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Abstract. Breast cancer is associated with several risk factors. Although
genetics is an important breast cancer risk factor, environmental and so-
ciodemographic characteristics, that may differ across populations, are
also factors to be taken into account when studying the disease. These
factors, apart from having a role as direct agents in the risk of the dis-
ease, can also influence other variables that act as risk factors. The age at
menarche and the reproductive lifespan are considered by the literature
as breast cancer risk factors so that, there are several studies whose aim
is to analyze the trend of age at menarche and menopause along gen-
erations. Also, it is believed that these two moments in a woman’s life
can be affected by environmental, social status, and lifestyles of women.
Using the information of 278,000 registries of women which entered in
the breast cancer screening program in Central Portugal, we developed
a bivariate copula model to quantify the effect a womans year of birth
in the association between age at menarche and a womans reproductive
lifespan, in addition to explore any possible effect of the geographic loca-
tion in these variables and their association. For this analysis we employ
CGAMLSS models and the inference was carried out using the R package
SemiParBIVProbit.

1 Introduction

The age at menarche and age at menopause are well known breast cancer risk
factors, since these moments set a woman’s reproductive lifespan, during which
the woman is exposed to endogenous hormones responsible to ensure the regular
functioning of her reproductive system. There are several factors that affect the
beginning and the end of a woman’s reproductive lifespan. A downward trend in



2 LATEX style file for Lecture Notes in Computer Science – documentation

the age at menarche has been highlighted in recent researches [1, 2]. The results
of a study conducted by [3], shows an upward trend in the number of a woman’s
reproductive years.

The natural menopause is defined as a complex bio-social and bio-cultural
phenomenon [4]. Other studies, such as the one presented in [5], analyse the asso-
ciation between age at menarche and socio-economic characteristics showing that
the environmental conditions may have influence in the onset of a woman’s re-
productive lifespan. Therefore, it should be of the utmost importance to explore
how individual characteristics such as age at menarche and a woman’s reproduc-
tive lifespan can be a reflection of an influence from one’s social environment. In
addition, rather than analyse the effect of a woman’s cohort and of the environ-
ment in the age at menarche and reproductive lifespan as two separated response
variables, quantify these effects in the association between them is a major topic.

For this analysis we employ Bivariate Copula Additive Models for Location,
Scale and Shape. Such models extend the scope of univariate GAMLSS by bind-
ing two equations with binary, discrete or continuous responses. The equations
can be flexibly specified using smoothers with single or multiples penalties, thus
allowing for several types of covariate effects. The copula dependence parameter
can also be specified as a function of flexible covariate effects. All the models
parameters are estimated simultaneously. The inference is carried out using the
R package SemiParBIVProbit [12].

2 Breast Cancer Screening Data

This study is based on data provided by the Central Regional Nucleus of the Por-
tuguese Cancer League (LPCC-NRC), sponsored by the Breast Cancer Screening
Program (BCSP) in 78 municipalities located in central Portugal’s. Figure Fig. 1
shows the map of Portugal, with the blue regions representing the municipalities
under study. The database consists of 278,282 women who were registered for
the BCSP in central Portugal between 1990 and 2010.

Women considered in this study have a screening age between 45 and 69,
with 76% (212,517) of them reaching menopause. Since we are dealing with the
reproductive lifespan cycle of a woman, only the post-menopausal women were
considered in the study.

The variables involved in this study are: age of menarche, a woman’s re-
productive lifespan cycle (calculated by subtracting the age of menarche from
the age of menopause), year of birth, and the code of the municipality where a
woman resides. Table 1 shows a summary description of these variables.
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Fig. 1. The map of Portugal, with the blue regions representing the municipalities
under study.

Table 1. Statistics of the variables in the study.

Variable Mean Standard Deviation (SD) Min-Max

Birth year 1946 9.8 1920-1965
Age of menarche 13.3 8.0 8-18
Reproductive life span 34.9 5.5 3-50

3 Model Formulation

The main goal of this study is to apply the Bivariate Copula Additive Models
for Location, Scale and Shape in order to explain the dependence structure of
a bivariate response consisting of age at menarche and a woman’s reproductive
lifespan. In addition, the model will regress the complete distributional of the
response on the year of birth and a woman’s place of residence. The Bivari-
ate Copula Additive Models for Location, Scale and Shape extends the use of
GAMLSS [6] models to situations in which two responses are modeled simultane-
ously conditional on some covariates using copula [7]. Using additive predictors,
casting several types of covariates such as nonlinear effects of continuous co-
variates, random effects, interactions or spatial dependence, the approach allows
to model a bivariate response consisted of a copula function. Besides that, the
regression is not restrict to the response expectation, being able to be extended
to other distributional parameters.

One of the strengths of the copula approach is the possibility of the marginal
distribution be of different families, providing different types of response dis-
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tributions (continuous, discrete, and mixed discrete continuous) as opposed to
the classical statistical bivariate response models, that assume each marginal
response as Gaussian. A complete description of the CGAMLSS theory can be
found in the recent work of Marra and Radice [7, 8].

In the present application of the CGAMLSS, it is considered two bivariate
continuous responses, Y1 and Y2, representing, respectively, the age at menarche
and the reproductive lifespan and covariate information (year of birth and a
woman’s place of residence) collected in the generic vector zi. The joint cumu-
lative distribution function (cdf) of Y1 and Y2 can be expressed in terms of the
marginal cdfs of Y1 and Y2 and a copula function C that binds them together
[7] as follows:

F (y1, y2|ϑ) = C(F1(y1|µ1, σ1, ν1), F2(y2|µ2, σ2, ν2); θ)

where ϑ = (µ1, σ1, ν1, µ2, σ2, ν2, θ)
T , F1(y1|µ1, σ1, ν1) and F2(y2|µ2, σ2, ν2) are

the marginal cdfs of Y1 and Y2 taking values in (0, 1), µm, σm, νm, for m = 1, 2
are the marginal distribution parameters. C(·, ·) is a uniquely defined two-place
copula function which does not depend on the marginals, and θ is an association
copula parameter measuring the dependence between the two random variables
[9, 10].

By considering a suitable additive predictors η′s for all parameters of the
bivariate response distribution defined above for an observation i, the predictor
could be written as:

ηi = β0 +

K
∑

k=1

fk(zki), i = 1, ..., n (1)

where β0 is an overall intercept, and the function fk represent the different co-
variate effects (as binary, categorial, continuous and spatial variables). The K

functions f are chosen according the type of covariate considered (zki).

As defined in Generalize Additive Models (GAM) [14], each function fk can
be approximated as a linear combination of Jk basis functions bkjk(zki) and
regression coefficients βkjk ∈ R, i.e.

Jk
∑

jk=1

βkjkbkjk(zki) (2)

Equation (2) implies that the vector of evaluations {sk(zk1), ..., sk(zkn)}
T can

be written as Zkβk with βk = (βk1, ..., βkJk
)T and the design matrix Zk[i, jk] =

bkjk(zki). This allows the predictor in equation (2) to be written as:

η = β01n + Z1β1 + ...+ ZKβK (3)
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where 1n is an n-dimensional vector made up of ones. Equation (3) can also
be written in a more compact way as η = Zβ where Z = (1n, Z1, ..., ZK) and
β = (β0, β

T
1
, ..., βT

K)T . Each βk has an associated quadratic penalty λkβ
T
k Dkβk

with the smoothing parameter λ that controls the trade off between model fit
and smoothness.

To model spatial information, Marra and Radice [7] proposed the use of a
Markov random field smoother, that is useful in our application where we have
the spatial information split up in discrete contiguous geographic units. In this
case, fk(zki) = ..., where βk represents the vector of spatial effects, R denotes
the total number of regions zki. Thus, the design matrix linking an observation
i with the corresponding spatial effect is defined as:

Zk[i, r] =

{

1 if the observation belongs to region r

0 otherwise

where r = 1, . . . , R. The smoothing penalty Dλ associated with the Markov ran-
dom field is constructed based on the neighborhood structure of the geographic
units:

Dk[r, q] =











−1 if r 6= q
∧

r and q are adjacent neighbors

0 if r 6= q
∧

r and q are not adjacent neighbors

Nr if r = q

where r and q are two regions and Nr the total number of regions.

The inference is based on penalised maximum likelihood estimation. First, it
is considered the log-likelihood function for a copula model with two continuous
margins [11]:

l(δ) =

n
∑

i=1

log {C(F1i(y1i|µ1i, σ1i, ν1i), F2(y2i|µ2i, σ2i, ν2i); θi)}+

n
∑

i=1

2
∑

m=1

log {fm(ymi | µmi, σmi, νmi))}

where parameter δ is defined as (βT
µ1, β

T
µ2, β

T
σ1, β

T
σ2, β

T
ν1, β

T
ν2, β

T
ρ )

T .
The use of a classic unpenalized optimization algorithm is likely to result unduly
wiggly estimates, therefore Marra and Radice (2016) [7] proposes a penalised
maximum likelihood estimation of the form:

lp(δ) = l(δ)−
1

2
δ
T
Sλδ (4)

where Sλ = diag(λµ1Dµ1, λµ2Dµ2, λσ1Dσ1, λσ2Dσ2, λν1Dν1, λν2Dν2, λρDρ) with
each smoothing parameters related to the corresponding D component and the
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overall λ is defined as (λT
µ1, λ

T
µ2, λ

T
σ1, λ

T
σ2, λ

T
ν1, λ

T
ν2, λ

T
ρ )

T .

To estimate the regression coefficients the CGAMLSS methodology use a
two-step algorithm, in the first step it estimates the δ that maximize the log-
likelihood function using a trust region algorithm which is generally more stable
and faster than the line search methods such as Newton-Raphson, particularly
for functions that are, for example, non-concave and/or exhibit regions that are
close to flat [13]. In the second step the algorithm estimate the smoothing param-
eter λ, using an expression that is equivalent to the Un-Biased Risk Estimator
(UBRE) given in Wood (2006, Chapter 4)[14], solved with the methodology pro-
posed by Wood in 2004 [15].
In the CGAMLSS approach the researcher should decide about the distribution
to use for the margins of the bivariate response, as well as the copula that best
modelize the structure of dependence between this margins.

In our study, from the continuous distribution families available in the Semi-
ParBIVProbit package [12], a Log-normal distribution for the age at menarche
and a Gumbel to the reproductive lifespan of the woman were chosen. This choice
was based on the AIC (Akaike information criterion) and on the BIC (Bayesian
information criterion). Both distributions are defined by two parameters: a lo-
cation parameter µ and a scale parameter σ,thus the equation model can be
defined as follows:



































η
µ1

i = β
µ1

i + f
µ1

i (Y ear of birth) + f
µ1

i (Municipality)

η
σ2

1

i = β
µ1

i + f
µ1

i (Y ear of birth) + f
µ1

i (Municipality)

η
µ2

i = β
µ1

i + f
µ1

i (Y ear of birth) + f
µ1

i (Municipality)

η
σ2

2

i = β
µ1

i + f
µ1

i (Y ear of birth) + f
µ1

i (Municipality)

ηθi = β
µ1

i + f
µ1

i (Y ear of birth) + f
µ1

i (Municipality)

(5)

The two first equations refer to the location and scale parameter of the age
at menarche, the next two refer to the location and scale parameter of the repro-
ductive lifespan of women and the last one refers to the association between both
variables. All parameters were modeled using predictors involving a continuous
(Year of birth) and spatial covariate (Municipality). The former was modeled
using penalized low rank regression splines and the latter using a Markov ran-
dom field smoother.

During the model building process we have tried a set of copulas which AIC,
BIC and run-time information are presented in Table 2. Run-time is the time
that the model required to reach the optimal estimation of the regression pa-
rameters. The inference was carried out in a Intel(R) Core(TM) i5-4570s CPU
2.90 GHz with operating system Windows 7 Professional.

For the choice of copula we start off with the gaussian, from which was
observed a negative association between the marginals. Therefore, it was not



LATEX style file for Lecture Notes in Computer Science – documentation 7

performed any fit with the Clayton copula rotated 90 degrees. In addition, due
to the value of the range of the τ of kendall of the marginals (−0.223,−0.191), the
Ali-Mikhail-Haq (AMH) and Farlie-Gumbel-Morgenstern (FGM) copulas were
not tried, since they only modelize weak dependencies, below −0.18 and −0.22,
respectively. Based on AIC and run-time values, the selected model is a Gaussian
copula which quantile residuals are shown in figure Fig. 2.

Table 2. Copula used during the model building process ordered by their AIC.

Family AIC BIC Run.time

Gaussian 2100208 2103537 24’ 15”
Gumbel (90) 2101223 2101223 34’ 28”
Frank 2101914 2105217 28’ 17”
Clayton (180) 2102480 2105722 52’ 05”
Gumbel (270) 2105144 2108527 54’ 46”
Joe (90) 2105342 2108590 43’ 04”
Clayton (270) 2108901 2112265 29’ 32”
Joe (270) 2111979 2115350 33’ 17”
Clayton 2123078 2125939 49’ 33”
Joe 2123078 2125939 44’ 13”
Joe (180) 2123078 2125939 46’ 39”
Gumbel 2123078 2125939 50’ 27”
Gumbel (180) 2123078 2125939 52’ 00”

Fig. 2. Quantile residuals of the selected model
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4 Results

The estimates of the smooth effect of the year of birth with the associated 95%
point-wise intervals, and the spatial effects on the parameters of the marginal
distributions of the variables age at menarche and a woman’s reproductive lifes-
pan, are presented in Fig. 3 to Fig. 7. The left-hand side of Fig.3 shows a clear
decreasing effect of the year of birth on the expectation of the age at menarche.
Regarding to the effect on the expectation of a woman’s reproductive lifespan,
Fig. 4 shows an increasing effect along the cohorts before 1952, followed by a
sharp decrease. The spatial effects presented in right-hand side of the same fig-
ures, show the inland regions of central Portugal associated with lower ages at
menarche and higher reproductive lifespans.

The effects of the year of birth on the variance of the marginal distributions
of the age at menarche and reproductive lifespan, are shown in the left-hand
side of the figures Fig. 5 and Fig. 6, respectively. In the first, it is observed a
downward effect on the variance of age at menarche until the year 1955 followed
by a slight upward effect. The second, shows a steady effect of year of birth
prior to 1938, from which it starts decreasing up to the year 1949, and followed
by a significantly decline. Looking to the spatial effects on the right hand-side
of the figure Fig. 5, it is clear a east-west increasing effect of the variance of
the age at menarche. A weak spatial effect of a woman’s reproductive lifespan
variance in almost all of Central Portugal’s municipalities is depicted in fig-
ure Fig. 6. Nevertheless, notice that the municipalities located in the northeast
part of the region have a marked negative effect on the variability of the lifespan.

The effect of the year of birth on the association between age at menarche
and a woman’s reproductive lifespan (Fig. 7) shows a decreasing effect until 1930,
followed by a slow increase from a negative to a positive association until 1950,
decreasing afterwards. Regarding the spatial effects (right-hand side of Fig. 7),
only a couple of municipalities in the north part of the region show a negative
effect in this association.

5 Discussion

This study was conducted in order to apply the Bivariate Copula Additive Mod-
els for Location, Scale and Shape to quantify the effect of a woman’s cohort
and of the environment (represented by a woman’s place of residence) in the
association between age at menarche and a woman’s reproductive lifespan and
the effects of this covariates in the location and scale parameters of the marginal
distributions. This approach allows to assess easily a suitable marginal distri-
butions for the response variables, and find the best fitted copula additive model.
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Fig. 3. Effect of the year of birth and spatial differences on the age at menarche.

Fig. 4. Effect of the year of birth and spatial differences on the reproductive lifespan.

The package SemiParBIVProbit [12] has shown a good performance in the fit
of models with big datasets such as the breast cancer screening. To our knowl-
edge, this is the first time that the CGAMLSS is applied to a database with a
considerable number of records, with the selected copula function converging in
24’ 15’ in a Intel(R) Core(TM) i5-4570s CPU 2.90 GHz with operating system
Windows 7 Professional.

The results achieved suggested that earlier menarche is associated with younger
women. An increasing of a woman’s reproductive lifespan is observed, followed
by a sharp decrease for women born after 1952. This drop is justified by the fact
that women born after 1952 are those cases who already reported a menopause,
despite of their young age. The decreasing effect of year of birth in the variabil-
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Fig. 5. Effect of the year of birth and spatial differences on the variability of the age
at menarche.

Fig. 6. Effect of the year of birth and spatial differences on the variability of the
reproductive lifespan.

ity of the age at menarche may be explained by the fact that that moment is
easily remembered by younger women. Since the west region in central Portugal
is in general wealthier and more economically developed region in comparison to
interior part, the expectation of an increasing effect on a woman’s reproductive
lifespan and a decreasing one on age at menarche in the east-west direction was
not verified. These may be explained by factors that were not taken into account
in the model, leading to the conclusion that a woman’s place of residence is not
the only factor that may affect women’s individual characteristics, such as age
at menarche and a woman’s reproductive lifespan cycle.
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Fig. 7. Effect of the year of birth and spatial differences on the association between
the menarche and reproductive lifespan.
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