
T
his article is about how to make it easier to create intelli-

gent agents by applying established software-engineering

principles. We present an example integrated agent devel-

opment environment that realizes these principles and provides

lessons for other agent architectures, both existing and in de-

velopment.

Creating complex software is not a new problem, and the

software-engineering community has developed principles to

guide solving complex problems with software. Developing in-

telligent agents is a complex software-engineering activity but

the benefits of applying software-engineering principles such as

high-level languages, maintenance-oriented development envi-

ronments, and software reuse to intelligent agent development

have not yet fully migrated to the agent-development commu-

nity. We demonstrate how these principles have been realized in

the Herbal Toolset, a collection of tools that embody these three

core principles. In this article, we introduce the Herbal Toolset

and the principles that informed its design.
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n Developing intelligent agents and cognitive

models is a complex software-engineering ac-

tivity. This article shows how tools to create in-

telligent agents can be improved by taking ad-

vantage of established software-engineering

principles such as high-level languages, main-

tenance-oriented development environments,

and software reuse. We describe how these prin-

ciples have been realized in the Herbal integrat-

ed development environment, a collection of

tools that allows agent developers to exploit

modern software-engineering principles.



High-Level Languages for AI
and Cognitive Modeling

Intelligent agents and cognitive models are useful

in many applications, but for different reasons.

The processing speed and accuracy of an intelli-

gent agent can help people dial cell phones more

quickly and accurately when driving a car, while a

cognitive model can help predict common human

errors and their causes, which can lead to better

cell phone design for novice users. Agents can be

used as colleagues and adversaries for education

and training, especially in domains where actual

human participation could be dangerous (Jones et

al. 1999). In these areas, opponents that follow

predictable scripts can be made more interesting

using cognitive models of human adversaries

(Laird 2001). Prediction and psychological insight

are two important outcomes of a cognitive model

that separate it from other types of intelligent

agents. In addition, computer interfaces can be

tested efficiently using models of human users (for

example, Ivory and Hearst [2001]).

Unfortunately, development of intelligent

agents and cognitive models is challenging. In

more conventional software-engineering do-

 mains, high-level languages are often used by de-

velopers because they simplify the creation of

complex systems. However, many of the intelli-

gent agent and cognitive-modeling architectures

in use today rely on low-level, rule-based pro-

gramming languages (for example, Soar, ACT-R).

While programming in these languages is not as

primitive as using assembler, these low-level pro-

duction systems do exhibit a similar problem: the

concepts represented in low-level rules sometimes

bear little resemblance to the concepts used by the

programmer to solve the problem. Higher-level

representations are needed to close the gap be-

tween the theory and the behavior-representation

languages, and this need is increasingly recog-

nized and evident in the literature (for example,

Cooper and Fox [1998], Jones et al. [2006], Salvuc-

ci and Lee [2003]).

The absence of higher-level languages that in-

corporate cognitive theory as an explicit object in

the language (instead of using rules) has not gone

entirely unnoticed (Ritter et al. 2006). In response,

researchers have begun developing higher-level

languages that simplify the encoding of behavior

by creating representations that map more direct-

ly to a theory of how behavior arises in humans.

For example, G2A (St. Amant, Freed, and Ritter

2005) is a high-level representation language that

allows for the creation of ACT-R models using the

goals, operators, methods, and selection rules

(GOMS) model of human activity (John and Kieras

1996). One naturalistic experiment has shown

that G2A reduced the amount of effort required to
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produce ACT-R models by more than 90 percent

(St. Amant, Freed, and Ritter 2005).

ACT-Simple (Salvucci and Lee 2003) and Cog-

Tool (John et al. 2004) are additional examples of

high-level languages designed to simplify cogni-

tive modeling and have been shown to be useful

for quickly building models that predict expert

performance. They are similar to G2A in that they

provide a GOMS-based higher-level language that

compiles into low-level ACT-R rules. 

ACT-Simple, CogTool, and G2A are examples of

how combining the simplicity of an abstract be-

havior-representation language with the com-

plexity of a lower-level cognitive architecture can

simplify the modeling task. Unfortunately, these

tools support only one underlying architecture

(ACT-R). In addition, the high-level language sup-

ported by these tools is based on GOMS, which is

limited to modeling expert behavior in simple

tasks. Providing support for multiple architectures

and a high-level language based on a richer psy-

chological theory would open up new opportuni-

ties for these development platforms.

The high-level symbolic representation (HLSR)

project is another example of a high-level cogni-

tive-modeling language. The HLSR project aims at

creating a formal language that encompasses a

wide variety of modeling tasks using a variety of

cognitive architectures (Jones et al. 2006). Cur-

rently, HLSR creates Soar and ACT-R models. HLSR

supports multiple architectures using microtheo-

ries, which describe how an HLSR architectural

construct will compile into a specific architecture.

The ability of HLSR to use microtheories to re-

move the architectural dependencies from the

code that represents the cognitive model is an im-

portant accomplishment. This allows modelers to

implement a model once, yet execute in different

architectures. 

However, the architectural neutrality of HLSR

results in the lack of explicit support for widely

used unified theories of cognition (for example,

the PSCM of Soar, and ACT-R). Instead, the mi-

crotheories hide this theory. Because modelers of-

ten use one of these theories of cognition to un-

derstand how to perform a task, they must take an

extra step to translate their understanding of the

task into a description using HLSR. This gap be-

tween the modeler’s conceptualization of behav-

ior, and its realization in the high-level language,

is exactly what a high-level language is intended

to address.

The lessons described above are important for

builders of agent and cognitive-modeling devel-

opment environments, and these lessons in-

formed the high-level agent-construction lan-

guage adopted by the Herbal Toolset introduced in

this article.



Maintenance-Oriented
Development Environments

For complex systems, the process of maintenance

is the most expensive phase of a system’s develop-

ment life cycle (Boehm 1987, Brooks 1995). A re-

cent study by the National Institute of Standards

and Technology (Tassey 2002) showed that U.S.

programmers spend more than 70 percent of their

time testing and debugging. For programmers of

intelligent agents and cognitive modelers this

problem may be even more acute, given the com-

plexity of the software they typically develop.

Fortunately, the use of high-level languages can

help with maintenance (Brooks 1995). A review by

Hordijk and Wieringa (2005) categorized the fac-

tors that influence software maintainability. In-

cluded in these factors were code-level properties

such as code complexity and duplication. High-

level languages help here because they reduce code

complexity and duplication. 

In addition to high-level languages, a survey

done by Hordijk and Wieringa (2005) also identi-

fied development environments as a factor that in-

fluences maintainability. This implies that creating

maintenance-oriented environments (environ-

ments that explicitly support software mainte-

nance) can help reduce the cost of software devel-

opment. 

Researchers have taken notice. For example,

Ko, Aung, and Myers (2005) looked at how Java

programmers perform software maintenance.

Their study suggested that programmers form a

working set of task-relevant code fragments that

is typically built by using a find and replace dia-

logue or by visually searching the source code. Ko

and colleagues believe that support for working

sets can help simplify maintenance by bundling

related source code fragments into sets that can

be easily and quickly retrieved, examined, and

modified.

Another way to streamline the maintenance

process is to make it easier for programmers to ac-

cess the design rationale underlying a system (La-

Toza, Venolia, and DeLine 2006). Easy access to

this design rationale is crucial, but developers cur-

rently spend much of their time reconstructing de-

sign rationale that is implicitly embedded within a

program’s source code (LaToza, Venolia, and De-

Line 2006). It has long been recognized that one of

the key barriers to comprehending software is the

invisibility of its structure relative to the functions

it performs (Brooks 1987). For intelligent agents

and cognitive models, this problem is especially

acute as these systems are often intended to carry

out complex and consequential operations similar

to, and sometimes in place of, people. Because of

this, intelligent agents are expected to be account-

able for the actions they perform, to explain how

and why their reasoning led to a particular action.

An early implementation of this idea was the

XPLAIN architecture for creating intelligent sys-

tems (Swartout 1983). XPLAIN was designed ex-

pressly to provide explanations of an expert system

using the design rationale underlying its structure

and behaviors. The XPLAIN knowledge base in-

cludes justifications for system structure, behavior,

and general problem-solving strategies, as well as a

mapping between terms and definitions used in

the design to those in its domain of intended use.

Other examples of how design rationale has been

used to support explanation in intelligent and oth-

er complex systems are available (Haynes 2005).

More recently, Haynes, Cohen, and Ritter (2009)

have proposed a unified approach using design

patterns to support explanation in agent-develop-

ment environments. Their work presents a set of

guidelines for developing agents that explain

themselves based on a study of the questions that

users asked while working with an intelligent sys-

tem. Three general design patterns for creating ex-

plainable agents emerged from the analysis of this

study: 

Ontological explanations are designed to pro-

vide answers to questions about the static structure

of an agent’s design. Mechanistic explanations pro-

vide insight into how the components within an

agent interact to produce behavior. Finally, the op-

erational explanations describe how a modeler can

access and utilize an agent’s functionality. 

These explanation types help provide the ra-

tionale underlying the design of the agent. The ad-

vantage of access to these explanations is that de-

velopers and users can understand the intent of

the program designers. Building support for these

types of explanations into a high-level language

and agent-development environment can simplify

the creation of intelligent software by providing

reusable and extendable models of explanation de-

livery.

Software Component Reuse

Reuse of source code, even within a single pro-

gram, can reduce development and maintenance

costs (Boehm 1987, Brooks 1995, Krueger 1992).

One of the earliest discussions of the importance of

software reuse was presented by McIlroy (1968). He

described a view of the future of software reuse that

included the availability of safe, well-tested soft-

ware components tailored to each user’s needs.

A useful framework for understanding reuse was

developed by Krueger (1992). Krueger breaks soft-

ware reuse into four dimensions: (1) abstraction,

(2) selection, (3) specialization, and (4) integration.

Abstraction allows programmers to consider a pro-

gramming task separate from the concrete realities

of the modeling language and is the reason why
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high-level languages provide more effective sup-

port for reuse. Although often taken for granted,

abstraction in high-level languages is one of the

most successful vehicles of software reuse (Brooks

1987, Krueger 1992). Selection allows program-

mers to locate and select appropriate reusable com-

ponents. Good maintenance-oriented environ-

ments make it easy for developers to search for

reusable components based on criteria that are tied

directly to the design rationale. Specialization al-

lows programmers to tailor reusable components

to their specific needs. Without support for spe-

cialization, developers are unable to configure a

component for their specific use. Integration, the

fourth of Krueger’s dimensions, allows developers

to combine reusable components into a working

program. A maintenance-oriented environment

should play a major role in simplifying the inte-

gration piece of reusable software.

Design patterns provide an effective way to im-

plement Krueger’s dimensions. Design patterns are

reusable templates that provide solutions to recur-

ring problems (Gamma et al. 1995). A design pat-

tern consists of four central elements: The pattern

name, which makes it possible for developers to

identify and communicate about a pattern; a prob-

lem, which helps developers recognize when a par-

ticular pattern is useful; a pattern solution, which

provides an abstract description of the pattern and

how it can be used to solve the problem; and the

consequences, which discuss the trade-offs related

to the pattern’s use.

The Herbal Toolset

The software-engineering community has devel-

oped strong theories and principles about how to

solve complex problems with software solutions.

High-level languages have been shown to simplify

software development (Beck and Perkins 1983;

Daly 1977; Maxwell, Wassenhove, and Dutta

1996), yet many popular agent-development envi-

ronments do not yet support high-level program-

ming languages (Jones et al. 2006). The advantages

of software maintenance and accessible design ra-

tionale are also clear (Boehm 1987; Brooks 1987;

LaToza, Venolia, and DeLine 2006; Tassey 2002),

yet many popular agent-development architec-

tures (for example, Soar and ACT-R) lack develop-

ment environments that incorporate these features

(Cooper and Fox 1998, Pew and Mavor 1998, Rit-

ter et al. 2003). Finally, code reuse has been shown

to reduce development and maintenance costs

(Boehm 1987, Brooks 1995, Krueger 1992), yet

reuse is difficult to achieve in most intelligent

agent development environments because they are

built on lower-level languages.

The Herbal Toolset is an attempt to improve

agent development by providing a high-level lan-
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guage and maintenance-oriented agent-develop-

ment environment that offers first-class support

for design rationale and software reuse. Software-

engineering research suggests that this toolset, or

any toolset designed with these principles in mind,

will lead to more productive agent developers and

useful agents. The next section explains how the

Herbal Toolset realizes these three principals.

Herbal: A High-Level 
Behavior-Representation 

Language

To simplify agent programming and cognitive

modeling, a high-level behavior-representation

language and associated parser and compiler were

designed and implemented as the Herbal Toolset.

This high-level language is based on the Problem

Space Computational Model (PSCM) and is repre-

sented using the Extensible Markup Language

(XML).1 This language is currently compiled into

productions that execute within two popular agent

architectures: Soar2 and Jess.3

The Problem Space Computational 
Model as a High-Level Language

The high-level language supported by the Herbal

Toolset is based on PSCM (Lehman, Laird, and

Rosenbloom 1996; Newell et al. 1991). PSCM de-

fines behavior as movement through a problem

space (see figure 1), which is a high-level organiza-

tional representation to explain high-level behav-

ior. PSCM provides a proven conceptual model for

implementing a high-level language for agent de-

velopment.

A problem space is defined by a set of states (for

example, S0, S1) and a set of operators (that is, O0,

O1). A task is formulated when a problem space (P)

is adopted, a desired goal (D) is set, and the state of

the problem space (S0) is initialized. The task is at-

tempted as operators are selected and applied to

the current state, transforming the problem space

into a new state. Finally, the task terminates when

the current state matches the goal (Newell et al.

1991).

PSCM was first proposed by Allen Newell, and

this theory was implemented in the Soar Cognitive

Architecture (1990). The successful use of PSCM by

Soar for the creation of cognitively plausible agents

provides evidence of the utility of PSCM as a uni-

fied theory of cognition (Jones et al. 1999, Tambe

et al. 1995). This prior success, along with our own

experience using Soar, has provided motivation for

our use of PSCM as the foundation for the high-

level language used by the Herbal Toolset.

PSCM can also serve as a general organizational

structure for AI-oriented intelligent agents.

Clancey (1981) argued that rule-based agent devel-



opment is complex because the problem-solving

strategy is often implicitly hidden within the rules.

A language explicitly providing PSCM constructs

can alleviate this problem by partitioning behav-

ior into a hierarchy of problem spaces, operators,

states, and desired goals.

XML and XML Schema

The PSCM-based high-level language supported by

the Herbal Toolset takes the form of an XML ap-

plication, which implements PSCM and is trans-

lated into a low-level rule-based representation for

execution within an agent environment (see figure

2). 

Using XML as an intermediate representation

provides many benefits. For example, XML allows

for the creation of structured documents that can

directly represent the hierarchical structure of

PSCM as a higher-level agent-development lan-

guage. In addition, the portable text format used

by XML is easily readable by both people and com-

puters. In fact, there are a large number of robust

XML editors that parse XML and provide a graph-

ical environment for quickly and safely editing the

XML (for example, XMLSpy, oXygen, XMetaL).

XML can also be transformed into other formats

using the Extensible Stylesheet Language (XSL).4

This makes it possible to transform Herbal agent

code into other formats such as HTML documen-

tation or scalable vector graphics (SVG).5 Finally,

the popularity of XML reduces the developer’s

learning curve that might otherwise form a barrier

to its adoption.

The Herbal high-level language specification is

defined using XML schema.6 The use of XML

schema for our language was advantageous for

many reasons. XML schema allowed us to provide

clear documentation of the structure and content

of the Herbal high-level language. In addition, the

Herbal XML schema is used directly by XML

parsers to validate the content of an Herbal pro-

gram. Lastly, most commercial and open source

XML editors utilize XML schema to provide fea-

tures such as syntax highlighting and autocomple-

tion.

An Herbal program is made up of six different

types of XML documents, each defining a set of

reusable components: types, conditions, actions,

operators, problem spaces, and agents. These doc-

uments are referred to as libraries in the Herbal lan-

guage. In most cases, the components in these li-

braries mirror the elements of PSCM. However,

there are components in the Herbal high-level lan-

guage (such as types, conditions, and actions) that

supplement PSCM by providing additional levels

of abstraction and support reuse in ways the rules

Articles

SUMMER 2010   29

S0

O
0

O 1

...

P

D

S2

S1

Figure 1. PSCM De�nes Behavior as Movement through a Problem Space. 

Based on Exhibit 11.7 in Newell et al. (1991).



cannot, ironically, because the rules are too coarse.

The left side of table 1 shows a section of an

XML schema file that defines an operator element.

An operator is a major component of PSCM and is

a first-class object in the Herbal high-level lan-

guage. According to the specification shown in

table 1, an operator element has a unique name

and child elements of ifType and thenType. The

ifType element contains references to conditions,

and the thenType element contains references to

actions. These references point to conditions and

actions that are defined in a separate XML docu-

ment (library) and whose syntax is specified in a

separate XML schema. 

Articles

30 AI MAGAZINE

TranslatorHerbal XML-based 
high-level language

Low-level 
rule-based 
representation 

Figure 2. High-Level XML Representation Is Translated into Low-Level Rule-Based Representations.

XSchema Speci�cation for an Operator Instance of an Operator 
 
<xs:complexType name="operatorType"> 
  <xs:sequence> 
   <xs:element name="if"  
 type="ifType"  
 minOccurs="1"  
 maxOccurs="1"/> 
   <xs:element name="then" 
 type="thenType"  
 minOccurs="1"  
 maxOccurs="1"/> 
  </xs:sequence> 
  <xs:attribute name="name" 
type="xs:ID" use="required"/> 
</xs:complexType> 
 
<xs:complexType name="ifType"> 
  <xs:sequence> 
   <xs:element name="conditionref" 
 type="conditionRefType" 
 minOccurs="0" 
 maxOccurs="unbounded"/> 
  </xs:sequence> 
  </xs:complexType> 
 
<xs:complexType name="thenType"> 
  <xs:sequence> 
   <xs:element name="actionref" 
 type="actionRefType" 
 minOccurs="0" 
 maxOccurs="unbounded"/> 
  </xs:sequence> 
</xs:complexType> 

 
<operator name='driveRight'> 
  <if> 
   <conditionref condition='okRight'/> 
  </if> 
  <then> 
   <actionref action='moveRight'/> 
  </then> 
</operator> 

Table 1. The Operator XML Schema Speci�cation and an Operator Instance of This Speci�cation.



The right side of table 1 lists a typical section of

Herbal source code. The XML shown here declares

an instance of an operator called driveRight and

obeys the schema given in the left side of table 1.

The driveRight operator will be proposed when the

condition okRight is true, and when the operator

is applied an action called moveRight will move

the agent to the right. The details of the okRight

condition and the moveRight action are given in

additional libraries.

The XML schema and associated XML code

shown in table 1 can be edited graphically using

any of the commercial or open source XML editors.

For example, figure 3 shows an XML document,

containing instantiations of several operators, be-

ing edited in XML Notepad. In figure 3, XML

Notepad indicates that an operator is missing the

required name attribute and can help the pro-

grammer add this. For additional information

about the Herbal high-level language specification,

see the Herbal XML Programmer’s Guide (Friedrich,

Cohen, and Ritter 2007) available from the Herbal

website.7

The Herbal Parser and Compiler

Code written in the Herbal high-level language can

be transformed into executable productions for ei-

ther the Soar or Jess agent architectures. The first

phase in this transformation (shown in figure 4)

consists of parsing the XML code and creating a

document object model (DOM) of PSCM. The

Herbal parser is written in Java, and the DOM con-

sists of a hierarchical collection of Java objects.

A standard XML parser is used to parse the XML

libraries. This parser validates the XML based on

the associated XML schema and is extended with

custom logic that checks for semantic errors.

The DOM is used for the creation of useful visu-

alizations or the creation of executable produc-

tions. The Herbal compiler is responsible for the

transformation of the DOM into executable code.

The Herbal application programming interface

consists of a set of Java interfaces and abstract

classes that support creating compilers for multi-

ple architectures. The compiler API can be imple-

mented and extended to transform the DOM into

different types of executable code. There are cur-

rently two concrete compilers in the API: one that

produces Soar productions and another that pro-

duces Jess productions and facts. 

The main challenge in creating an agent com-

piler is deciding how to transform the PSCM DOM

into a semantically equivalent set of productions

for a specific architecture. The degree of difficulty

of this transformation is related to how explicitly

the underlying language supports PSCM. For ex-

ample, the Soar architecture is a direct instantia-

tion of PSCM, while Jess provides no explicit sup-

port for PSCM.

A few examples are provided to illustrate how

the Soar and Jess compilers transform the PSCM

DOM. Table 2 shows Herbal XML code and the re-

sulting Soar and Jess code for a condition called

dirty, which tests whether a vacuum cleaner agent

is on a dirty square (Cohen 2005). This translation

is straightforward because both Soar and Jess have

clear support for the concept of a condition. How-

ever, this example shows one of the main benefits

of the high-level language: unlike the resulting

Soar and Jess code, the Herbal XML language

makes sets of conditions explicit. In other words,

in Herbal, sets of conditions are named and un-

ambiguous, making it easy for developers to recog-

nize them and, importantly, reuse them. 

A second example, given in table 3, illustrates

how the Soar and Jess compilers transform Herbal

XML code for an action called clean. This transla-

tion is less straightforward because Soar and Jess

have different support for the interaction with the

environment. Again, this example shows the ad-

vantage of the high-level language. The Herbal ac-

tions are easy to identify and reuse.

Soar defines explicit structures to support an

agent’s communication with its environment.
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Figure 3. Herbal Programming Using XML Notepad.



These structures take the form of an input link and

an output link. As a result, the Herbal compiler

adds the Clean working memory element directly

to the output link (labeled <i2> in table 3). Jess, on

the other hand, has no special language constructs

that deal with agent/environment interaction, so

the Clean command is treated like any other fact

in working memory.

The third example, shown in table 4, demon-

strates how the Herbal compiler transforms an

Herbal operator. Recall that the operator is an im-

portant component of PSCM. Surprisingly, Soar
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Figure 4. Parsing and Compiling Herbal XML Source Code.

 

Herbal XML Language <condition name='dirty'> 

  <match type='vacuum.types.spot'> 

      <restrict field='status'> 

         <eq>dirty</eq> 

      </restrict> 

   </match> 

</condition> 

 

Compiled Soar Code (<vacuum-types-spot2> ^status <status2> |dirty| ) 

 

Compiled Jess Code (topspace::vacuum.types.spot (status ?status1&:(eq* ?status1 

"dirty"))) 

 

Architecture Source Code

Table 2. A Translation from an Herbal Condition to Soar and Jess Source Code.



does not have a single explicit syntax for declaring

operators. Instead, operators arise implicitly with

productions. In addition, unlike Soar, the Jess lan-

guage has no concept of operators at all. As a re-

sult, the operator concept must be simulated in

Jess using a basic production.

Table 4 shows how the Herbal compiler pro-

duces operators in Soar and Jess. This example

clearly illustrates the advantages of using a high-

level language. In table 4, the Herbal high-level

language declaration of an operator is far more ob-

vious, and in the case of Soar, far more concise. The

first-class status of conditions and actions in the

Herbal high-level language made this possible be-

cause the detailed specifications of conditions and

actions are referenced rather than duplicated. This

is a clear example of how high-level languages can

reduce errors and development time by eliminat-

ing code duplication and making code easier to

read and understand. 

For the Herbal to Jess rendering, the Herbal op-

erator is translated directly into a single produc-

tion. However, in Soar an operator consists of a

proposal rule and an application rule (Lehman,

Laird, and Rosenbloom 1996). The proposal rule

fires when the operator is appropriate for the cur-

rent situation. The application rule contains

knowledge about how the operator changes work-

ing memory. The distinction between operator

proposal and operator application allows for inter-

ruptability, which is an important part of the psy-

chological plausibility of Soar agents and is also

necessary to support learning in Soar. The Soar pro-

ductions shown in table 4 show how the Herbal

compiler produces both the proposal and the ap-

plication rules for the Herbal operator, reducing

the time and chance for error inherent in coding

these operators by hand.

The examples given in tables 2, 3, and 4 illus-
trate how the Herbal high-level language repre-
sents and implements PSCM. In some cases (for ex-
ample, the addition of conditions and actions as
first-class objects), these modifications have added
greater granularity, which allows for easier reuse,
while in other cases (for example, simulated oper-
ators in Jess), sacrifices were made in the richness
of the problem-solving abilities and psychological
plausibility of PSCM. These sacrifices are apparent
when creating models in architectures that do not
provide direct support for PSCM. For example, in-
terruptability, which was described previously as
an important part of the psychological plausibility
of Soar agents, is not accounted for in agents com-
piled to Jess. While minimized, these trade-offs are
common throughout the design of the Herbal
Toolset. In all cases, however, the high-level code is
more explicit, making it easier for the developer to
recognize and reuse the key components of PSCM.

Herbal: A Tool for 
Supporting Maintenance

The Herbal Toolset includes an integrated develop-
ment environment (IDE) that provides a graphical
environment for creating and maintaining agents
by leveraging the popular Eclipse extensible plat-
form8 and by providing integral support for design
rationale and working sets.

The Herbal IDE

The Herbal IDE is implemented as an Eclipse plug-
in. Eclipse is a universal platform providing an
open and extensible IDE that provides many ad-
vantages. First, Eclipse provides a framework for
the creation of powerful development tools. This
framework consists of the modern IDE features ex-
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Architecture 

Herbal XML 

Language 

<action name=clean'> 
   <add type='vacuum.types.action'> 
      <set field='move'><value>clean</value></set> 
   </add> 
</action> 
 

Compiled Soar 

Code 

(<i1> ^output-link <i2>) 
--> 
(<i2> ^|vacuum.types.action| <vacuum-types-action20>) 
(<vacuum-types-action20> ^move |clean| ) 
 

Compiled Jess Code (assert (topspace::vacuum.types.action (move "clean") )) 
 

Source Code

Table 3. A Translation from an Herbal Action to Soar and Jess Source Code.



pected by developers, including project manage-

ment, multiple project and code views, and real-

time compilation. In addition, as the popularity of

the Eclipse IDE has grown, the learning curve for

using the Herbal IDE is reduced for developers al-

ready familiar with Eclipse. Finally, Eclipse is free

and executes on a variety of platforms.

Graphical editing in Herbal is accomplished

with the Herbal GUI editor (shown in figure 5).

Like the Herbal high-level language, the editor is

library centered. Using the editor, programmers

can create or modify existing library components

(that is, types, conditions, actions, operators, prob-

lem spaces, and agents) without having to write

code in the Herbal high-level language—the

Herbal XML code is created as the developer inter-

acts with the GUI editor.

The GUI editor can also be used as a means for

teaching the Herbal XML language. Developers can

create a PSCM component using the GUI editor

and then inspect the generated XML code. By

switching between the editor and the generated

code, programmers can learn the syntax of the

Herbal high-level language.

While the editor simplifies the creation of PSCM

components, some developers may prefer to work

directly with the Herbal high-level language. At

any time during development, programmers can

edit the Herbal XML code directly, and these

changes are immediately reflected in the GUI edi-

tor (see figure 6).

Typical of most Eclipse plug-ins, the Herbal com-

piler is automatically invoked as the programmer

works. With each change, the Herbal IDE compiles

the Herbal XML code into both Soar and Jess pro-

ductions. This feature serves as an important
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Herbal XML 

Language 

<operator name='clean'> 
   <if> 
      <conditionref condition=dirty'/> 
   </if> 
   <then> 
      <actionref action='suck'/> 
   </then> 
</operator> 
 

Compiled Soar 

Code 

sp {propose*clean 
  (state <local> ^top <top> ^parent <parent> ^name cleanps) 
  (<top> ^io <i1>) 
  (<i1> ^input-link <i2>) 
  (<top> ^|origvac.types.status| <vacuum-types-spot2>) 
  (<vacuum-types-spot2> ^status <status2> |dirty| ) 
--> 
  (<local> ^operator <o> + =) 
  (<o> ^name clean) 
  (<o> ^count <count>) } 
sp {apply*clean 
  (state <local> ^top <top> ^name cleanps ^operator <o>) 
  (<o> ^name clean) 
  (<top> ^io <i1>) 
  (<i1> ^output-link <i2>) 
--> 
  (<i2> ^|vacuum.types.action| <vacuum-types-action20>) 
  (<vacuum-types-action20> ^move |suck| )} 
 

Compiled Jess Code (defrule clean 
  (topspace::vacuum.types.spot  
    (status ?status18&:(eq* ?status18 "dirty"))) 
=> 
  (assert (topspace::vacuum.types.action (move "suck") )) ) 
 

Architecture Source Code

Table 4. A Translation from an Herbal Operator to Soar and Jess Source Code.



mechanism to support novice developers learning

the underlying Soar or Jess programming lan-

guages: Herbal programmers can create PSCM con-

structs using either the Herbal GUI editor or the

Herbal high-level language and then inspect the

generated Soar and Jess code to learn how these

constructs can be implemented in the underlying

architectures. In classroom evaluations of Herbal,

this strategy proved to be very useful, especially in

computer science classes in which learning how to

program the underlying architecture (in this case

Jess) was a course objective (Cohen, Ritter, and

Haynes 2009).

Figure 7 shows the Herbal IDE displaying multi-

ple views of an Herbal library. The top left view

shows the Herbal GUI editor. To the right of the

GUI editor is a snapshot of the Herbal high-level

XML code. The bottom two views in figure 7 show

the generated Jess and Soar code. Finally, along the

very bottom of figure 7 is a list of current warnings

and errors. In this case, a typo made by the devel-

oper has generated a warning. Double-clicking this

warning will open an editor to the appropriate lo-

cation in the model so the warning can be re-

solved. By implementing Herbal within Eclipse, de-

velopers gain the advantage of its modern code

view and debugging capabilities.

Design Rationale

The Herbal IDE incorporates the three general ex-

planation design patterns introduced by Haynes,

Cohen, and Ritter (2009). These design patterns

help with the creation of explainable agents,

which can be easier to understand, debug, and

modify.

Ontological explanations are designed to pro-

vide answers to questions about the static structure

of an agent’s design. In support of ontological ex-

planations, the Herbal IDE provides the model

browser view shown in figure 8. The model brows-

er view makes it easy to browse the static PSCM

structure of an Herbal agent and simplify the

maintenance of these structures.

Mechanistic explanations provide insight into

how the components within an agent interact to

produce behavior. Mechanistic explanations are

typically generated while an agent is executing. As

a result, the Herbal IDE provides these types of ex-

planations in the form of a run-time debugger and

trace tool. The Herbal debug view (see figure 9)

shows a trace of the agent interacting with its en-

vironment. For each event, the agent and its cur-

rent problem space is shown, including the cur-

rently satisfied conditions and operators and any

actions that have been executed. Finally, relevant

working memory is also given.

Finally, the operational explanations describe

how a modeler can access and utilize an agent’s

functionality. When making changes to an agent’s

behavior, operational explanations help the pro-
grammer decide what components are available
and how these components can be used. The oper-
ational explanations are available in the model
browser view as answers to questions such as “How
do I use it?” and “How does it work?” (see figure 8).
This information must be provided by developers
as they build library components or else these ex-
planations must be reconstructed by interpreting
source code functionality.

These three explanation patterns, and the de-
sign rationale they provide, support software
maintenance and reuse by providing developers
access to the intent and design decision making
carried out by a component’s original developers.
This information should make it easier to identify,
select, and specialize components developed for
analogous applications and fully to comprehend
why a piece of software has the structure and be-
havior that it does. This understanding contributes
to maintenance by avoiding code changes that
conflict with designers’ intent and consideration
of implementation constraints. In addition, be-
cause the explanations are given in the context of
PSCM, they can be more psychologically plausible. 

Working Sets

As discussed earlier, studies done by Ko, Aung, and
Myers (2005) suggest that better support for work-
ing sets can help simplify the maintenance task. As
a result, support for working sets is included in the
Herbal IDE.

As shown in figure 10, the Herbal IDE makes it
possible for developers to build a working set of
task-relevant code fragments. Working sets can be
built manually by the developer or by searching the
libraries using keywords related to the current main-
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Figure 5. The Herbal GUI Editor.



tenance task. The collection of code fragments can

then be saved as a named working set and shared

among developers. Finally, double-clicking items in

the working set will open the code fragment in the

Herbal GUI editor for inspection.

Herbal: A Tool for Supporting Reuse

The Herbal toolset was designed to support several

different forms of reuse from the creation of li-

braries, instantiation of behavior design patterns,
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Figure 6. Developing Agents by Both Using the GUI Editor and Editing the Herbal XML by Hand.

Figure 7. The Herbal IDE Showing Multiple Views of an Herbal Library.



and the support for the reuse of low-level PSCM
components. The Herbal high-level language al-
lows for the creation of libraries of reusable com-
ponents that are uniquely defined using name-
spaces. In addition, the language allows for the ra-
tionale behind the design of each component to be
captured as part of the component’s definition.
This rationale makes it easier for developers to un-
derstand how to reuse existing components.

Libraries

Herbal is library centered, in that Herbal projects
consist of XML documents that define several li-
braries of reusable components. There are six dif-
ferent types of Herbal libraries: types libraries, con-
dition libraries, action libraries, operator libraries,
problem-space libraries, and agent libraries.

The dependencies between the contents of these
libraries are shown in figure 11. The foundation of
all the Herbal libraries is the types library. This li-
brary contains the set of data types available to the
agent programmer. From these types, the pro-
grammer can define conditions and actions that
can add, edit, remove, or test for the existence of
instances of the defined types. Operators are then
built from these conditions and actions, and prob-
lem spaces are built from a set of conditions and
operators that activate the problem space. Finally,
agent behavior can be defined by a hierarchy of
problem spaces. This layered approach allows de-
velopers to specify behavior at the most appropri-
ate level of abstraction for a given problem.

Herbal libraries are uniquely qualified using a
namespace. This allows developers to create any
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Figure 8. Ontological Explanations Supported Using the Model Browser View.

Figure 9. Mechanistic Explanations Supported Using the Debugger View.



number of libraries and share them across models,
a fundamental benefit of reusable code imple-
mented in most modern, higher-level program-
ming languages. The Herbal IDE supports library
sharing graphically using wizards for the import-

ing and exporting of libraries across projects. This
feature automatically detects library dependencies,
ensuring that the required library components are
included in the export.

As an example of how library reuse is supported
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Figure 10. Support for Working Sets in the Herbal IDE.

Types

Operators

ProblemSpaces

Agents

Conditions Actions

Figure 11. The Dependencies between the Six Different Types of Libraries in Herbal.



in Herbal, libraries of reusable components for the

vacuum cleaner agent environment were created

and prefixed with the namespace “Vacuum” (Co-

hen 2005). These libraries were then combined

with other libraries and reused to build new vacu-

um cleaner agents. For example, figure 12 shows

how more aggressive vacuum cleaner agents can be

created by reusing the existing vacuum cleaner li-

braries. In figure 12, more aggressive operators (ag-

gressive operators could be operators that cause

vacuums to clean more aggressively and do less

wandering) might be created based on conditions

and actions contained in the stock vacuum clean-

er libraries. These operators are then used to build

new problem spaces and aggressive agents based

on these problem spaces. This type of reuse has

been used in the classroom environment so that

students can assemble agents from reusable com-

ponents, thus allowing them to spend more time

focusing on modeling more complex behavior and

less time developing components to implement

fundamental behaviors.

Design Rationale

Operational explanations help with Krueger’s

(1992) selection and integration dimensions and

therefore are an important key to supporting reuse.

The Herbal IDE supports Krueger’s concept of se-

lection and integration by allowing developers to

filter components based on the component’s de-

sign rationale.

For example, suppose that a developer wishes to

find the set of model components that are respon-

sible for a vacuum cleaner agent cleaning dirty

squares. Using the Herbal IDE, model components

can be found that are related to the keyword clean,

and these components can be placed into a work-

ing set that can be saved and reused. Herbal’s se-

lection mechanism takes full advantage of design

rationale, which makes it possible for developers to

browse library components based on their opera-

tional explanations.

Behavior Design Patterns

In evaluations of Herbal in classroom settings, it

became clear that there are certain common

metabehaviors that are frequently required to im-

plement basic, recurring agent functionality. For

example, many of the agents created by students

for the vacuum cleaner environment and the

dTank environment (Ritter et al. 2007) imple-

mented looping constructs. For the vacuum clean-

er agents, behaviors like “while the vacuum is on a

clean square search for dirt using this pattern of

movement” were common. For the dTank agents,

behaviors like “while no enemy tank is spotted

search for an enemy using this search strategy”

were repeatedly implemented. 
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Vacuum.Types

Vacuum.Actions

Vacuum.Operators

Vacuum.ProblemSpaces

Aggressive.Agents

Vacuum.Conditions

Aggresive.Operators

Aggressive.ProblemSpaces

Figure 12. Building Custom Agents by Reusing Libraries.



Structured programming paradigms like looping

constructs are useful in agent programming but

can be a challenge to program in a typical rule-

based language. This challenge presented a barrier

to the students that limited what they could ac-

complish in their projects. In addition, similar

looping constructs are often repeated throughout

an agent program. High-level support for these

constructs can allow modelers to reuse the behav-

ior they generate, as opposed to duplicating it or

creating it from scratch.

To address this problem, and to promote the

reuse of metabehaviors such as looping, the be-

havior design pattern wizard (see figure 13) was in-

corporated into the Herbal development environ-

ment. This wizard makes it possible for the agent

developer to generate instantiations of useful

metabehaviors using existing PSCM components. 

Looping Patterns Common 
in Agent Behavior

Currently, the behavior design pattern wizard al-

lows developers to instantiate three different pat-

terns of looping: the fixed-order loop, the implied-

order loop, and the unordered loop. These loops

are currently novel to Herbal, but would be a use-

ful design pattern for most rule-based modeling

languages.

The fixed-order loop mimics the classic structured

while loop. This loop creates behavior in which a

collection of actions is performed in a specific order,

but only as long as a set of entry conditions evalu-

ates to true. While a simple construct, this type of

loop can be a challenge to create using a rule-based

language. Table 5 shows pseudocode for a fixed loop

implemented by a vacuum cleaner agent.

The implied-order loop is similar to the fixed-or-

der loop except that some of the items within the

loop might not execute during a loop iteration.

Table 5 shows pseudocode for an implied-order

loop implemented for a vacuum cleaner agent.

The unordered loop has no counterpart in the

classical structured programming paradigm be-

cause the order of the contents within the loop is

not specified. As long as the loop conditions are

true, the operators inside the loop become candi-

dates for application, and actions that are possible

might not be performed. This provides a source of

variability in the behavior. Pseudocode for an un-

ordered loop is also given in table 5.

Additional metabehaviors can be included in

the Herbal behavior design pattern wizard by edit-

ing a configuration file and providing a custom Ja-

va class. This allows developers to increase the li-

brary of metabehaviors as more recurring behav-

iors are identified.

Discussion and Conclusion

The Herbal toolset is an example of applying mod-
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Figure 13. The Behavior Design Pattern Wizard.



ern software-engineering principles to agent-pro-

gramming environments. Specifically, Herbal

leverages the software-engineering principles of

high-level languages, maintenance-oriented devel-

opment environments, and software reuse to sim-

plify agent development, in ways that other sys-

tems could do as well.

Early evaluations of the Herbal toolset have been

promising. In an early study using six undergradu-

ate computer science students (Cohen, Ritter, and

Haynes 2009), participants were asked to create an

intelligent agent in Jess that piloted two vacuum

cleaner agents through a simulated environment:

the first agent was created without the use of

PSCM, and the second took advantage of PSCM as

a hierarchical behavior organizational tool. Be-

cause these agents were not designed to be cogni-

tively plausible, PSCM was used primarily for or-

ganizing the rules and for making the problem-

solving strategy explicit. Jess’s support for the

concept of modules and focus (see Friedman-Hill

[2003] for more details) made it relatively easy for

the participants to implement PSCM in Jess.

Surveys given to the students at the end of the

study showed that they favored the use of PSCM

in their programs. Student responses showed that

they agreed that the use of PSCM made it possible

to break up complicated behavior into smaller, less

complicated parts. In addition, the survey showed

that the students strongly disagreed with the state-

ment that it would be easier to create complicated

agents without the use of PSCM.

A second evaluation, using an early version of

Herbal, also showed promise. In a study done by

Morgan et al. (2005), a Soar model consisting of 29

productions was created using Herbal. In this

study, the authors showed a reduction in the time

it took for an undergraduate to create productions

as the library of reusable components (for exam-

ple, conditions and actions) expanded (25 minutes

for the first few production pairs decreased to 5

minutes or less beyond the tenth production pair).
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Pattern Type 

Fixed Order Loop while (current square is clean) 
{   move one square to the left 
    move one square up 
    move one square to the right 
    move one square down 
    move one square in a random direction } 
 

Implied Order Loop while (current square is clean) 
{   if (certain conditions are true) 
      move one square to the left 
    if (certain conditions are true) 
      move one square up 
    if (certain conditions are true) 
      move one square to the right 
    if (certain conditions are true) 
      move one square down 
    if (certain conditions are true) 
      move one square in a random direction } 
 

Unordered Loop while (current square is clean) 
{   Choose only one of the following: 
    { if (certain conditions are true) 
        move one square to the left 
      if (certain conditions are true) 
        move one square up 
      if (certain conditions are true) 
        move one square to the right 
      if (certain conditions are true) 
        move one square down 
      if (certain conditions are true) 
        move one square in a random direction } } 

Pseudo code

Table 5. Pseudocode for Three Different Types of Looping Behavior Patterns.



This reduction in time is believed to be the benefit

of increased reuse. In addition, the overall average

time per production was less than that reported in

a similar study of graduate students programming

in Soar (Yost 1993).

A third, summative evaluation of Herbal was al-

so conducted, and the results were positive (Cohen

2008). Using a cognitive dimensions questionnaire

(Blackwell and Green 2000), 24 undergraduate stu-

dents majoring in computer science, computer in-

formation science, management information sci-

ence, and psychology were asked to create an agent

using Herbal. The task was broken into three sub-

tasks: creating a reusable library, creating an agent

using the library, and finding and fixing a bug in

the resulting agent. Data were collected using par-

ticipant observation and a user reaction survey

based on cognitive dimensions (Blackwell and

Green 2000). Herbal scored high in five of nine di-

mensions: the ability easily to make changes to a

model (viscosity); the conciseness of the language

(diffuseness); the ability to evaluate and obtain

feedback from an incomplete agent (progressive

evaluation); the closeness of the language to the

way the agent behavior is described naturally

(closeness of mapping); and the lack of hard men-

tal processing required at the notational level

(hard-mental operations). In addition, there was

no statistical evidence that there is a correlation

between the number and type of observed events

during task completion and the participants’ ma-

jor. This is especially interesting because it suggests

that Herbal may help make cognitive modeling

more accessible to students majoring in areas oth-

er than computer science.

In addition to the positive preliminary empiri-

cal results, the implementation of the Herbal

toolset also provided some important lessons. For

example, the trade-off between the power of pro-

gramming close to the architecture and the sim-

plicity of programming at a higher-level was con-

tinually reinforced. On the one hand, basing the

Herbal high-level language on PSCM provided

some much needed structure and organization to a

traditionally rule-based programming environ-

ment. However, the absence of the underlying ar-

chitectural support for the PSCM in Jess created a

need to limit or simulate portions of PSCM.

Interestingly, our high-level language also gen-

erated opportunities for improving PSCM. As illus-

trated in tables 2, 3, and 4, the addition of condi-

tions and actions as first-class objects of Herbal

added another level of granularity, which allowed

for better reuse. While PSCM is originally agnostic

about the implementation of operators, this level

is real for programmers and the code. In other

words, operators that utilize similar conditions and

actions no longer need to duplicate the whole op-

erator (previously the smallest unit in PSCM). This

feature was not easy to implement because of the

dependencies between actions and conditions

(some actions are designed to work with specific

conditions). These dependencies were reduced by

providing language support for wiring conditions

to actions at the time they are used. This suggests

that the preconditions and actions of operators,

previously on the level below PSCM, can be pro-

moted from the symbol level to the PSCM level at

least in system design. Without the higher-level

constructs provided by Herbal, this would not be

possible in Soar models. 

Another interesting lesson was the need to sup-

port structured programming techniques in what

is traditionally an unstructured rule-based envi-

ronment. For example, many of the agents created

by our students in various class projects imple-

mented different types of looping constructs. How-

ever, creating these constructs in a rule-based lan-

guage was quite challenging. By including high-

level support for structured programming

paradigms, such as looping constructs, the agent-

programming task was significantly simplified, and

yet the rule-based paradigm was extended, not dis-

carded. 

Some unexpected instructional benefits of the

Herbal toolset were also discovered during this

project. Initially designed to reduce the need to

program at a low level, the Herbal high-level lan-

guage and GUI editor also appear to be valuable for

teaching low-level rule-based programming. Work-

ing with the Herbal GUI editor and the Herbal

high-level language editor side-by-side, program-

mers can learn the Herbal language by making

changes graphically and then viewing the generat-

ed XML code. In addition, by editing the Herbal

XML code directly and then viewing the generated

low-level productions, programmers can learn na-

tive Jess and Soar programming.

Herbal has also been used to create several mod-

els examining learning. Cohen, Ritter, and Haynes

(2007) created a competitive, reflective learning

model as well as several opponent models in an af-

ternoon. Friedrich (2008; Friedrich and Ritter

2009) created a problem-solving model that

learned the Diag task using five different problem-

solving strategies. The first model took six months

to write; the revised models and strategies took

about a month. Haynes et al. (2008) used Herbal to

create a model of an antiterrorism force protection

planner as part of the Rampart project. This mod-

el assists users in selecting between various re-

source allocation options. This model has over 100

operators; maintaining an equivalent model in

Soar would be difficult. Finally, we have recently

created an Herbal to ACT-R compiler, and it has

helped us create a 500-rule model with 10 differ-

ent processing times and learning rates (different

mixes of procedural and declarative knowledge).
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Developing intelligent agents is a complex soft-

ware-engineering activity. Creating complex soft-

ware is not a new problem, and the software-engi-

neering community has developed strong theories

and principles about how to solve complex prob-

lems with software solutions. The Herbal toolset is

one example of how these lessons from software

engineering can be applied to help simplify the

task of agent development. Some of the benefits of

applying software-engineering principles are being

realized with the creation of the Herbal toolset.

The complete Herbal toolset is currently available

and can be downloaded from the Herbal website.9
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Notes
1. See www.w3.org/XML.

2. See sitemaker.umich.edu/soar.

3. See herzberg.ca.sandia.gov/jess.

4. See www.w3.org/Style/XSL.

5. See www.w3.org/Graphics/SVG.

6. See www.w3.org/XML/Schema.

7. See acs.ist.psu.edu/herbal.

8. See eclipse.org.

9. See acs.ist.psu.edu/herbal.
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