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Abstract: In the rock mechanics and rock engineering field, the strength parameter considered
to characterize the rock is the uniaxial compressive strength (UCS). It is usually determined in
the laboratory through a few statistically representative numbers of specimens, with a recommended
minimum of five. The UCS can also be estimated from rock index properties, such as the effective
porosity, density, and P-wave velocity. In the case of a porous rock such as travertine, the random
distribution of voids inside the test specimen (not detectable in the density-porosity test, but in
the compressive strength test) causes large variations on the UCS value, which were found in the range
of 62 MPa for this rock. This fact complicates a sufficiently accurate determination of experimental
results, also affecting the estimations based on regression analyses. Aiming to solve this problem,
statistical analysis, and machine learning models (artificial neural network) was developed to generate
a reliable predictive model, through which the best results for a multiple regression model between
uniaxial compressive strength (UCS), P-wave velocity and porosity were obtained.

Keywords: travertine; P-wave velocity; uniaxial compressive strength; neural networks;
regression analysis

1. Introduction

The uniaxial compressive strength (UCS) is one of the most important parameters used in the rock
mechanics and rock engineering field for design. It is widely used to characterize rock [1] and to
classify rock masses in a quantitative way [2–4]. There are several methods to determine it in the field
and in the laboratory, mainly provided by the ISRM Suggested Methods [5,6] and the ASTM [7–9]
Standard Test Methods.

The determination of UCS in the laboratory can be time-consuming and, in some cases,
unaffordable, due to the specimen preparation often requires relatively high-quality cores in order to
fulfill geometric and surface specifications, as recommended by the ISRM [5] or ASTM [10]. This may
be one of the reasons behind the research of correlations between this parameter and others come
from non-destructive methods like P-wave velocity (vp). The vp was found to be mainly dependent on
multiple factors, with several correlations developed for density (ρ) and porosity (n) [11–16]. The UCS
depends mainly on ρ and n [17], and therefore on vp, so many researchers have determined different
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experimental correlations to indirectly predict the UCS in a more economical way in terms of time
and money, thanks to the ultrasonic pulse test [6]. Likewise, rocks are heterogeneous and anisotropic,
so an equation that relates UCS with vp, ρ and n in the same equation, should be more reliable than
with each variable separately (95% confidence interval and p-value < 0.05), because, for the same type
of rock, there may be variations of these index properties according to its location, as demonstrated by
González et al. [18] with saturated limestone.

Another aspect to take into account in the determination of the UCS is the calculation method:
(i) the Suggested Methods of the ISRM [5] only indicates that the value of each specimen is reported,
while “the number of specimens tested should be determined from practical considerations but at
least five are preferred”; (ii) the Standard Test Methods of the ASTM [9,19] indicates that the average
value is presented from “the number of specimens necessary to obtain a specific level of statistical
results may be determined using Test Method E122”. However, it may not be economically possible
to achieve a specific confidence level and professional judgment may be necessary”. In this sense,
the calculation commonly performed is the average of the UCS values obtained with each test specimen,
while the artificial neural network (ANN) is a much more effective tool in reducing the error of
the calculations, especially when the dispersion of the results is high.

The relatively high dispersion of strength results occurs in high-porosity rocks (15–30% according
to the International Association of Engineering Geology [20]), where the mechanical behavior is
controlled by n [21,22]. ANNs have been applied in rock mechanics and rock engineering to predict
the behavior of a rock mass [23], the strength and deformability of intact rock from index properties
such as vp, n, corrected point load index (Is(50)) and Schmidt’s hammer rebound (RN) [24–28]. Yilmaz
and Yuksek [24] developed predictive models for UCS and elastic modulus (E), adjusting neural
network models based on the independent variables Schmidt hammer rebound number, point load
index, water content and P-wave speed. Subsequently, the work carried out by Dehghan et al. [25]
follows a procedure similar to that of Yilmaz and Yuzek [24], however, it is possible that the neural
networks modeled in this work are over-adjusted, since the number of parameters (interactions plus
threshold values) of the neural network is greater than the number of samples assigned to the network
training process. Then, Rabbani et al. [26] developed the application of a neural network model to
predict UCS based on n, bulk density (ρ) and water saturation (Sr), demonstrating the applicability
and feasibility of the tool to model the response (validated by the goodness-of-fit indicators) and
finally, Barzegar et al. [27] develop a comparative analysis of different machine learning models for
the prediction of UCS in travertine rocks, presenting good indicators of goodness of fit, however,
in this work, the number of parameters of the neural network model is also greater than number of
samples, making it possible that the models developed by Barzegar et al. [27] are over-adjusted.

The aim of this paper is to develop a comparative analysis between conventional statistical fitting
methods and the machine learning (ANN) of the UCS of travertine, by means of an experimental
correlation between UCS and vp, ρdry and n for a minimum of stress tests in a controlled environment.
UCS of travertine rocks is a mechanical process that presents a great dispersion in the results of
laboratory tests (62 MPa between the maximum and minimum values), which makes it difficult to
fit conventional statistical models. On the other hand, machine learning techniques are effective at
modeling nonlinear systems; however, they generally require a larger data set to represent the system
to be studied.

2. Materials and Methods

2.1. Specimen Preparation

The studied rock (travertine) comes from a quarry located in Calama, 200 km NE of Antofagasta,
capital of the region of Antofagasta, in the north of Chile. Travertine belongs to the Chiu-Chiu Formation,
which is between 0.5 and 2.5 Ma in age (Upper Pliocene to Pleistocene age) [29]. Twenty-nine cylindrical
specimens with a diameter of 31.1 mm, a height-to-diameter ratio of 2:1 and surface polishing of
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the basal faces were prepared from different blocks, meeting the ASTM geometric standards for uniaxial
compressive strength testing [9] and surface finish and tolerances [10]. All specimens were apparently
free of discontinuities and were tested for density, porosity, wave propagation velocities and uniaxial
compressive strength.

2.2. Density and Porosity Tests

The 29 cylindrical specimens were tested according to the recommendations made by the ISRM [5]
for the determination of dry mass (24 h in the oven at 105 ◦C) and saturated mass (48 h immersed in
water). The submerged mass was calculated by placing the saturated mass on a hydrostatic balance
to apply Archimedes’ principle. The dry density (ρdry), saturated density (ρsat) and porosity (n) are
calculated from Equations (1)–(3), respectively:

ρdry =
mdry

VT
=

mdry

msat−msub
ρw

=
mdryρw

msat −msub
, (1)

ρsat =
msat

VT
=

msat
msat−msub
ρw

=
msatρw

msat −msub
, (2)

n =
Vv

VT
100 =

msat −mdry

msat −msub
100, (3)

where mdry is the dry mass (g), msat is the saturated mass (g), msub is the submerged mass (g), Vv is
the pore (void) volume (cm3), VT is the bulk volume (cm3), and ρw is the water density (g·cm−3).

2.3. Ultrasonic Pulse Transmission Tests

A PROCEQ Pundit Lab+ apparatus was used to measure primary (vp) and secondary wave
(vs). velocities. The test specifications are those of the method suggested by the ISRM [6]: 54 kHz
bandwidth and direct configuration for the transducer pair (transmitter-receiver). The force applied to
the transducers involved a stress less than 10 kPa. The programmed voltage was 500 V and the gain
was 1x. The measure of vp was determined automatically by the machine, and vs was determined
manually when both P and S waves were accoupled in the range of 1.4 to 2.3 times the P-wave time
arrival. For good transmission between the transducers, the polished surfaces of the specimens were
smeared with stiffer grease.

2.4. Uniaxial Compressive Strength Test

The method suggested by ASTM [9,10] was followed, by using a fully servo-controlled 300 t press
(CONTROLS 50-C52Z00 +MCC8 50-C8422/M), which allows uniaxial compression strength tests to
be carried out on specimens up to 150 mm in diameter. The loading speed was 0.2 MPa·s−1 so that
the test lasted between 5 and 10 min.

2.5. Conventional Statistical Models

The effect of independent variables in the modeling of uniaxial compressive strength was studied
by means of an experimental design [30,31] generating multiple linear regression models and a quadratic
model, adjusted to the experimental tests to study the strength of travertine to variations of vp, n and
ρdry.

The methodology used consisted of compression tests, and 29 experimental tests were carried
out, studying the effects of velocity of propagation, saturated density and porosity on the dependent
variable. For the modeling and experimental design of regression models, the Python “Scipy”
library and “statsmodels” module was used (using the ordinary least squares method), making
it possible to investigate the linear effects, interactions and quadratic effects of the independent
variables in the UCS. The experimental data were fitted first to a simple (vp-dependent) regression
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model, and then through a multiple regression analysis [32] (incorporating n and ρdry) to a quadratic
model, considering only those factors that help explain the model variability and that have statistical
significance (p < significance level).

The general form of the experimental model is presented in Equation (4):

Y = b0 +
n
∑

i=1

bixi +
n
∑

i=1

n
∑

j=1

bi jxix j (4)

where xi are the independent variables (vp, ρdry, n), and the answer Y corresponds to the dependent
variable (UCS). The determination coefficient (R2), p-values and F-value indicate whether the model
obtained is adequate to describe the uniaxial compressive strength for the set of values sampled [33,34].

2.6. Artificial Neural Networks

ANNs are supervised machine learning techniques, which determine associations between
a known set of observations (i.e., training points) and different environmental variables to classify
new and unknown data (test set). ANNs can approximate non-linear relationships and generalize
complex systems from relatively imprecise information, and are robust in handling noise, overfittings,
and outliers [35].

In an ANN system, the nodes are connected by means of synapses, this connection structure
determines the behavior of the network. The most used structure is the multilayer perceptron [36],
as presented in Figure 1, where xi represents the inputs, oi the outputs and σ the activation function.
The neurons in the input layer depend on the information available to be classified, which is given
by the variables: compression speed, ρsat and n, while the output layer is given by the uniaxial
compression resistance.
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Figure 1. Structure of an artificial neural network.

The mathematical expression that describes the output of each neuron is given by the activation
function σ, where ωi, are the synaptic weights that weight the xi inputs, ω0 is the threshold and
n is the total number of synaptic weights connected to the input of the neuron. Each neuron has
its respective threshold level, and the hyperbolic tangent was used as a trigger function on all neurons
in the network [37]. The learning method used was backpropagation, which follows the following
stages: it starts when a sample of the process is captured by the input layer, then the activation value
of each of the neurons is calculated progressively through each neuron or node through all the layers,
from the input layer to the output one. Then, in the check stage, the activation value of the output
neurons is compared with the expected output data and, if this error differs too much, the error is
corrected in a distributed way by updating the weights of the neural network in a return stage, from
the output layer to the input one. The whole process is repeated until the network adjusts the synaptic
weights and the error value of the outputs is permissible [35].

The implementation of neural network models was developed by generating a model using
the Keras neural network library. Keras models are defined as a sequence of layers, for which
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a “Sequential” model is created, adding layers one after another, until the requirements are met. Then,
due to the limited number of samples, the models to be generated are 1 hidden layer, with variations
in the number of neurons, which are completely connected by using the dense class. For the hidden
layer, the “relu” activation function will be defined, and for the output layer, a “sigmoid” function.
Each ANN will be trained for a total of 1000 epochs, the number of neurons in the hidden layer will be
defined in the next section, while that median absolute deviation (MAD), mean squared error (MSE),
coefficient of determination (R2) and accuracy (ACC) were used to evaluate the fit of the modeled
networks. Accuracy is a performance measure defined how the ratio of correctly predicted observation
over the total observations.

3. Analysis and Discussion of Results

The results from index properties (vp, vs, ρdry, ρsat and n) and strength (UCS) are shown in Table 1.
The mean values of ρdry, ρsat and n were 2.43 g·cm−3, 2.47 g·cm−3 and 4.05%, respectively. The n values
range from 0.7 to 8.1%, a fairly wide interval, due to the heterogeneity in the pore distribution and
the travertine petrofabrics [38,39], which is in line with the UCS values, whose average value was
91.72 MPa but in the 25–29 test specimens the UCS values became 70 MPa on average to 120 MPa,
coinciding with this decrease in n.

Table 1. Results for geometry, index properties (vp, vs, ρ y n) and uniaxial compressive strength (UCS).

Specimen
Diameter,
D (mm)

Height,
H (mm)

Porosity,
n (%)

Density, ρ
(g·cm−3)

P-Wave Velocity,
vp (km·s−1)

S-Wave Velocity,
vs. (km·s−1)

Uniaxial
Compressive

Strength, UCS (MPa)
Dry Sat Dry Sat Dry Sat

Travertine 1 31.090 59.470 3.65 2.48 2.52 5.310 5.505 3.109 3.030 75.28
Travertine 2 30.970 59.550 4.09 2.37 2.41 5.085 5.505 3.243 3.046 74.95
Travertine 3 31.000 60.350 4.44 2.37 2.41 5.263 5.769 3.279 3.158 89.91
Travertine 4 30.750 60.350 4.58 2.36 2.41 5.263 5.505 3.279 2.943 89.79
Travertine 5 31.050 60.160 5.02 2.38 2.41 4.503 5.505 3.141 3.046 70.12
Travertine 6 31.080 60.310 4.57 2.47 2.51 5.263 5.505 3.226 3.109 78.43
Travertine 7 31.170 59.980 4.70 2.41 2.46 5.263 5.607 3.279 3.158 85.05
Travertine 8 31.118 59.688 4.37 2.48 2.53 5.263 5.882 3.191 3.094 74.79
Travertine 9 31.070 59.780 7.19 2.41 2.48 4.839 5.310 3.125 2.985 78.84
Travertine 10 31.020 59.800 6.65 2.40 2.47 4.839 5.263 3.030 2.985 85.98
Travertine 11 31.175 61.613 4.92 2.47 2.52 4.959 5.439 2.313 2.480 63.78
Travertine 12 31.213 62.450 4.71 2.46 2.51 4.960 5.439 2.375 2.500 95.01
Travertine 13 31.200 62.900 2.98 2.45 2.49 5.167 5.439 2.650 2.520 105.98
Travertine 14 31.200 61.950 4.00 2.41 2.45 4.921 5.439 2.206 2.510 81.91
Travertine 15 31.187 62.000 4.12 2.44 2.48 5.210 5.439 2.403 2.510 94.61
Travertine 16 31.250 61.663 4.61 2.41 2.45 4.960 5.439 2.594 2.520 88.86
Travertine 17 31.163 61.938 8.01 2.34 2.42 4.593 5.000 2.441 2.818 72.65
Travertine 18 31.200 61.950 7.34 2.40 2.47 4.960 5.688 2.296 2.672 70.21
Travertine 19 31.300 62.650 3.43 2.42 2.46 5.391 5.794 2.661 1.981 98.26
Travertine 20 31.250 61.925 3.68 2.45 2.49 5.167 5.439 2.616 2.279 84.71
Travertine 21 31.150 62.450 5.42 2.37 2.43 5.299 5.391 2.520 2.026 81.05
Travertine 22 31.150 62.350 2.32 2.41 2.43 5.391 5.688 2.719 2.780 113.38
Travertine 23 31.220 62.300 4.19 2.37 2.41 5.210 5.487 2.583 2.831 90.77
Travertine 24 31.100 62.650 4.71 2.45 2.50 5.167 5.391 2.627 2.661 88.17
Travertine 25 31.200 62.250 1.05 2.49 2.50 5.688 5.688 2.768 2.756 115.43
Travertine 26 31.400 62.100 0.99 2.47 2.48 5.741 5.487 2.768 2.756 120.17
Travertine 27 31.400 62.200 0.77 2.46 2.46 5.688 5.741 2.793 2.793 115.56
Travertine 28 31.200 62.700 0.72 2.50 2.51 5.688 5.688 2.805 2.793 125.87
Travertine 29 31.250 62.500 0.70 2.43 2.43 5.688 5.794 2.780 2.780 112.87

Maximum 31.400 62.900 8.013 2.503 2.53 5.741 5.882 3.158 3.279 125.87
Minimum 30.750 59.470 0.697 2.342 2.41 4.503 5.000 1.981 2.206 63.78

Mean 31.156 61.447 4.067 2.418 2.47 5.198 5.526 2.742 2.787 90.427
Stand. Dev. 0.1280 1.162 1.940 0.045 0.04 0.316 0.187 0.311 0.337 16.753

The increase in dry and saturated primary velocity ∆vp was 369 m·s−1 on average, from which
a clay mineral content ECC practically zero, has been deduced [40]. The average dry vp/vs ratio is
1.84, within the range 1.8–2 obtained by Soete et al. [38] for travertine and 1.6–2.3 by Schön [41],
for consolidated sediments.
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The dry vp values were correlated with the UCS of the rocks using the simple and multivariate
regression methods. The experimental data set was used to generate empirical equations developed to
estimate the UCS of travertine from the independent variables vp, ρdry and n. In simple regression
analyses, models were generated to individually relate the independent variables (vp, ρdry and n)
to the dependent one (UCS) by means of simple linear regression models, exponential models,
potentials and quadratics through a logarithmic transformation, while in multivariate regression
analyses, all variables considered in the sampling that are significant, and that contribute to explain
the variability of the response were included. The analytical model, the coefficient of determination
(R2) and the p-value were calculated, to study and compare the goodness of fit of the models generated
for each regression.

3.1. UCS Prediction from Selected Bibliography

As indicated by González et al. [18], the existing simple correlations for limestone from the literature
were not suitable for the ‘Antofagasta’ limestone, which implied the development of a multiple
correlation in which more variables (vp, ρsat and n) were introduced to increase the fit of the experimental
equation, and to be able to characterize the rock with easily measurable properties. This is due to the fact
that the UCS depends both on the index properties (vp, ρdry, n, Is(50), RN, etc.), and on the petrofrabrics
and internal pore distribution, as can be seen in the values of Table 2. Likewise, the UCS depends
on the size of the specimen [1,42], as well as the vp [43,44], parameters that must be considered for
the scale effect, when applying it to an engineering project.

Table 2. Existing simple and multiple analytical models between UCS (MPa) and index properties like
vp (km·s−1), ρdry (g·cm−3) and n (%) for travertine and carbonate rocks.

Analytical Model R2 Rock Type Phase Reference Equation

vp = 0.0317UCS + 2.0195 0.80 Carbonate rocks Dry * [11] (5)
UCS = 15 ln

(

1000vp

)

− 73 0.86 Travertine Dry * [12] (6)
UCS = 0.26v3.453

p 0.85 Travertine, limestone and schist Dry * [13] (7)
UCS = 0.026vp − 20.207 0.90 Marly rocks Dry * [15] (8)

UCS = 101.1 ln
(

1000vp

)

− 802.81 0.945 Travertine Dry * [16] (9)
UCS = 143.8e−0.0695n - Carbonates and limestones (5 < n

< 20%) (30 < UCS < 150 MPa)
Dry * [26] (10)

UCS = 135.9e−0.048n - Carbonates and limestones (0 < n
< 20%) (10 < UCS < 300 MPa)

Dry * [26] (11)

UCS = 0.1984ρdry − 362.7 - Basalt, diabase, dolomite, gneiss,
granite, limestone, marble,

quartzite, rock salt, sandstone,
schist, siltstone and tuff

Dry [45] (12)

UCS = 1.83
n + 0.07

ρ
+ 307

vp
+ 130 0.54 Carbonate rocks Dry * [14] (13)

* The authors do not explicitly indicate saturated or dry conditions, so it is assumed as dry (Sr = 0).

In the case of travertine, the same occurs. Table 3 shows the different linear correlations that relate
UCS with vp, (Equations (5)–(9)), with n (Equations (10) and (11)) and ρdry (Equation (12)). Equation (13)
corresponds to the multiple correlation that includes the three properties. Figure 2 shows how no
correlation fits the experimental results (line 1:1), and Table 3 shows the mean values and relative errors.
From these average values, it can be concluded that Equations (5) and (11) are the closest to 101.09 and
105.27 MPa, respectively (they have the lowest relative errors in absolute value). It should be noted
that in the determination of these equations no travertine specimens were considered, only limestone,
marble, dolomitic limestone, dolomite, marble and graveled limestone.
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Table 3. Average obtained UCS values in strength tests and average predicted UCS values, as well as
their relative errors according to different authors.

Equation
Predicted UCS (MPa) Relative Error (%)

Mean SD Mean SD

(5) 101.085 9.044 –9.562 16.650
(6) 55.394 0.823 –65.301 35.301
(7) 79.360 15.094 16.950 23.426
(8) 115.620 7.454 –20.993 15.015
(9) 62.564 5.549 46.153 27.091

(10) 121.152 0.322 –24.291 16.889
(11) 105.265 13.277 –13.101 14.506
(12) 118.498 8.768 –22.607 15.952
(13) 189.695 2.726 –51.561 11.208
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Figure 2. Predicted vs. Experimental UCS values.

3.2. Correlation and Univariate Regression Analyses

Developing Pearson’s correlation analysis (Figure 3), the positive correlation between UCS and
vp,dry is highlighted, and the negative correlation between UCS and n. It is also observed that the UCS
dependent variable does not have a strong linear correlation with the other sampled variables, especially
with the ρsat, vs,dry and vs,sat variables, where there is no linear correlation (r = 0).                     
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Figure 3. Correlation plot of sampled variables.
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With the purpose of studying the relationship between the independent variables, vp,dry

(hereinafter referred to as vp) and n, and the dependent variable (UCS), a simple regression model
(Equations (14)–(19)) was set up, to model the compression strength as a function of the independent
variable (considering the exponential and potential models, after log transformation). Additionally,
the curvature is considered in the analytical model, to study its impact on the response variable
(Equations (20) and (21)). The mathematical models generated as a function of vp and n and
the respective goodness-of-fit statistics (R2) are presented in Table 4.

Table 4. Summary of univariant analytical models.

Fitting Analytical Model p-Value R2 Statistic Equation

Linear UCS
(

vp

)

= −123.37 + 41.13vp 0.0000 0.6028 (14)
Linear UCS(n) = 119.36− 7.11n 0.0000 0.6788 (15)

Exponential UCS
(

vp

)

= 9.1369e0.4379vp 0.0000 0.6324 (16)
Exponential UCS(n) = 120.6763e−0.0749n 0.0000 0.7114 (17)

Potential UCS
(

vp

)

= 2.2544v2.2325
p 0.0000 0.6167 (18)

Potential UCS(n) = 115.32n−0.2116 0.0000 0.7223 (19)
Quadratic UCS

(

vp

)

= 843.45− 333.25vp + 36.11v2
p 0.0000 0.6804 (20)

Quadratic UCS(n) = 130.81− 14.69n + 0.96n2 0.0000 0.7573 (21)

From the analysis of the observed data distributions in Figure 4, and considering the goodness-of-fit
statistics presented in Table 4, the best model to explain the UCS as a function of vp is the quadratic
model (R2 = 0.6804), while the model as a function of n that presents a better fit also is the quadratic
model (R2 = 0.7573). On the other hand, although the adjusted models presented in Table 4 yielded
considerably high coefficients of determination, these equations only include one independent variable.
Therefore, an analysis that considers a greater number of independent variables that affect the response
variable jointly, and that help explain the variability of the response variable has the potential to
improve the percentage of variability explained by the analytical model.                     

(a)  (b) 

(c)  (d) 

   

   

                ‐          
                     

       

Figure 4. Cont.
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(e)  (f) 

(g)  (h) 

                ‐          
                     

       

Figure 4. Relationship between UCS and independent variables: P-wave velocity and porosity for
analytical models (a,b) linear, (c,d) exponential, (e,f) potential and (g,h) quadratic.

3.3. Multivariate Regression Analyses

By developing the multiple regression fitting and based on the information obtained from
the ANOVA analysis, the first- and second-degree multiple regression models (Equations (22) and
(23), respectively), shown in Table 5, are able to represent the model in question for the set of sampled
values. In addition, the linear effects and interactions of all factors must contribute greatly to explaining
the experimental model.

Table 5. Summary of the multivariate analytical model.

Type of
Fitting

Analytical Model Var. p-Value F-Value R2 Equation

Single
multiple

σc

(

vp,ρdry, n
)

= 119.3575− 7.1138n
(idem Equation (15))

Model 0.000 57.06 0.6788 (22)
n 0.000 57.06

Quadratic
multiple

σc

(

vp,ρdry, n
)

= −13648 + 2407vp

+5623ρdry + 322n

−982vpρdry − 10vpn

−115ρdryn

Model 0.000 20.01 0.8447 (23)
vp 0.003 11.58
ρdry 0.003 11.09

n 0.008 8.66
vp,ρdry 0.003 11.18

vp, n 0.009 8.11
ρdry, n 0.023 5.99

The ANOVA test of the model indicates that the model presented in Equation (22) is adequate to
represent the UCS under the range of established parameters, and although there is no lack of fit of
the model, and the value of R2 (0.6788) validates it (vp and ρdry do not an effect in the response for
the single multiple model), the effect of the other variables does not exceed the fit of the univariate
models shown in Equations (18) and (20). Additionally, the p-value of Equation (22) indicates that
the model is statistically significant.

On the other hand, the ANOVA test of the second degree model (Equation (23)) indicates that
the model is also adequate to represent the response variable as a function of the independent variables,
and the goodness-of-fit indicator R2 (0.8447) validates this. The predicted and experimental UCS
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values are compared in Figure 5, where it is shown that the graphs of observed vs. predicted data
generally follow the 1:1-line and the p value of the normality test of residuals are greater than the level
of significance (value p > 0.05), indicating a good fit of the models presented in the Table 5.

                     

                           
      ‐    ‐                
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Figure 5. Predicted UCS vs. experimentally determined UCS for simple multiple regression
(a) (Equation (22)) and second degree multiple regression (b) (Equation (23)).

3.4. Fitting of Artificial Neural Networks

With the aim of studying the fitting of the UCS by using models based on ANN’s, different
architectures were generated, and their fitting was studied using the indicators of goodness of fit
indicated above. Three artificial neural networks architectures were considered for training and testing,
with network architectures of 1-2, 1-3 and 1-4 hidden layer and neurons per hidden layer, respectively.
The statistics of the percentage of relative errors between the predicted responses and the measured
values have been summarized in Table 6.

Table 6. Goodness-of-fit statistics for artificial neural network (ANN) architectures.

Architecture/Statistic
(Layer, Neurons)

Training Testing

MAD MSE ACC (%) R2 MAD MSE ACC (%) R2

1 layer, 2 neurons 0.0712 0.0469 85.00 0.6975 0.0856 0.0536 77.77 0.6646
1 layer, 3 neurons 0.0816 0.0523 85.00 0.6732 0.0975 0.0618 77.77 0.6371
1 layer, 4 neurons 0.0902 0.0587 85.00 0.6271 0.1012 0.0729 66.67 0.5582

From the analysis of the goodness-of-fit statistics of the different ANN configurations presented
in Table 6, it can be checked that the model presenting the best fit in is the simplest configuration
(one hidden layer with two neurons), which is validated by the highest determination coefficient
(0.6975), a high accuracy (85%) and low errors (MAD and MSE). The increase of the coefficient of
determination through the training and testing periods is presented in Figure 6.
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Figure 6. Variation of the coefficient of determination R2 vs. epochs for neural network architecture of
1 hidden layer, 2 neurons.
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3.5. Discussion

Table 7 presents the results of both the regression analyses and the best ANN architecture.
Regression models and their fit are presented, relating UCS (dependent variable) first with vp or
n (linear, exponential, potential and quadratic models) and then including all rock parameters for
the travertine stone studied (multiple regression and neural network models). Simple regression
analyses found that UCS is related to vp and n, and the best fit was obtained with a quadratic model
(R2 = 0. 7573), dependent only on the porosity of the rock, while the neural network model is the one
that presents the best fit for multivariate modeling, considering the totality of adjusted models.

Table 7. Coefficients of determination of the generated models.

Model Equation/Architecture R2

Linear
[

σc

(

vp

)]

(14) 0.6028
Linear [σc(n)] (15) 0.6788
Exponential

[

σc

(

vp

)]

(16) 0.6324
Exponential [σc(n)] (17) 0.7114
Potential

[

σc

(

vp

)]

(18) 0.6167
Potential [σc(n)] (19) 0.7223
Quadratic

[

σc

(

vp

)]

(10) 0.6804
Quadratic [σc(n)] (21) 0.7573
Multiple simple

[

σc

(

vp,ρdry, n
)]

(22) 0.6788

Multiple quadratic
[

σc

(

vp,ρdry, n
)]

(23) 0.8447

ANN
[

σc

(

vp,ρdry, n
)]

(1 layer, 2 neurons) 0.6975

Neural network analyses are competitive with single and multiple linear regression analyses,
but not with the quadratic multiple model (model that presents the best fit). However, due to the lack
of sample data, the adjustment potential of the tool and its ability to abstract the modeled system is
not evident.

4. Conclusions and Future Works

The combined effect of vp, ρdry and n in UCS for travertine-saturated cylindrical specimens
was studied. It is evident that vp and n have a synergistic effect in UCS (both individually and
combined), while ρdry does not have a statistically significant influence (linear, exponential, potential,
and quadratic) on the dependent variable. This is explained by the fact that, for the same rock type,
the density remains relatively constant, since the measured porosity only affects the external pores of
the test specimen, which do not necessarily have to be interconnected with the internal ones. Therefore,
vp may vary, but density does not, and, therefore, there is no correlation between them.

The experimental results were analyzed through simple regression analysis (or in its absence,
after log transformation) to develop the analytical models that best adapt to UCS depending on vp

(as developed by most authors). Subsequently, multiple regression analysis and an artificial neural
network model (ANN) were performed, to obtain a predictive model of UCS from vp, n and ρdry.

Simple regression analyses (using only vp or n as independent variable) showed a better R2

value of 0.7573 for the univariate model, dependent only on porosity, while the univariate model
dependent on vp turned out to be the quadratic adjustment, with an R2 of 0.6804. On the other
hand, a multiple regression analysis, considering interactions between factors and quadratic terms
resulted in a better R2 value (0.8447), which indicates a better adjustment when additional explanatory
variables are considered. Multiple regression analyses were also able to identify ρdry as a statistically
non-significant independent variable for predicting UCS from ultrasonic pulse transmission tests.
Finally, the ANN-based model presented a competitive fit with the single and multiple linear regression
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models in predicting UCS (R2 = 0.6975), showing that UCS is directly dependent on the independent
variables vp, ρdry and n.

To continue this research line with travertine, the incorporation of a greater number of independent
variables in the analysis and a larger number of samples is planned. This research aims to identify
the variables that explain the experimental variability of UCS under sampling conditions, and to
model the dynamics of the system using machine learning algorithms, such as neural networks or
Bayesian networks [46]. The possible variables to be considered are the corrected point load index
(Is(50)), and the number of Schmidt’s hammer rebounds (RN). Further tests will be carried out to try to
improve the analytical models.
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