
Applying the ATAM to an Architecture for
Decentralized Control of a Transportation System

Nelis Boucké, Danny Weyns, Kurt Schelfthout, and Tom Holvoet

Distrinet, KULeuven, Celestijnenlaan 200A, Leuven, Belgium
{nelis.boucke, danny.weyns, kurt.schelfthout,

tom.holvoet}@cs.kuleuven.be

Abstract. For two years, we have been involved in a challenging project to de-
velop a new architecture for an industrial transportation system. The motivat-
ing quality attributes to develop this innovative architecture were flexibility and
openness. Taking these quality attributes into account, we proposed a decentral-
ized architecture using multiagent systems (MASs). A MAS consists of multiple
autonomous entities that coordinate with each other to achieve decentralized con-
trol. The typical advantages attributed to such decentralized architecture are flex-
ibility and openness, the motivating quality attributes to apply MAS in this case.

The Architecture Tradeoff Analysis Method (ATAM) was used to provide in-
sights wether our architecture meets the expected flexibility and openness, and
to identify tradeoffs with other quality attributes. Applying the ATAM proved to
be a valuable experience. One of the main outcome of applying the ATAM was
the identification of a tradeoff between flexibility and communication load that
results from the use of a decentralized architecture.

This paper describes our experiences in applying the ATAM to a MAS ar-
chitecture, containing both the main outcomes of the evaluation and a critical
reflection on the ATAM itself.

1 Introduction

For two years, Distrinet [1] has been involved in a challenging R&D project (EMC2 [2])
to develop a decentralized architecture for an industrial transportation system. Our in-
dustrial partner, Egemin N.V. [3], is a Belgian manufacturer of Automatic Guided Ve-
hicles (AGVs) and control software for automating logistics services in warehouses
and manufactories using AGVs. Traditionally, one computer system (central server) is
in charge of numerous complex and time-consuming tasks such as routing, collision
avoidance, or deadlock avoidance; the AGVs themselves have little autonomy. This tra-
ditional architecture has successfully been deployed in numerous practical installations,
but the evolution of the market has put forward new requirements for AGV Transporta-
tion systems [4]. Especially in highly dynamic systems, where the situation changes
frequently, problems are experienced. A new and innovative architecture is needed that
offers additional qualities, like flexibility and openness, to cope with the highly dynamic
environments.

Taking these quality attributes into account we proposed a decentralized architecture
using multiagent systems (MASs). Typical advantages attributed to a MAS architecture
are flexibility and openness, being the motivating quality attributes to apply MAS for the

C. Hofmeister et al. (Eds.): QoSA 2006, LNCS 4214, pp. 180–198, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Applying the ATAM to an Architecture for Decentralized Control 181

AGV transportation system. A second motivation, from the research perspective, was
the opportunity to evaluate MASs and our reference architecture [5] in a real industrial
application and asses if it really fulfilled the attributed quality attributes. The Archi-
tecture Tradeoff Analysis Method (ATAM) [6,7] was used to provide insights wether
our architecture meets the expected flexibility and openness and to identify tradeoffs
with other qualities. This paper describes our experiences in applying the ATAM to the
MAS-based architecture, containing both the main outcomes in terms of tradeoffs and
what we have learned and a critical reflection on the ATAM itself.

Overview. The remainder of this paper is structured as follows. Section 2 describes
the requirements, the motivation and a short overview of the MAS architecture. Sec-
tion 3 describes the outcomes of the ATAM workshop. Section 4 reflects on the ATAM
workshop. Section 5 describes related work and we conclude in section 6.

2 Decentralized Architecture for Automatic Guided Vehicles

An AGV transportation system uses unmanned vehicles that are custom made to be
able to transport various kinds of loads, from basic or raw materials to completed prod-
ucts. Typical applications are repackaging and distributing incoming goods to various
branches, or distributing manufactured products to storage locations. An AGV uses a
battery as its energy source. AGVs can move through a warehouse guided by a laser
navigation system, or following a physical path on the factory floor that is marked by
magnets or cables that are fixed in the floor. Egemin N.V., our industrial partner for
the EMC2 project, develops and delivers such AGV transportation systems tailored to
the needs of the specific production-plant or warehouse. Thus AGV transportation sys-
tems is a product-line system that is used in several concrete products with different
functional and (possible contradicting) quality requirements.This section describes the
main functionalities, the important quality attributes, the motivation to apply a MAS
architecture and a short overview of the MAS architecture for the AGV Transportation
system.

2.1 Main Functionalities

The main functionality the system should perform is handling transports, i.e. moving
loads from one place to another. Transports are generated by client systems. Client sys-
tems are typically warehouse management systems, but can also be particular machines,
employees or service operators. In order to execute transports, the main functionalities
the system has to perform are:

– Transport assignment: transports are generated by client systems and have to be
assigned to AGVs that can execute them.

– Routing: AGVs must route efficiently through the layout of the warehouse when
executing their transports.

– Gathering traffic information: although the layout of the system is static, the best
route for the AGVs in general is dynamic, and depends on the current conditions in
the system. Gathering traffic information allows the system to adapt the routing of
the AGVs to these dynamic conditions.

182 N. Boucké et al.

– Collision avoidance: obviously, AGVs may not collide. AGVs can not cross the
same intersection at the same moment. Similar safety measures are also necessary
when AGVs pass each other on closely located paths.

– Deadlock avoidance: since AGVs are relatively constrained in their movement (they
cannot divert from their path), the system must ensure that AGVs do not find them-
selves in a deadlock situation.

When an AGV is idle it can park at a free park location; however, when the AGV runs
out of energy, it has to charge its battery at one of the charging stations.

Fig. 1. Excerpt of utility tree for AGV transportation system

2.2 Quality Requirements

Fig. 1 shows an excerpt from the utility tree to illustrate important quality attributes:
performance, openness and flexibility. The utility tree is an instrument to make quality
attributes explicit in the form of scenarios, to structure these scenarios in a hierarchical
fashion and to make the importance of each scenario explicit by putting priorities on
them. Concretely, each scenario is assigned a ranking that expresses its priority rela-
tively to the other scenarios. Prioritizing takes place in two dimensions. The first mark
(High, Medium or Low) of each tuple refers to the importance of the scenario to the suc-
cess of the system, the second to the difficulty to achieve the scenario. The tree serves
as a guidance for design and evaluation of this architecture.

In the dictionary [8] flexibility is defined as the quality of being adaptable, i.e. be-
ing able to change—or be changed—to fit changed circumstances. Flexibility enables
a software system to be adaptable with respect to variable circumstances during execu-
tion. For example, an AGV transportation system exposes flexibility if it is able to deal
with disturbances in load supplies and exploiting opportunities. Openness is defined as
the quality of being open, i.e. characterized by an attitude of ready accessibility, afford-
ing unobstructed entrance and exit. Openness enables a software system to cope with
components that come and go during execution. For example, an AGV transport system
exposes openness if this system is able to continue its work when AGVs leave or enter

Applying the ATAM to an Architecture for Decentralized Control 183

the system. Flexibility and openness are of importance because they were the motivat-
ing quality attributes to come up with a new architecture [4]. Finally, performance is of
high importance because the AGV transportation system is expected to process trans-
ports as efficiently as possible: a client wants a minimal number of vehicles to handle
the transportation task load.

2.3 Motivation for MAS Architecture

Taking into account the quality attributes of the previous section and our experience
with MAS [5,9], we proposed to use a decentralized architecture realized by a multi-
agent system (MASs).A MAS consists of a set of agents, situated in an environment,
that cooperate to solve a complex problem in a decentralized way [10,11,12]. An agent
is an autonomous entity that has local access to the environment. Agents can flexi-
bly adapt their behavior according to the changing circumstances in their vicinity. The
general idea of using a MAS architecture for the transportation system is to put more
autonomy in the AGV vehicles itself allowing for both flexibility and openness. In the
decentralized solution, the AGV vehicles and the transports become autonomous agents
that make decisions based on their current situation, and that coordinate with the other
agents to ensure the system as a whole processes the transports [4].

The motivations to start the project and apply a MAS architecture for the transporta-
tion system are twofold. Firstly, the evolution of the market put forward new require-
ments. Although the traditional centralized architecture was deployed in numerous
companies, it was less suited for other companies. This was a major motivating factor for
Egemin to apply a MAS architecture for a transportation system. Secondly, it provided
the opportunity to evaluate MASs in a real industrial application. In this way we could
obtain insights obtain insights wether our architecture meets the expected flexibility and
openness quality attributes, and we could identify tradeoffs with other quality attributes.

2.4 Short Overview of the Architecture

This section provides a short overview of the architecture. The description does not
cover the complete architecture but is meant for illustration purposes. For more details
we refer to the architectural documentation of [13, pag 69-138].

AGV
Transportation

system

System Monitor
Warehouse
Managment

External
machine

External
machine

External
machine

AGV-vehicle

Operator station

System status Transport finished

Signal Transport task
Signal Transport task
 status changes

System status
Transport finished

Transport task request
Controlling commands

Sensor dataActuator commands

Commands

Machine status

System External entity Data flow from x to yx y

AGV-vehicle

System External entity Data flow from x to yx y

AGV-vehicle

Fig. 2. Context diagram (left) and deployment view (right) of the AGV transportation system

184 N. Boucké et al.

Fig. 3. Layered uses view (left) and process view (right) of AGV control system

Context Diagram and Deployment. Fig. 2 depicts the context diagram and deploy-
ment view of the AGV Transportation System. The AGV transportation system consists
of two subsystems, Transport Base and AGV Control System. Transport bases receive
transport requests from the Warehouse Management System, and are responsible for as-
signing the transports to AGVs. For each transport, a new transport agent is created. The
transport agent is responsible for assigning the transport to an AGV and for reporting the
status of the transport to the warehouse management system. The example contains two
transport bases, each one responsible for one zone of the layout. AGV control system
is responsible for ensuring that the AGV completes the assigned transport. Each AGV
machine is equipped with low-level control software, called Vehicle Control, that takes
high level commands from the AGV control system like move, pick, drop, . . . The vehi-
cle control system handles the physical interaction with the environment such as staying
on track, turning, or determining the current position. The transport bases are deployed
on stationary hosts, while the AGV control systems are deployed on the mobile AGV
machines. The communication infrastructure provides a wired network that connects
the warehouse management system with the transport bases and a wireless network that
enables communication between mobile AGVs and with the transport bases. Debugging
and monitoring the system is possible trough the System Monitor and the Operator Sta-
tion. The External Machines represent possible machines the AGV Transportation has
to interact with.

The AGV Control System. Now we zoom in on the internals of the AGV control sys-
tem. The left side of Fig. 3 depicts the module view of AGV control system. The layers
architectural pattern is used to manage complexity. The AGV Agent is responsible for
executing transports and controlling the AGV. The Local Virtual Environment offers

Applying the ATAM to an Architecture for Decentralized Control 185

Fig. 4. Behavioral description of AGV agent (left) and transport agent (right) in the transport
assignment protocol

a medium that agents can use to exchange information and coordinate their behavior.
The local virtual environment handles distribution and locality, using the support of-
fered by the ObjectPlaces middleware [9,14]. Besides a medium for coordination, the
virtual environment also serves as a suitable abstraction that shields the AGV agents
from low level issues, such as translating the commands for the Vehicle Control. The
ObjectPlaces Middleware supports abstractions for protocol based coordination in a
distributed system. The right side of Fig. 3 illustrates the processes, data repositories
and interaction needed for moving around. First, the AGV agent projects a hull in the
virtual environment. Such a hull demarcates the physical area the AGV will occupy dur-
ing the movement. In case of conflicts, the local virtual environment executes a mutual
exclusion protocol to decide which AGV can move on. The AGV agent perceives the
virtual environment and only invokes the move command after it gets the permission to
move on. For more information we refer to [4].

Transport Assignment. Now we zoom in on how transports are assigned to AGVs and
explain the basics of the protocol. Transport assignment is done by a dynamic Contract
Net (CNET) protocol [15], with multiple transport agents negotiating with multiple
AGV-agents (many-to-many). A CNET protocol uses a market mechanism to assign
tasks to agents. As soon as a new task enters the system, the transport agent announces
that a new task is available. An available AGV-agent can bid on the task. The bid is
dependent on the distance between the AGV and the task. After a fixed period of time,
the transport agent chooses the best AGV-agent and the task is assigned to this agent.

The dynamic CNET protocol extends this protocol by delaying definitive assignment
of the task until the AGV effectively picks up the load. Delaying definitive assignment
is needed because many things can happen while the AGV moves towards the pick-
up location of a transport. New tasks that are better suited for this AGV can show
up, e.g. being much closer or more urgent; AGVs can become unavailable, because

186 N. Boucké et al.

of a failure or because they have to go in maintenance; an AGV better suited for the
task, e.g. an AGV closer to the pick-up location becomes available [16]. The dynamic
CNET protocol allows agents to regularly reconsider the situation in the environment
and adapt the assignment if opportunities arise. Figure 4 depicts a description of the
protocol behavior. As soon as a transport enters the system the transport agent will go
to state Awarding and send publish messages. Free AGVs are in the Voting state
and will answer with a bid. After some time, the transport agent will select a winner,
send a win message and go into the Assigned state. The winning AGV will go the
Intentional state and start driving to the pick location. Both the transport and AGV
agent can still decide to switch the transport (the Switch state). It is only when the
Execute state is reached, when the AGV picks up the load, that the protocol is ended.
For more details we refer to [13, pag. 108-112].

3 Applying the ATAM

The Architectural Tradeoff Analysis Method (ATAM [6,7]) was used to evaluate if the
system meets the expected performance, flexibility and openness quality attributes and
to identify possible tradeoffs. The ATAM is a workshop that involves all important
stakeholders. The workshop has two cornerstones: (1) make explicit and prioritize qual-
ity requirements for the system and identify tradeoffs between the quality attributes; (2)
identify and make architecture approaches explicit and identify possible alternatives.
Evaluating the architecture for large projects early in the development process is needed
because the architecture represents an enormous risk in a development project. Making
bad architectural decisions may substantially slow down the project and even lead to
failure. Additionally, if some problems are identified, it is easier and cheaper to change
the architecture in early stages of the development process.

In this section we describe our motivation to apply the ATAM, the context and the
approach followed for the ATAM and the main outcomes from the workshop.

3.1 Motivations to Apply the ATAM

The decisions to apply the ATAM was taken in a the stage of the project where the
software architecture started to take shape. There was an agreement amongst the stake-
holders that a reflection about the software architecture was needed before investing
much effort in the implementation. We selected the ATAM to reflect on the architec-
ture because the method is well documented and has already proven its value in other
studies [6].

The motivation for stakeholders to suggest a reflection about the architecture were
threefold. Firstly, there are several quality attributes attributed to a MAS architecture,
but MAS technology is relatively new and has not yet entered mainstream commercial
organizations. The EMC2 project, in which this evaluation took place, was started to test
the feasibility of MAS architectures for the AGV transportation system and to evaluate
if MAS effectively offers the attributed quality attributes. Reflecting early about the ar-
chitecture was essential and the ATAM provided a first step of this evaluation. Secondly,
the ATAM provides a way to explicitly tradeoff the new quality attributes of flexibility

Applying the ATAM to an Architecture for Decentralized Control 187

and openness against other (possibly better known) qualities of the AGV transportation
system. In general, quality attributes can never be achieved in isolation, improving one
quality attribute affects others (positively or negatively). Although tradeoffs were some-
what considered during the design of the architecture, the ATAM provides an explicit
and structured approach with input from all stakeholders to investigate these tradeoffs.
Finally, the ATAM provided an opportunity to finalize the architectural documentation
and to wrap-up a phase of discussing the quality attributes and essential architectural
choices. Because architectural approaches and quality attributes are made explicit, pre-
sented and discussed together with the important stakeholders, an agreement is reached
between all stakeholders. The bundled results of the ATAM paves the way to start build-
ing the software system.

3.2 Context and Method

This was our first experience with the ATAM itself, none of us had previous hand-on
experience with the method. Additionally, our industrial partner has limited experience
with software architecture in general. Due to a lack of experience with ATAM we de-
cided to operate in two phases. At first, we did an intensive preparation phase with one
evaluator and four important stakeholders. Secondly, we organized a single day ATAM
workshop with the complete group of stakeholders. The initiative to perform an ATAM
came in a stage of the project where the basic structure of architecture became clear and
an early prototype with the basic functionality was available.

We decided to evaluate the architecture for one concrete product, namely a tobacco
warehouse. In this application, bins with tobacco are stored into a warehouse and 12
AGVs bring the full and empty bins from the warehouse to different tobacco-processing
machines. The warehouse measuring 75 by 55 meters and has an average of 112 trans-
ports per hour. An 11 Mbits wireless Ethernet is available for communication with
the mobile vehicles, but the network is also used by the warehouse management sys-
tem. The warehouse itself is split into different zones according to the type oftobacco-
processing machines. The machines can be put in normal-capacity mode or high-capacity
mode. When the machines are in normal-capacity mode the AGVs should be spread
evenly over the different zones and they should stay in that particular zone. When the
machines in a zone are put in high-capacity mode, the supply of tobacco to these ma-
chines gets absolute priority and AGVs can leave a normal capacity-zone to maximize
the speed of provisioning in the high-capacity zone. Additionally, there arise lots of
opportunities. Examples are better suited AGVs becoming available or new task who
are on the way of available AGVs (as explained in the section on the dynamic CNET
protocol 2.4). Due to the flexibility in behavior needed with these mode switches, the
tobacco warehouse lends itself perfectly for the ATAM workshop.

Specification of Requirements Before the ATAM. The functional requirements were
discussed and made explicit using scenario’s during several kick-off meetings of the
project. Obviously, the exact functional requirements and the scenario’s evolved over
time as our understanding of the system increased.

On the contrary, the quality attributes were handled in a less structured fashion. It
was clear from the start that flexibility and openness were the motivating factors to

188 N. Boucké et al.

Step Start Activity

1 9:00 Introduction on ATAM and program
2 10:00 Present business driver

10:45 Break
3 11:00 Present architecture
4 12:00 Identify architectural approaches

12:30 Lunch
5 13:45 Generate Utility tree
6 14:45 Generate Utility tree

15:45 Break
7 16:00 Analysis of architectural approaches
8 17:00 Closing

Fig. 5. Program of ATAM workshop

come up with a new and innovative architecture, but these qualities were only specified
at a high level. Additionally, various architectural decisions that involved a tradeoff
between quality attributes were made on an ad-hoc basis.

Preparation. According to the template in [6, pag 71], the first steps during the prepa-
ration are establishing the partnership and preparing the necessary material for holding
the ATAM workshop itself. Next to the usual preparation we performed two main ac-
tivities. Firstly, as our understanding of software architecture and quality attributes in-
creased, we realized that structuring and concretizing the quality attributes is essential.
It was only then that we produced a first version of the concrete quality attribute sce-
nario’s and the utility tree (as described in 2.2). Apart from learning and reading about
the utility tree, it took at least four full days of discussion with four stakeholders and
one evaluator to build up a decent utility tree. This tree was used as input for the discus-
sion about quality attributes on the ATAM workshop itself. The end result can be found
in [13, pag 140-143]. Secondly, the architectural documentation of the system was not
well structured and some views were only documented partially or were lacking. This
was the case for the process view where several documents were missing and the de-
ployment view that was lacking. During the preparation of the ATAM the architectural
team worked hard to complete the architectural documentation following the guidelines
and examples of Clements et al. [17].

The ATAM Workshop. The ATAM itself was conducted by a team of three evaluators
and nine stakeholders. Fig. 5 describes the program of our ATAM workshop. Origi-
nally, we planned to start the discussions on analysis of scenarios at 14:45 (based on
the schedule of [6, pag 79]), but the discussion on the utility tree brought up important
issues that required additional discussion. The main artifacts produced on the workshop
are the utility tree, the architectural approaches and an analysis of the architectural ap-
proaches with respect to the quality attributes. All presentations and artifacts produced
in the context of the ATAM are bundled in a technical report [13].

Afterwards. Next to the typical activities of finishing up documents and updating doc-
umentation we performed two main activities. Firstly, we performed a second round of
analysis of the architectural approaches with a team of four main stakeholders and one

Applying the ATAM to an Architecture for Decentralized Control 189

evaluator to structure the results and to ensure that all risk and sensitivity points were
covered. Secondly, we performed a detailed analysis of several risks by consulting ex-
perts, running tests and we developed an additional prototype to perform a number of
tests. The tests are described in the next section.

3.3 Main Outcomes

Applying the ATAM proved to be a valuable experience since it exposed several trade-
offs and points of improvement. In this section we provide several examples of problems
that have been identified and how we have dealt with them.

Tradeoff Flexibility Against Communication Load. One of the main outcomes of
applying the ATAM was the identification of the tradeoff between flexibility and the
communication load, inherent in using decentralized control. In the AGV transporta-
tion system, there are several functional requirements that require more communication
in a decentralized architecture (compared with the centralized architecture). Examples
are transport assignment, deadlock avoidance, flexible routing and collision avoidance.
In this section we focus on the tradeoff between flexible transport assignment (qual-
ity attribute scenario 3) and communication load (quality attribute scenario 5) as an
example.

Fig. 6 contains an overview of our analysis of architectural decisions, both from the
perspective of flexible transport assignment (left table) and the perspective of commu-
nication load (right table). We only included the architectural decisions relevant for the
tradeoff between flexibility and communication load. As can be seen, the tradeoff is
identified in several design decisions. The tradeoffs T1, T2, T3 represent manifesta-
tions of flexibility versus required bandwidth in different circumstances. The nonrisk
NR2 is about limiting the communication load and the risk R2 is about the risk in-
volved in having to much communication. The sensitivity point S3 is about using .NET
remoting with unicast communication or using multicast as underlying implementation
framework.

The tradeoff between flexibility and communication was not completely new for the
architectural team, they had always realized that the decentralized approach needed
more communication. However, on the ATAM workshop the assembled stakeholders
(including several experienced developers of previous AGV transportation systems) put
this tradeoff forward as a crucial factor for the applicability –and the success– of the de-
centralized approach. The ATAM provided the perfect opportunity to unravel the trade-
off in a structured way and to uncover the essential architectural decisions. The analysis
of architectural approaches (step 7) revealed several architectural decisions that never
really had been made. For example, the discussions revealed the choice for unicast in
the middleware (AD8) producing some overhead. The influence of unicast, multicast
and broadcast on the communication bandwidth is currently being investigated. As a
second example, the discussion about AD7 revealed that the choice for a dynamic Con-
tract Net (based on [15,10], described in section 2.4) protocol has a significant impact
on the amount of communication in the system. Especially, how fast the protocol needs
to reconsider the situation in the environment was an important choice that had not been
made. The result of the ATAM regarding the tradeoff was that we gained better insight

190 N. Boucké et al.

Scenario: As long as a transport has not been picked, the
system dynamically changes that transports assignment to
the most suitable AGV

Decisions Sensitivity Tradeoff Risk Nonrisk

AD1 Negotiating
agents

T1 NR1

AD2 Locality S1 NR2
AD3 Separation of
coordination and
decisions making

NR3

AD4 Dynamic
Transport Assign-
ment

R1

Scenario: The amount of communication, with maximal 12
AGVs and a maximal load of 140 transports per hour, does
not exceed 60% of the bandwidth of the 11Mbps communi-
cation channel.

Decisions Sensitivity Tradeoff Risk Nonrisk

AD5 Use .Net re-
moting

S2 NR4

AD6 Agents located
on AGVs

T2 R2

AD7 Dynamic
transport assign-
ment

T3

AD8 Unicast com-
munication in Mid-
dleware

S3

AD1 An agent is associated with each AGV and each transport in the system. To assign
transports, multiple AGV agents negotiate with multiple transport agents (many-to-
many protocol). Agent continuously reconsider the (possible changing) situation to
improve transport assignment, until the load is picked. The negotiating agents ap-
proach for transport assignment was noted as non-risk NR1 from the perspective of
flexibility. The continuous reconsideration of transport assignments implies a signifi-
cant cost of communication. Flexibility versus required bandwidth was registered as
tradeoff T1.

AD2 For their decision making, agents only take local information (from themselves and
other agents in the neighborhood) into account. Using only local information and only
exchange information with other local agents limits the amount of communication
needed and was registered as non-risk NR2. The most suitable range varies per type
and information and may even vary over time e.g. the number of candidate transports,
vehicles to avoid collisions. The determination of this range for various functionalities
is a sensitivity point, denoted as S1.

AD6 Each AGV machine is controlled by an agent that is physically deployed on the ma-
chine. This decentralized approach induces a risk with respect to the required band-
width for inter-agent communication, recorded as risk R2. Decentralization of control
implies a tradeoff between communication cost on the one hand, and flexibility and
openness on the other hand, noted as T2.

AD7 The dynamic CNET protocol for transport assignment (as described in 2.4) enables
flexible assignment of transports among AGVs. Yet, the continuous reconsideration
of the transport assignment implies an additional communication cost. This tradeoff
was denoted as T3 (see also T1).

AD8 The middleware uses unicast communication because this is supported by .NET re-
moting. However, some messages have to be transmitted to several agents, causing
overhead. This potential problem was registered as sensitivity point S3.

Fig. 6. Analysis of architectural decisions from perspective of flexibility (left) and communication
load (right)

in the main difficulties, agreed to further investigate the communication load and put
forward a concrete testing plan.

Post ATAM Tests on Communication Load. The test on the communication load
were performed in two ways. Firstly, we investigated to vary the period between recon-
siderations for the transport assignment protocol. Obviously, this period strongly affects

Applying the ATAM to an Architecture for Decentralized Control 191

 0

 10000

 20000

 30000

 40000

 50000

 20 40 60 80 100 120 140 160 180 200

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

Period between broadcasts (in timesteps)

Field-Based
CNET

 50

 55

 60

 65

 70

 75

 80

 85

 90

 20 40 60 80 100 120 140 160 180 200

%
 C

om
pl

et
ed

Period between broadcasts (in timesteps)

Field-Based
CNET

Fig. 7. Test results of varying the reconsideration period (Field-based is with reconsideration,
CNET is without reconsideration)

the amount of messages being sent. Making the period too short produces a huge num-
ber of useless messages, but each agent in the system has up-to-date information. On
the other hand, if the period is too long, AGVs may have outdated information and
probably miss some opportunities. The tests are performed in an in-house developed
simulator and are published in [18].

Figure 7 summarizes the most important results. The left figure shows the expected
decrease in number of messages sent if the period between two broadcasts increases.
BR20 corresponds to reconsidering the situation each 20 time steps. With a reconsider-
ation rate of each 200 time steps (BP200, i.e. every 10 s) the number of messages sent
with the dynamic protocol is 1.7 times higher then a protocol without reconsideration.
The right-hand side of fig. 7 depicts the percentage of transports handled as a function of
the reconsideration rate. It can be seen that the percentage of completed tasks fluctuates
around 81,5% and slowly decreases, the difference between BR20 and BR200 is only
1% but still significantly better then the protocol without reconsideration. The results
show that the communication load of a dynamic protocol can drastically be reduced
by lengthening the period between reconsiderations without losing the advantages of a
flexible protocol.

Secondly, we performed a stress test to measure the bandwidth usage of a the pro-
totype implementation of the AGV transportation system on a real factory layout using
a 11Mbps IEEE 802.11 wireless network. Fig. 6 shows the bandwidth usage relative
to the bandwidth, divided into four tests. The first test has three AGVs, of which two
were artificially put in deadlock (a situation which is avoided under normal operation,
this situation is created by manually positioning the AGVs), because then the collision
avoidance protocol is continually restarted, and never succeeds. The second test has 3
AGVs driving around freely. The third test has five AGVs driving around freely. The
fourth tests has five AGVs, all artificially in deadlock. During the time in between test
runs, AGVs were repositioned manually (thus the system is suspended in the time in
between the tests). All the tests are worst case tests (with deadlock) that we artificially
created but that are prevented during normal operation.
The general conclusions after the tests was that the decentralized approach seemed fea-
sible for 12 AGV with a 11Mbps IEEE 802.11 wireless network. The tests showed that
the communication load for five AGVs under normal operation (e.g. the time between

192 N. Boucké et al.

Fig. 8. Results of stress tests on bandwidth usage (in %)

154 and 168 min) is very low and obviously within the bounds of the available band-
width. Looking to the stress tests, the communication load is a factor higher but still
within the bounds. But there is a significant increase in communication load between
the tests with three and five AGVs.

Architecture Constraints the Implementation. A second interesting issue that came
up during the ATAM was that the implementation was not always conform with the ar-
chitecture. Non conformance was identified in two phases of the evaluation. Firstly,
while building up the architectural documentation in preparation of the ATAM and
while discussing this with the developers of the prototype system. Secondly, during
the discussion after the architect presented the architectural approaches on the ATAM
workshop itself.

For example, consider Fig. 3 containing a view describing the layers and the usage
relations between layers of the internal AGV control system (left) and a view describing
the processes (mapped on the layers) and the interaction between these processes. Dur-
ing the discussion the issue came up that the developers accessed a repository in AGV
agent layer from a process that was in the Local Virtual Environment layer, instead of
using the appropriate interface. This breaks the encapsulation of layers and the imple-
mentation had to be changed. The reverse also happened. During an early prototype,
the developers proposed a simplification of the architecture, making some processes
and repositories obsolete. In this case the architectural documentation was adapted to
reflect this change. From this and other discussions we learned that the architecture
constraints the implementation and that it is very important to closely work together
with the development team.

Improving the Architecture. Finally, the ATAM exposed several opportunities to im-
prove the architecture. Two examples are provided.

Applying the ATAM to an Architecture for Decentralized Control 193

A first example is an issue raised by a developer of the original centralized system.
The AGV transportation system is built on top of a library that supports logging, persis-
tence, security, etc. This library is also used in other projects and evolved since the start
of the project (which still used an old version of the library). The architecture had to be
adapted to better align with the library, so that the library can evolve without changing
the AGV transportation system.

A second example is the use of a Free-flow tree [19,20,21] as decisions infrastructure
inside the AGV agent. Free-flow trees are a proven technique to control mobile robots
in highly dynamic circumstances where the robot must perform several activities in
parallel. But the activities in the AGV transportation system are rather sequential (look
for a task → drive to the task → perform the task → ...). Additionally, a free-flow tree
is not so easy to extend or change which is essential in the AGV transportation system
with often changing requirements.

4 Reflection on the ATAM Workshop

Although the ATAM itself was not worked out in full detail, the ATAM workshop was a
valuable experience. It was the first time that there was such an in-depth discussion with
a complete group of stakeholders. Everybody agreed that their insight had improved on:
(1) the importance of software architecture in software engineering; (2) the importance
of business drivers for architectural design; (3) the importance of making explicit and
prioritize quality attributes with the stakeholders; (4) the strengths and weaknesses of
the architecture and architectural approaches. Especially, we improved our understand-
ing of the quality attributes and the other stakeholders improved their understanding of
the fundamental architecture of the system and the important design decisions. Finally,
we gained better insight into the tradeoffs associated with the flexibility and openness
quality attributes, which is the most valuable outcome of this ATAM-workshop.

Some critical notes are:

– A thorough and complete evaluation with the ATAM of a realistic industrial appli-
cation is not manageable in a single day. It would indeed be better, as suggested in
the ATAM documentation, to organize a three day workshop.

– The utility tree proved to be the most important instrument in the ATAM. Sev-
eral in-depth discussions have contributed to a better understanding of the required
qualities and the importance of tradeoff between different quality attributes. But
coming up with a utility tree proved to be difficult, time consuming, and at times
tedious. A lack of experience and clear guidelines of how to build up such a tree
hindered and slowed down the discussion. Good preparation of the tree and a good
chairman to manage the discussion are essential. A suggestion, brought to us on the
latest SATURN workshop1, was to prevent brainstorming to come up with appro-
priate scenario’s. Instead, every stakeholder should prepare two or three scenarios
in advance. These scenarios serve as a good starting point for building up the utility
tree, and speed up and improve the discussions.

– During discussions on the utility tree, there was a tendency by the architects to
introduce quality attributes to motivate certain architectural decisions. This is of

1 http://www.sei.cmu.edu/architecture/saturn/

194 N. Boucké et al.

course the reverse of what should happen: quality attributes influence the archi-
tecture and not the other way around. Similar problems were identified for the
ALMA [22] evaluation method. The ATAM partially supports resolving such is-
sues by obligating the stakeholders to prioritize the scenarios, thus filtering out less
important scenarios. Still, the evaluation team must be watchful for artificially in-
troduced scenarios and encourage everyone to think what the client really needs.

– During the discussions there was a tension between the AGV transport system ar-
chitecture developed for several automation projects (the product-line architecture)
and the fact we evaluated it within a single project (the product architecture). We
decided to evaluate the architecture for a concrete product for three reasons. Firstly,
Egemin installed dozens of systems, each of them tailored to the specific needs
of the client. The installed products both differ in functionality, required quality
attributes and can largely differ in size and complexity. Early in the preparation
phase it became clear that the differences in requirements largely hindered the dis-
cussions. Often, stakeholders came up with contradicting requirements of different
clients. Especially the variation in relative importance of qualities with respect to
each other posed a problem. Secondly, the evolution of the market has put forward
new requirements for AGV Transportation systems. Especially in highly dynamic
systems, where the situation changes frequently, problems are experienced. This are
the target systems for our architecture and we only wanted to focus on these type of
requirements. Finally, the fact that the AGV Transportation system is a product-line
system introduces specific qualities by itself. For example, the product-line archi-
tecture must be tailorable to specific needs of clients in different products. But the
ATAM is made to evaluate a single architecture and not a product-line architecture.

To improve the discussions, the main stakeholders selected a single product (a
tobacco warehouse). The tobacco warehouse was the best fit to the criteria that
the product needed to be a highly dynamic system (the main reason to introduce
the decentralized architecture) and represents the typical size and complexity of
systems installed by Egemin. The choice for the single product and the reason to
work with this single product where clearly communicated to all stakeholders of
the ATAM. After this choice the discussions improved and became more focussed.
Still, the tensions between product-line architecture and the concrete product archi-
tecture sometimes hindered the discussions. At the time of finishing this paper an
extension of the ATAM to handle such a product line architecture has been pub-
lished [23].

– A final remark is that there is a lack of good tool support to document software
architectures. Currently, drawing architectural diagrams and building up the archi-
tectural documentation incurs much overhead. Especially changing the documenta-
tion and keeping everything up-to-date (e.g. cross references and relations between
different parts of the documentation) turned out to be hard and time consuming.
Good tool support would be helpful.

5 Related Work

Architecture in MAS. Initially, architecture in MAS was associated with the internal
agent architecture. There exist large number of internal architectures, some examples

Applying the ATAM to an Architecture for Decentralized Control 195

are Belief Desire Intention (BDI), the subsumption architecture [24] and the free-flow
tree [20]. Later on, the focus of architectural development shifted to social structures in
MAS. Several methodologies specifically tailored to develop software offer support for
such social structures, e.g. the organizational metaphor of Gaia methodology [25] and
the society and environment model of the SODA methodology [26]. Finally, there are
some approaches that take an architectural-centric approach to software development,
using the classical notion of software architecture. PROSA [27] offers a reference ar-
chitecture for coordination in manufacturing control. [28] proposes an aspect-oriented
approach to develop MAS architectures, stressing the importance of separation of con-
cerns. Our work differs from previous work on software architecture because it is qual-
ity attribute driven. The existing architectural approaches mainly focus on the system
functionality but do not reason explicitly about qualities.

Shehory [29] considers MAS from the perspective of architectural styles and reasons
about the qualities that are typically attributed to the MAS styles. The author explicitly
recognizes flexibility and openness as important qualities for MAS architectural styles.
Our work in this paper extends this with architectural evaluation to asses wether the
architecture effectively fulfills the expected qualities.

Decentralization. Decentralized control of automated warehouse transportation sys-
tems is an active area of research [4]. [30] also discusses a behavior based architecture
for decentralized control of AGV vehicles and [31] discusses a decentralized cognitive
planning approach for collision-free movement of vehicles. Ong [32] gives an exten-
sive overview of decentralized agent based manufacturing control and compares the
pros and cons of centralized versus decentralized control. According to Ong, the advan-
tages of decentralized control are that processing power is used more economically and
that it is more reliable. The disadvantages are that performance may be affected by the
speed of communication links, that there is a tradeoff between reactivity of the system
to disturbances and performance and that suboptimal decisions may be made due to the
lack of global information.

Experiences with Architectural Evaluation for MAS. Woods et al. [33] specifically
describes experiences with an ATAM for collaborative agent-based systems. The quality
attributes identified in the report are performance predictability, security against data
corruption and spoofing, adaptability to changes in the environment (protocols, message
formats, new types of agents) and availability and fault tolerance and are specifically
aimed at applications of MAS technology for the internet or network infrastructures.

Architectural Evaluation. A good overview of other architectural evaluation methods
can be found in [34,35]. Several of these architectural methods are aimed at a spe-
cific quality attributes (e.g. SAAM, ALMA, . . .) and do not support evaluation with
new type of quality attributes. Other architectural evaluation methods are primarily per-
formed by the design team only, e.g. ARID, SBAR, For us, the ATAM workshop
provided a good opportunity because of the explicit treatment of tradeoffs between dif-
ferent qualities and architectural approaches and the involvement of all stakeholders.
Additionally, it aligned perfectly with our architectural documentation who was based
on [36,17].

196 N. Boucké et al.

6 Conclusions

In this paper, we reported our experiences with applying the ATAM to a MAS architecture
for an AGV transportation system. The main quality requirements in this application are
flexibility, openness and performance. The report contains both the main outcomes of
the architecture evaluation and a critical reflection on our experiences with the ATAM
itself. One important insight we derived from evaluating the architecture is the tradeoff
between flexibility and communication load in the decentralized architecture.

The ATAM workshop was a very valuable experience. We summarize three impor-
tant lessons learned. First, we learned that assessing the qualities of the system can be
done directly on the software architecture, early in the development process without
the need for a complete implementation. A second important lesson we learned is that
structuring and concretizing the quality attributes is essential when building complex
large scale systems. Third, we learned that there is a strong connection between MAS
and software architecture. Applying the ATAM deepened our understanding of this
relationship.

Egemin plans to apply the first results of the project in one of the systems that is
currently in the startup phase. In particular, Egemin experiences the need for improved
flexibility in this application and plans to apply the order assignment approach applied
in the MAS architecture. The highly dynamic nature of this application urges for im-
proved flexibility and that is one of the qualities where the MAS architecture can make
the difference.

Acknowledgement

The EMC2 project and Nelis Boucké are supported by the Institute for the Promotion
of Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

References

1. Distrinet: Distrinet research group website. (www.cs.kuleuven.ac.be/cwis/
research/distrinet/)

2. Egemin, DistriNet: Emc2: Egemin modular controls concept. (IWT-funded project with
Distrinet and Egemin. http://emc2.egemin.com)

3. Egemin: Egemin website. (www.egemin.com)
4. Weyns, D., Schelfthout, K., Holvoet, T., Lefever, T.: Decentralized control of E’GV trans-

portation systems. In: International Conference on Autonomous Agents and Multi-Agent
Systems, Industry Track. (2005) 25–29

5. Weyns, D., Holvoet, T.: A reference architecture for situated multiagent systems. In: 3rd
International Workshop on Environments for Multiagent Systems, E4MAS06. (2006)

6. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and Case
Studies. Addison Wesley Publishing Comp. (2002)

7. Kazman, R., Klein, M., Clements, P.: Atam: Method for architecture evaluation. Technical
Report CMU/SEI-2000-TR-004, SEI, Carnegie Mellon University (2000)

8. WordNet 2.1., Princeton University Cognitive Science Library. (http://wordnet.princeton.
edu/)

www.egemin.com

Applying the ATAM to an Architecture for Decentralized Control 197

9. Schelfthout, K., Weyns, D., Holvoet, T.: Middleware for protocol-based coordination in
dynamic networks. In: MPAC ’05: Proceedings of the 3rd international workshop on Mid-
dleware for pervasive and ad-hoc computing, New York, NY, USA, ACM Press (2005) 1–8

10. Wooldridge, M.: An introduction to Multiagent Systems. John Wiley & Sons, LTD (2002)
11. Ferber, J.: Multi-agent Systems, An Introduction to Distributed AI. Addison-Wesley (1999)
12. Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T., Ferber, J.: Environments for multia-

gent systems: State-of-the-art and research challenges. In: Revised papers of the E4MAS
workshop at AAMAS’04. Volume LNCS 3374. (2005)

13. Boucké, N., Holvoet, T., Lefever, T., Sempels, R., Schelfthout, K., Weyns, D., Wielemans, J.:
Applying the Architecture Tradeoff Analysis Method (ATAM) to an industrial multi-agent
system application. Technical Report CW431, Departement of Computer Sience, KULeuven
(2005)

14. Schelfthout, K., Holvoet, T.: Coordination middleware for decentralized applications in dy-
namic networks. In: DSM ’05: Proceedings of the 2nd international doctoral symposium on
Middleware, New York, NY, USA, ACM Press (2005) 1–5

15. Smith, R.G.: The contract net protocol: high-level communication and control in a distributed
problem solver. Distributed Artificial Intelligence (1988) 357–366

16. Boucké, N., Weyns, D., Holvoet, T., Mertens, K.: Decentralized allocation of tasks with
delayed commencement. In Chiara, G., Ciorgini, P., van der Hoek, W., eds.: EUMAS0́4
Proceedings. (2004) 57–68

17. Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.:
Documenting Software Architectures, Views and Beyond. Addison Wesley (2003)

18. Weyns, D., Boucké, N., Holvoet, T.: Gradient field based task assignment in an agv trans-
portation system. In: International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS). (2006)

19. Rosenblatt, J.K., Payton, D.W.: A fine-grained alternative to the subsumption architecture
for mobile robot control. In: In Proceedings of the IEEE International Conference on Neural
Networks. Volume 2. (1989) 317–324

20. Tyrrell, T.: Computational Mechanisms for Action Selection. PhD thesis, University of
Edinburgh. Centre for Cognitive Science (1993)

21. Weyns, D., Steegmans, E., Holvoet, T.: Protocol based communication for situated multi-
agent systems. In: In Proceeding of the Third International Joint Conference on Autonomous
Agents and Multi-Agent Systems, AAMAS’04, ACM Press, New York (2004) 118–126

22. Lassing, N., Bengtsson, P., van Vliet, H., Bosch, J.: Experiences with ALMA: Architecture-
level modifiability analysis. Journal of Systems and Software 61(1) (2002) 47–57

23. Olumofin, F.G., Misic, V.B.: Extending the ATAM architecture evaluation to product line
architectures. In: IEEE/IFIP Working Conference on Software Architecture, WICSA. (2005)

24. Brooks, R.: Intelligence without representation. Artificial Intelligence 47 (1991) 139–159
25. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: the gaia

methodology. ACM Transactions on Software Engineering and Methodology 12(3) (2003)
26. Omicini, A.: Soda: Societies and infrastructures in the analysis and design of agent-based

systems. Lecture Notes in Computer Science 1957 (2001)
27. Brussel, H.V., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference architecture

for holonic manufacturing systems: Prosa. Computers in Industry 37 (1998)
28. Garcia, A., Kulesza, U., Lucena, C.: Aspectizing multi-agent systems: From architecture

to implementation. Software Engineering for Multi-Agent Systems III LNCS 3390 (2004)
121–143

29. Shehory, O.: Architectural properties of multiagent systems. Technical Report CMU-RI-TR-
98-28, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (1998)

30. Berman, S., Edan, Y., Jamshidi, M.: Decentralized autonomous agvs in material handling.
Transactions on Robotics and Automation 19(4) (2003)

198 N. Boucké et al.

31. Pallottino, L., Scordio, V.G., Frazzoli, E., Bicchi, A.: Decentralized cooperative con ict res-
olution for multiple nonholonomic vehicles. In: AIAA Conference on Guidance, Navigation
and Control. (2005)

32. Ong, L.: An investigation of an agent-based scheduling in decentralised manufacturing con-
trol. PhD thesis, University of Cambridge (2003)

33. Woods, S.G., Barbacci, M.: Architectural evaluation of collaborative agent-based systems.
Technical Report CMU/SEI-99-TR-025, CMU/SEI (1999)

34. Dobrica, L., Niemela, E.: A survey on software architecture analysis methods. IEEE Trans-
actions on Software Engineering 28(7) (2002)

35. Babar, M.A., Zhu, L., Jeffery, R.: A framework for classifying and comparing software ar-
chitecture evaluation methods. In: Proceedings Australian Software Engineering Conference
(ASWEC). (2004)

36. Bass, L., Clements, P., Kazman, R.: Software Architectures in Practice (Second Edition).
Addison-Wesley (2003)

	Introduction
	Decentralized Architecture for Automatic Guided Vehicles
	Main Functionalities
	Quality Requirements
	Motivation for MAS Architecture
	Short Overview of the Architecture

	Applying the ATAM
	Motivations to Apply the ATAM
	Context and Method
	Main Outcomes

	Reflection on the ATAM Workshop
	Related Work
	Conclusions

