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Abstract—Species-sensitivity distribution methods assemble single-species toxicity data to predict hazardous concentrations (HCps)
affecting a certain percentage (p) of species in a community. The fit of the lognormal model and required number of individual
species values were evaluated with 30 published data sets. The increasingly common assumption that a lognormal model best fits
these data was not supported. Fifteen data sets failed a formal test of conformity to a lognormal distribution; other distributions
often provided better fit to the data than the lognormal distribution. An alternate bootstrap method provided accurate estimates of
HCp without the assumption of a specific distribution. Approximate sample sizes producing HC5 estimates with minimal variance
ranged from 15 to 55, and had a median of 30 species-sensitivity values. These sample sizes are higher than those suggested in
recent regulatory documents. A bootstrap method is recommended that predicts with 95% confidence the concentration affecting
5% or fewer species.

Keywords—Risk assessment Species sensitivity Bootstrap Statistics Sample size

INTRODUCTION

Concentration–effect data applied to ecological risk as-
sessment usually come from single-species toxicity tests mea-
suring effects to individuals. However, populations, commu-
nities, and ecosystems are generally the entities to be protected.
To resolve this incongruity between individual-based data and
the complex biological entities addressed in ecological risk
assessment, an evaluation of species-sensitivity distributions
has been proposed [1]. Single-species test data are combined
to predict concentrations affecting only a certain percentage
of species in a community. Single-species data (e.g., median
lethal concentration [LC50] or no-observed-effect concentra-
tion [NOEC] values) for many species are fit to a distribution
such as the lognormal or log-logistic. From this distribution
of species sensitivities, a hazardous concentration (HCp) is
identified at which a certain percentage (p) of all species is
assumed to be affected. The most conservative form of this
approach uses the lower 95% tolerance limit of the estimated
percentage to ensure that the specified level of protection is
achieved [1–3].

Species-sensitivity distribution or extrapolation methods
are being incorporated into assessments of ecological risk [4,5]
and into recommendations for pesticide registration [6]. A gen-
eral species-sensitivity distribution approach is detailed in the
new U.S. Environmental Protection Agency guidelines for eco-
logical risk assessment [7]. The variants most recently es-
poused specify a lognormal distribution for species sensitiv-
ities regardless of whether the modeled effect metrics were
median effective concentration (EC50), LC50, NOEC, or max-
imum acceptable toxicant concentration values [1–5].

The species-sensitivity distribution innovation carries as-
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sumptions needing scrutiny [1]. The following are seven of
the most important concerns.

1. The LC50, EC50, NOEC, and maximum acceptable tox-
icant concentration have very significant deficiencies as mea-
sures of effect to field populations and communities [8]. Any
secondary metric based on such compromised metrics pos-
sesses the same deficiencies.

2. Whether any species loss is acceptable is equivocal. Pro-
ponents of the species-sensitivity distribution approach argue
that enough redundancy exists in communities to allow some
loss [9]. The counterpoint to this redundant species hypothesis
combines the rivet popper hypothesis (community integrity is
reduced by each loss of a species) with the argument that a
conservative stance is best when faced with uncertainty in
ecological risk assessment [10]. The rivet popper hypothesis
is supported by the few studies directly addressing the question
of redundancy [10–14]. Ecosystem productivity, stability, sus-
tainability, and nutrient retention decrease as species diversity
decreases, although species loss up to a certain level seemed
to have little influence on drought resistance or resilience of
prairie grassland communities [12–14].

3. If performed without thought, species-sensitivity distri-
bution methods could discount the importance of maintaining
dominant and keystone species [15], and the influence of spe-
cies interactions [8].

4. In situ exposure differs among species because of dis-
similarities in behavior, feeding habits, life histories, life stag-
es, and microhabitats. Exposure differences proscribe the di-
rect application of concentration–effect data derived by single-
species laboratory testing [16] in this or other risk assessment
procedures.

5. A bias exists toward mortality data despite the plausi-
bility of nonlethal effects being at least as important in de-
termining local population extinction. Also, a bias exists to-
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ward a subset of standard species that are amenable to labo-
ratory culture and manipulation. However, these shortcomings
are shared by other risk assessment applications of ecotoxicity
data.

6. The assumption of a specific distribution may not be
justifiable for many data sets, which, if plotted alongside values
predicted from the distribution, show clear deviations from the
assumed lognormal distribution. Because data for diverse tax-
onomic groups are pooled, even the basic assumption of a
unimodal distribution is dubious. Although the present move-
ment toward using specific taxonomic groups in this species-
sensitivity distribution procedure may reduce the magnitude
of this problem, the ambiguity associated with selecting the
lognormal distribution will remain.

7. Most discussions of appropriate sample size and sample
representativeness of the community are focused on practical
issues of producing an agreeable number of observations for
regulatory agencies [6]. The exception was the original work of
Kooijman [1], who introduced the approach of applying para-
metric methods to formally address the sample size question.
Assessment of these issues of sufficient sample size and repre-
sentativeness is difficult in most applications. Most studies either
do not report confidence limits along with estimates of HCp, fail
to calculate minimal sample sizes, or do not discuss the com-
pleteness of the data set relative to the community at risk.

Bootstrap estimation provides a partial answer to two of the
above issues, ambiguity in selecting a specific distribution and
estimation of the approximate number of species needed to
precisely estimate HCp [17]. Bootstrap estimation alleviates the
difficulty of selecting an appropriate distribution because cal-
culations do not require an explicit distribution. The only re-
quirement is a random sample of species sensitivities from the
universe of possible species sensitivities. The approximate num-
ber of species needed to minimize variation around the HCp
estimate can also be obtained by utilizing bootstrap methods.

In the present study, we examined 30 diverse data sets to
test the appropriateness of the now prevailing preference for
a lognormal distribution for fitting species-sensitivity data; to
illustrate an alternate, bootstrap method that imposes no dis-
tributional requirements; and to estimate the approximate num-
ber of species-sensitivity values required to precisely estimate
HC5, HCC10, and HC20 values.

MATERIALS AND METHODS

Data sources

No-observed-effect-concentration and EC50–LC50 data
were assessed because both are analyzed with species-sensi-
tivity distribution methods. The NOEC data (potassium bi-
chromate; sodium bromide; tetrapropylene benzene sulfonate;
2,4-dichloroaniline; p-nitrotoluene; 2,4-dinitro-o-cresol; di-
methoate; and pentachlorophenol) were those tabulated in
Slooff and Canton [18] with supplemental values from the
AQUIRE database [19]. Atrazine EC50–LC50 data were pro-
vided by K. Solomon and applied after culling unspecified
species from the data set. Diazinon data from Giddings et al.
[20] were compiled similarly. Aldrin, copper, chlordane, chro-
mium, dieldrin, endosulfan, and heptachlor data were taken
from water-quality criteria documents [21–26] and augmented
with the AQUIRE database [19]. Also, data entries for un-
specified species were removed from chromium and copper
data. Mercury data came from the AQUIRE database except
one datum from Khangarot and Ray [27]. Chlorpyrifos data
were derived from the AQUIRE database. Methyl parathion,

guthion, and malathion data came from the AQUIRE database
with expansion from Brandt et al. [28], Cripe [29], Cripe et
al. [30], Key et al. [31], Morton et al. [32], and Verschueren
[33]. Geometric means were used in analyses if multiple entries
for species were found within a data set.

Parametric statistics

We determined if the lognormal model was generally ap-
plicable for fitting species-sensitivity information for each of
the 30 data sets (Table 1). After log transformation of effect
concentrations, a Shapiro–Wilk’s test was performed to as-
certain how often the null hypothesis of a (log) normal dis-
tribution was rejected (a 5 0.05) (SASt Version 6.12, Proc
Univariate [34]). Pearson x2 statistics were calculated after the
30 data sets were fitted by maximum likelihood methods to
lognormal, log-logistic, and Gompertz models (SAS Version
6.12, Proc Probit [34]). Resulting x2 statistics allowed com-
parison of data goodness-of-fit for these candidate models: the
model with the lowest x2 statistic was the best. Plots of re-
gression residuals from the candidate models (lognormal, log-
logistic, and Gompertz models fit with Proc Probit) were also
examined for systematic deviations from the model. Finally,
HC5 values and associated 95% confidence limits were gen-
erated with the lognormal model.

Bootstrap statistics

Alternatives to conventional parametric statistics appeared
soon after affordable, powerful computers became widely
available [35]. These computationally intensive methods pos-
sess several advantages relative to conventional statistics. A
relevant advantage in this case is the capacity to generate
univariate statistics (i.e., the HC5) and an associated confi-
dence interval without assuming a specific distribution [17].
This method also provides a straightforward way to estimate
the number of observations required to minimize the variation
about an estimate such as the HC5 [17,36].

Bootstrap estimates of the HC5 and its 95% confidence
limits were produced for the 30 data sets with Resampling
Stats Version 4 [37]. For each of the 30 sets, the available data
were sampled randomly with replacement to create a resam-
pling data set of 100 observations. These observations were
ranked from smallest to largest and the value ranked at the
fifth percentile was selected as the HC5. Here and elsewhere,
linear interpolation between ranked values was used as re-
quired in simulations resampling low numbers of observations.
The resampling was repeated to produce 10,000 estimates of
HC5. These 10,000 estimates were ranked, and the value cor-
responding to 50% was taken as the best estimate of the HC5.
The estimates corresponding to 2.5 and 97.5% were used as
the 95% bootstrap confidence limits. The value ranked at 5%
estimated the concentration protecting 95% of the species with
95% certainty, that is, only 5% or fewer species will be affected
19 out of 20 times at this concentration. Notice that none of
these procedures required a specific distribution.

The bootstrap procedure was modified to estimate the num-
ber of species-sensitivity values needed to approach the point
of minimal variation about a HC5 estimate. The above process
was repeated with resampling data sets of size 5 to 100 in
increments of 5. The resulting 2.5, 50, and 97.5% values were
plotted against sample size. The confidence interval about the
HC5 estimate decreased as sample size increased until the first
point of minimal improvement was reached. The sample size
at that point approximated the number of observations needed
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Fig. 1. Predicted hazardous concentration (to 5% of the species) (HC5)
values from the lognormal distribution and bootstrap methods. Results
from all 30 data sets are plotted regardless of whether the data failed
(V) or passed (n) the test for (log) normality.

Fig. 2. Curves for estimating sample size for hazardous concentrations
to 5% (HC5), to 10% (HC10), and to 20% (HC20) of the species as
illustrated with the diazinon (freshwater) data. The symbols indicate
the HCp values ranked at the 50% (,), 2.5% (V), and 97.5% (□)
of the 10,000 values generated by bootstrapping. An arrow indicates
the point at which sufficient sample size was reached, with that sample
size being indicated above the arrow.

to obtain minimum variation about HC5. This procedure was
applied to the 30 data sets to estimate adequate sample sizes
for HC5, HC10, and HC20.

RESULTS

Adequacy of lognormal model

The null hypothesis that species-sensitivity data fit a log-
normal distribution was rejected for one half of the 30 data sets
(Table 1, a 5 0.05). The x2 statistics for the EC50 and LC50
data sets indicated that the log-logistic model was the best fit
for the data twice as often as the lognormal model. For most
of the NOEC data, the Gompertz model fit better than either
the lognormal or log-logistic model. Residual plots for models
showed distinct patterns for most of the data sets, suggesting
systematic variability unaccounted for by the three models. Cu-
mulative frequency plots had distinct shifts in slopes (i.e., a
multimodal distribution) generally corresponding with transi-
tions among the various taxonomic classes ranked in the data
set. The HC5 estimates and associated 95% confidence limits
are provided in Table 1. Also, a resampling estimate of the
conservative HC5, that concentration protecting 95% of species
with 95% confidence, is listed in the last column of Table 1.

Comparison of the lognormal and bootstrap methods

A strong correlation existed between HC5 values predicted
with the bootstrap and lognormal model methods (Fig. 1).
Least-squares regression (SAS Version 6.12, Proc GLM [34])
produced the model, log10 HC5 from bootstrapping 5
0.908(log10 HC5 from lognormal model) 1 0.252. The stan-
dard errors for the estimated slope and intercept were 0.037
and 0.061, respectively. With perfect correspondence, a slope
of one would be expected; however, the slope was significantly
lower than one. The model r2 of 0.954 indicated a strong
relationship between estimates from these two methods. Plots
of regression residuals versus log HC5 based on the lognormal
model showed a random pattern, suggesting adequacy of the
linear model. No difference was apparent between fit of data
sets failing tests of (log) normality (open circles in Fig. 1) and
those passing this test (open triangles in Fig. 1). Further, no
clear upward or downward bias was found in HCp estimates
derived inappropriately from data sets with significant devi-
ation from the assumption of a lognormal distribution.

Minimal sample size estimates

Approximate optimal sample sizes for HC5 estimation
ranged from 15 to 55 with a median of 30 species-sensitivity
values (Table 2; see also Fig. 2 as an example). Similar sample
sizes were needed for HC10 and HC20 estimation: estimates
ranged from 10 to 75. No difference was apparent in ranges for
EC50–LC50 or NOEC data. These sample sizes are much higher
than those recommended as acceptable for regulatory purposes
(e.g, four to eight species as detailed in Baker et al. [6]).

DISCUSSION

Analysis of 30 diverse data sets did not support the general
use of a lognormal model to fit species-sensitivity information.
One half of the data sets failed the null hypothesis that they
came from a lognormal distribution, and plots suggested strong
and often multimodal patterns to regression residuals. This was
not unexpected because data from distinct taxonomic and eco-
logical groupings are combined in this approach.

The argument could be made that estimates from the log-
normal model were sufficient and tend to be slightly more
conservative than those from bootstrapping. Also, as suggested
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by results from the small number of data sets explored here,
the approach may be relatively robust to violations of nor-
mality. However, the defensibility of the species-sensitivity
approach would be compromised by the knowledge that a fun-
damental assumption was frequently violated. It would be dif-
ficult to know when errors might emerge because of this vi-
olation and how large the error might be. Also, any judgement
of robustness would be imprudent based on so few data sets.
The resampling method alleviates these ambiguities without
sacrificing any ease in computation. A bootstrap approach to
generate a concentration at which 95% of species are protected
with 95% certainty (rightmost column in Table 1) would be
as conservative as the lognormal-model-based method without
violating any fundamental assumptions.

The species-sensitivity distribution method, despite its po-
tential shortcomings, does provide a pragmatic way of moving
ecological risk assessments beyond the hazard quotient. Also,
despite its limitations [1], it is a direct means of comparing
cumulative exposure concentration distributions to cumulative
species-sensitivity distributions. One associated inaccuracy
can be excluded by replacing present methods with the simple
bootstrap method described herein. The single shortcoming of
the bootstrap method—its unfamiliarity to many environmen-
tal scientists—is offset by its simplicity. Bootstrapping can be
applied with many commercial software packages. Jagoe and
Newman [17] list program code to calculate the conservative
HC5 method described above.

Approximate numbers of species-sensitivity observations
needed to estimate an HCp were much higher than those cur-
rently recommended or proposed for regulatory purposes (see
Baker et al. [6] as an example). Sufficient information is avail-
able for only a few chemicals, for example, atrazine [4]. Re-
gardless, the current inability to meet minimal sample size
requirements does not indicate that these pragmatic procedures
are invalid. The approximate sample size results derived here
are valuable in that they suggest considerable temperance
should be exercised during interpretation of results from cur-
rent procedures. The implied wide variation associated with
current sample sizes suggests that the conservative approach
should be taken, that is, the concentration protecting 95% of
species with 95% certainty. Perhaps, required sample sizes
would not be as large if estimates were made for specific,
sensitive taxonomic groups. Finally, the results provide a target
data quality criterion for the future.
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