
a slightly extended version of the GTOMO code de-
scribed in Section 2.2. The on-line parallel tomogra-
phy implementation presented in this paper differs from
CMT’s in that it enables the R-weighted backprojection
method to execute as an augmentable technique. Note
that it would be straightforward to add the same exten-
sion to the CMT code in order to improve real-time ex-
ecution. Second, our implementation enables on-line
parallel tomography to execute across a more diverse
set of resources (e.g.,workstations, space-shared super-
computers, lower-capacity networks) through the use

of application tunability and application-level schedul-
ing.

Application tunability is a concept that has been ap-

plied in the MILAN project [7] and in [44]. In MI-

LAN, tunability is used by the system scheduler to im-
prove throughput. The system scheduler is referred to

as the QoS arbitrator and is responsible for allocating

processors to application tasks. Each application has

a QoS agent which interacts with the QoS arbitrator to

ensure that its execution requirements are being satis-
fied. The QoS agent is automatically generated from

annotated code. Our work differs from MILAN’s in

that our objective is to use tunability to improve ap-

plication performance rather than system performance.
We provide a single AppLeS process which functions

as both the application’s QoS agent and QoS arbitra-

tor. While MILAN provides a simpler API, it is cur-

rently unable to sufficiently capture the requirements of
on-line parallel tomography because the QoS arbitrator

does not schedule bandwidth on network links. Given

the large amount of data transfer required for on-line

parallel tomography, the ability to express bandwidth

S. Smallen et al. / Applying scheduling and tuning to on-line parallel tomography 287

requirements is critical to achieving real-time execution

performance.

The work presented in [44] also uses tunability to im-

prove application performance. Two applications are

presented and classified as prediction-based, best ef-

fort, real-time applications. Using predictions of appli-

cation performance based on dynamic load predictions,

the application is mapped to a set of resources. Our

work differs from theirs in that predictions of applica-

tion performance are model-based rather than history-

based.

The concept of soft deadlines for computing on the

Grid has been explored in the Nimrod/G project [45].

In Nimrod/G scheduling aims at achieving trade-offs

between deadline requirements and resource cost. In

this work, our contribution is that we perform trade-offs

between resource availability and key characteristics

of the application’s output. In other words, we stud-

ied soft deadline scheduling in the context of tunable

applications. In future work, we will add Nimrod/G’s

notion of resource cost to our current scheduling model

(see Section 6).

Finally, the AppLeS described in this paper builds

upon other previous AppLeS work [18–20,4] in its

strategies for resource selection and work allocation.

These AppLeS have focused on improving the per-

formance of applications with fixed configurations.

The AppLeS described herein distinguishes itself from

these schedulers in its ability to improve the perfor-

mance of an application (with multiple configurations)

by exploiting its tunability.

6. Conclusion

We have extended our previous work on off-line par-

allel tomography [4] to address the on-line scenario.

We have modeled our application as a tunable applica-

tion, allowing users to express trade-offs between to-

mogram resolution and refresh rates. Our scheduling

strategy uses dynamic CPU and network bandwidth

availability information to perform resource selection.

We have identified scheduling/tuning in terms of mul-

tiple constrained optimization problems. Simulation

results showed that our scheduler chooses appropriate

work allocations because it takes into account dynamic

bandwidth information. Finally, we demonstrate the

importance of tunability in a computing environment

such as the one at NCMIR.

In future work, we will explore the notion of cost

for resource usage. Several supercomputer centers reg-

ulate resource access with allocations and tunability

can then be expressed as a triple (f, r, cost) where

cost is the allocation units the user is willing to spend.
The same optimization techniques as described in Sec-

tion 3.4 apply. The notion of cost and soft deadline has

been explored in [45]. Our contribution is that we allow
for tunability in terms of key parameters of the target ap-

plications. Also, we are currently running simulations

for synthetic computing environments and a future pa-
per will present an evaluation of our scheduling/tuning

strategy for environments with various topologies and

resource availabilities. The implementation of on-line
parallel tomography described in this paper will be put

into production mode at NCMIR. We expect this will
allow NCMIR users to acquire higher quality data from

their electron microscope and will allow for more effi-

cient use of this scarce resource.
Finally, our work on on-line tomography is applica-

ble to a large class of applications. Our methodology

provides a general framework for scheduling tunable
applications with soft deadline requirements in Grid

environments.

Acknowledgements

The authors would like to thank the reviewers, mem-
bers of the Grid Computing Laboratory, and our col-

leagues at NCMIR and ISI for their insightful com-
ments. Particularly, we are grateful to Holly Dail for

reviewing earlier drafts of this paper. We would also

like to thank Phil Papadopoulos for use of the Meteor
cluster at SDSC and David Hutches for use of the Ac-

tive Web cluster at UCSD.

This research was supported by NSF grants ACI-
9701333 and ACS-9619020. Equipment used in this

research was supported in part by the UCSD Active

Web Project, NSF Research Infrastructure Grant Num-
ber 9802219.

References

[1] A. C. Kak and M. Slaney, Principles of Computerized Tomog-

raphy Imaging, IEEE Press, 1998.

[2] G.A. Perkins, C.W. Renken, S.J. Young, S.P. Lamont, M.E.

Martone, S. Lindsey, T.G Frey and M.H. Ellisman, Electron
tomography of large multicomponent biological structures. J.

Struct. Biol. 120 (1997), 219–227.

[3] J. Frank and M. Radermacher, Three-Dimensional Recon-

struction of Nonperiodic Macromolecular Assemblies from

Electron Micrographs, in: Advanced Techniques in Biological

Electron Microscopy III, J.K. Koehler, ed., Springer-Verlag,

1986.

288 S. Smallen et al. / Applying scheduling and tuning to on-line parallel tomography

[4] Shava Smallen, Walfredo Cirne, Jaime Frey, Francine Berman,

Rich Wolski, Mei-Hui Su, Carl Kesselman, Steve Young and

Mark Ellisman, Combining Workstations and Supercomput-

ers to Support Grid Applications: The Parallel Tomography

Experience, Proceedings of the 9th Heterogenous Computing

Workshop, May 2000.

[5] Ian Foster and Carl Kesselman, eds, The Grid: Blueprint for

a New Computing Infrastructure, Morgan Kaufmann Publish-

ers, Inc., San Francisco, USA, 1999.

[6] I. Foster, C. Kesselman and S. Tuecke, The Anatomy of

the Grid: Enabling Scalable Virtual Organizations, Intl. J.

Supercomputer Applications (2001), in press.

[7] Fangzhe Chang, Vijay Karamcheti and Zvi Kedem, Exploit-

ing Application Tunability for Efficient, Predictable Resource

Management in Parallel and Distributed Systems, Journal of

Parallel and Distributed Computing 60 (2000), 1420–1445.

[8] Francine Berman, Richard Wolski, Silvia Figueira, Jennifer

Schopf and Gary Shao, Application Level Scheduling on Dis-

tributed Heterogeneous Networks, Proceedings of Supercom-

puting 1996, 1996.

[9] F. Berman and R. Wolski, The AppLeS Project: A Status

Report, Proc. of the 8th NEC Research Symposium, Berlin,

Germany, May 1997.
[10] M. Radermacher, Three-dimensional reconstruction of single

particles from random and nonrandom tilt series. J. Electron

Microsc. Tech. 9 (1988), 359–394.

[11] R. Gordon, R. Bender and G.T. Herman, Algebraic Recon-

struction Techniques (ART) for Three-dimensional Electron

Microscopy and X-ray Photography. J. Theoret. Biol. 29

(1970), 471–481.

[12] P. Gilbert, Iterative Methods for the Three-dimensional Re-
construction of an Object from Projections, J. Theoret. Biol.

36 (1972), 105–117.

[13] Ian Foster and Carl Kesselman, The Globus Project: A Sta-

tus Report, Proc. IPPS/SPDP ’98 Heterogeneous Computing

Workshop, 1998.

[14] A. Grimshaw, A. Ferrari, F.C. Knabe and M. Humphrey, Wide-

Area Computing: Resource Sharing on a Large Scale, IEEE

Computer 32(5) (May, 1999).

[15] M.J. Litzkow, M. Livny and M.W. Mutka, Condor – A Hunter

of Idle Workstations, Proc. of the 8th Int’l Conf. on Distributed

Computing Systems, 1988, pp. 104–111.

[16] Henri Casanova and Jack Dongarra, NetSolve: A Network

Server for Solving Computational Science Problems, The In-

ternational Journal of Supercomputing Applications and High

Performance Computing, 1996.
[17] S. Sekiguchi, M. Sato, H. Nakada, S. Matsuoka and U. Na-

gashima, Ninf: Network based Information Library for

Globally High Performance Computing, Proc. of Parallel

Object-Oriented Methods and Applications (POOMA), Febru-

ary 1996, pp. 39–48.

[18] Alan Su, Francine Berman, Richard Wolski and Michelle Mills

Strout, Using AppLeS to Schedule Simple SARA on the Com-

putational Grid, International Journal of High Performance

Computing Applications 13(3) (1999), 253–262.

[19] Neil Spring and Rich Wolski, Application Level Scheduling of

Gene Sequence Comparison on Metacomputers, 12th ACM

International Conference on Supercomputing, July, 1998.

[20] Holly Dail, Graziano Obertelli, Francine Berman, Rich Wol-

ski and Andrew Grimshaw, Application-Aware Scheduling of

a Magnetohydrodynamics Application in the Legion Metasys-

tem, Proceedings of the 9th Heterogenous Computing Work-
shop, May, 2000.

[21] T. Hagerup, Allocating Independent Tasks to Parallel Pro-

cessors: An Experimental Study, Journal of Parallel and

Distributed Computing 47 (1997), 185–197.

[22] Gabriel E. Soto, Stephen J. Young, Maryann E. Martone,

Thomas J. Deerinck, Stephan Lamont, Bridget O. Carragher,

Kiyoshi Hamma and Mark H. Ellisman, Serial section electron

tomography: A method for three-dimensional reconstruction
of large structures, Neuroimage 1 (1994), 230–243.

[23] Reinhard Klette and Piero Zamperoni, Handbook of Image

Processing Operators, (chapter 4), John Wiley and Sons, Ltd.,

1996, pp. 120–125.

[24] Jane W.S. Liu, Real-Time Systems, (chapter 2), Prentice-Hall,

Inc., 2000, pp. 26–33.

[25] Stefan D. Bruda and Selim G. Akl, Real-Time Computation:

A Formal Definition and its Applications, Technical Report
435, Queen’s University, 2000.

[26] Rich Wolski, Neil T. Spring and Jim Hayes, The Network

Weather Service: A Distributed Resource Performance Fore-

casting Service for Metacomputing, The Journal of Future

Generation Computing Systems (1999).

[27] Maui Scheduler webpage at http://www.mhpcc.edu/maui.

[28] David E. Culler and Jaswinder Pal Singh, Parallel Computer

Architecture, (chapter 1), Morgan Kaufmann Publishers, Inc.,
1999, pp. 60–61.

[29] Andrew S. Tanenbaum, Computer Networks, (chapter 1),

Prentice Hall, Inc., Third edition, 1996, pp. 8.

[30] Radia Perlman, Interconnections, (chapter 2), Addison Wes-

ley Longman, Inc., second edition, 2000, pp. 19.

[31] Gary Shao, Fran Berman and Rich Wolski, Using Effective

Network Views to Promote Distributed Application Perfor-

mance, Proceedings of the 1999 International Conference on
Parallel and Distributed Processing Techniques and Applica-

tions, 1999.

[32] Linear Programming FAQ webpage at http://www-unix.mcs.

anl.gov/otc/Guide/faq/linear-programming-faq.html.

[33] Nonlinear Programming FAQ webpage at http://www-unix.

mcs.anl.gov/otc/Guide/faq/nonlinear-programming-faq.html.

[34] lp solve FTP site at ftp://ftp.es.ele.tue.nl/pub/lp solve.
[35] Dimitri P. Bertsekas, Nonlinear Programming, (chapter 1),

Athena Scientific, 1999, pp. 2.

[36] Henri Casanova, Arnaud Legrand, Dmitrii Zagorodnov and

Francine Berman, Heuristics for Scheduling Parameter Sweep

applications in Grid Environments, Proceedings of the 9th

Heterogenous Computing Workshop, May, 2000.

[37] Henri Casanova, Simgrid: A Toolkit for the Simulation of Ap-

plication Scheduling, Proceedings of the IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid, May,

2001.

[38] H. Casanova, G. Obertelli, F. Berman and R. Wolski, The

AppLeS Parameter Sweep Template: User-Level Middleware

for the Grid. Proceedings of SuperComputing’00, November,

2000.

[39] Atsuko Takefusa, Satoshi Matsuoka, Hidemoto Nakada, Kento

Aida and Umpei Nagashima, Overview of a Performance

Evaluation System for Global Computing Scheduling Algo-

rithms, Proceedings of the 8th IEEE International Sympo-

sium on High Performance Distributed Computing (HPDC),

August, 1999, pp. 97–104.

[40] G. von Laszewski, M.-H. Su, J. Insley, I. Foster, J. Bresnahan,

C. Kesselman, M. Thiebaux, M. Rivers, S. Wang, B. Tieman

and I. McNulty, Real-Time Analysis, Visualization and Steer-

ing of Tomography Experiments at Photon Sources, Ninth
SIAM Conference on Parallel Processing for Scientific Com-

puting, Apr, 1999.

S. Smallen et al. / Applying scheduling and tuning to on-line parallel tomography 289

[41] Y. Wang, F. De Carlo, I. Foster, J. Insley, C. Kesselman,

O. Lane, G. von Laszewski, D. Mancini, I. McNulty, M.-H.

Su and B. Tieman, A quasi-realtime xray microtomography

system at the Advanced Photon Source, Proceedings of SPIE

3772 (1999).

[42] M. Czernuszenko, D. Pape, D. Sandin, T. DeFanti, G. Dawe

and M. Brown, The ImmersaDesk and Infinity Wall
Projection-Based Virtual Reality Displays, Computer Graph-

ics 31(2) (1997), 46–49.

[43] C. Cruz-Neira, D. Sandin and T. DeFanti, Surround-Screen

Projection-Based Virtual Reality: The Design and Implemen-

tation of the CAVE, ACM Computer Graphics 27(2) (July,

1993), 135–142.

[44] Peter A. Dinda, Bruce Lowekamp, Loukas Kallivokas and

David R. O’Hallaron, The Case for Prediction-based Best-

effort Real-time Systems, Technical Report CMU-CS-98-174,

Carnegie Mellon University, 1999.

[45] D. Abramson, J. Giddy and L. Kotler, High Performance

Parametric Modeling with Nimrod/G: Killer Application for

the Global Grid? Proceedings of the International Paral-

lel and Distributed Processing Symposium (IPDPS), Cancun,

Mexico, May, 2000, pp. 520–528.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

