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APPLYING THE LAWS OF LOGIC TO THE
LOGIC OF LAW

Hillel Bavli*

INTRODUCTION

Consistency is a necessary condition of a just legal system, with-
out which arbitrariness, unequal treatment, unpredictability, and,
ultimately, injustice must result. "The truth," remarked Justice
Holmes, "is that the law is always approaching, and never reaching,
consistency."' But beyond meager intuition, or bare observation,
is it possible to rigorously examine internal logical consistency2 -
mutual compatibility among legal deductions-in the rule of law? 3

Kurt G6del, in a 1931 publication of a German scientific periodi-
cal, disproved the then-common assumption that each area of
mathematics can be sufficiently axiomatized as to enable the devel-
opment of an "endless totality of true propositions" about a given
area of inquiry.4 Specifically, he proved that any formal logical sys-
tem (a concept that I shall more clearly explain below) that entails
sufficient means as to support elementary arithmetic5 is necessarily
subject to the inherent characteristic of incompleteness: arithmeti-
cal propositions which can be neither proved nor disproved within
the system.6 Impliedly, every such system necessarily inheres ei-
ther incompleteness or inconsistency. Further, GOdel proved the
impossibility of establishing "internal logical consistency of a very
large class of deductive systems.., unless one adopts principles of

* J.D. candidate, 2006, Fordham University School of Law. Special thanks to
my family and friends, and particularly to my parents and grandparents, for their sup-
port, and to Professors John Pfaff, Christian Turner, and Dominic Balestra for their
helpful comments.

1. Mark R. Brown & Andrew C. Greenberg, On Formally Undecidable Proposi-
tions of Law: Legal Indeterminacy and the Implications of Metamathematics, 43 HAs-
TINGS L.J. 1439, 1450 (1992) (quoting 0. W. HOLMES, JR., THE COMMON LAW 36
(1881)).

2. Compare external consistency, which relates deductions to truth external to
the relevant system. See DOUGLAS R. HOFSTADTER, GODEL, ESCHER, BACH: AN
ETERNAL GOLDEN BRAID 94-95 (1999).

3. See ERNEST NAGEL & JAMES R. NEWMAN, GODEL'S PROOF 13 (Douglas R.
Hofstadter ed., rev. ed. 2002); HOFSTADTER, supra note 2, at 94-100.

4. NAGEL & NEWMAN, supra note 3, at 4.
5. Arithmetic concerns the relations between whole numbers. KURT GODEL, ON

FORMALLY UNDECIDABLE PROPOSITIONS OF PRINCIPIA MATHEMATICA AND RE-
LATED SYSTEMS 1 (Dover ed. 1992).

6. Id. at 1, 57.
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reasoning so complex that their internal consistency is as open to
doubt as that of the systems themselves."7

If applicable to law (a significant contingency indeed), Gbdel's
proof indicates unavoidable judicial susceptibility to inconsistency,
since abstinence from adjudication of formally undecidable cases is
impractical. Thus, application of G6del's Incompleteness Theorem
to the legal context would establish a priori limitations on the ca-
pacity for consistency to exist within the law, as well as on the
faculty to establish internal logical consistency within the law.

Perhaps more importantly, the law itself manifests plausible limi-
tations on its capacity to realize formal consistency, or to be ex-
amined with respect to its consistency. Specifically, formalizing a
logical axiomatic legal system-a requirement of rigorously exam-
ining internal logical consistency-that retains the fundamental
values of justice may prove difficult if not impossible. Further,
proving or disproving formal legal consistency may require con-
struction of a legal language sufficiently exact to map, or mirror,
meta-legal statements-statements about a formalized legal sys-
tem-within the legal language itself. Such construction may prove
impossible as well.

I begin by discussing the difficulties of proving consistency
within a formal system generally. After establishing the impor-
tance of a formalized legal model as a prerequisite of rigorous ex-
amination of consistency, I investigate issues intrinsic to the current
system of law that may prevent formalization of a just legal system
as currently conceived.8 I argue that flexibility inherent in a just
legal system (in the sense that judges have the ability to modify, in
response to a given case, the presumptions from which that case's
outcome will be derived) may foreclose the possibility of legal for-
malization or any comprehensive model thereof. I conclude, how-
ever, that a model whose purpose is the examination of consistency
within a system need not necessarily retain the dynamic nature of
real-world formalization. Rather, a static model of legal formaliza-
tion may avoid the complications confronting a comprehensive for-
malization of law, while retaining the fundamental values critical to
examination of consistency within the law.

7. NAGEL & NEWMAN, supra note 3, at 5.
8. I abstain from expounding upon the common topic of "human intuition" in the

law and its implications with regard to formalization.
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LOGIC OF LAW

I. PROVING CONSISTENCY: A SNAKE EATING ITS OWN TAIL

Suppose the creation of a system in which certain natural laws
are presumed true. Further, specified rules are initially established
to allow additional laws to be derived from the presumed natural
laws, and to allow further additional laws to be derived from other
derived laws, and so on. Let us appropriately call any law that is
not a natural law a derived law.

Suppose that each year many new laws are derived from previ-
ously derived laws or from natural laws directly. Can it be shown
that after many years beyond the system's creation, and many mil-
lions of laws beyond the initial natural laws, a contradiction among
the system's laws will not arise? It is certainly invalid to conclude
that a contradiction will not or cannot arise from the fact that one
has not already arisen.9

It can be shown that internal consistency among the founda-
tional natural laws necessarily implies consistency among further
properly derived laws.10 Thus, to prove impossibility of contradic-
tion among millions of eventual derived laws, one must prove con-
sistency among the relatively few natural laws (assuming proper
derivation). The possibility of such a proof-namely, that of con-
sistency among the assumed foundational postulates of a given sys-
tem-represents the concern of the current section.

A. The Axiomatic Method

Pure mathematics can be described as a science of deduction. It
is the "subject in which we do not know what we are talking about,
or whether what we are saying is true."" Its concern is not the
truth of the assumed postulates or the deduced conclusions, but
only that its deductions follow as necessary logical consequences of
its assumptions. 2 The "axiomatic method," discovered by the an-
cient Greeks, is a system of deriving propositions, or theorems,
from accepted postulates known as axioms. 3 In the aforemen-
tioned example, natural laws are the system's axioms, and derived
laws are the system's theorems. 4 The ancient Greeks utilized the
axiomatic method to develop an incredibly complex system of ge-

9. NAGEL & NEWMAN, supra note 3, at 18-19.
10. Id. at 13.
11. Id. at 12 (citing "Russel's famous epigram").
12. Id. at 11.
13. See id. at 2.
14. See supra Part I (introductory paragraph).
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ometry deduced from five simple axioms (e.g., a straight line seg-
ment can be drawn joining any two points).'"

The Euclidean axioms were presumed to be true statements
about space. Thus, insofar as theorems were deduced from such
axioms, the possibility of deducing a contradiction escaped consid-
eration.' 6 That is, until the discovery of a new, non-Euclidian
geometry.

The Nineteenth Century discovery of different, yet equally valid,
systems of geometry, such as elliptical geometry, destroyed the
crutch upon which faith in the consistency of Euclidian geometry
rested: external truth. 7 How can differing conceptions of a point
or line both be true when only a single reality exists? 18 The notion
of mathematics as a real-world, rather than an abstract discipline
was hereby challenged.' 9 Establishing the internal consistency of
such systems suddenly took on critical importance.

B. Solving One Problem by Creating Another

The task of rigorously establishing the internal consistency of a
system-even a simple system-quickly encounters a significant
difficulty; specifically, a problematic set of alternative approaches.
One approach is to utilize the system's own rules and postulates to
establish its consistency. It is difficult, however, to justify reliance
on a given system of reasoning to prove consistency in that same
system of reasoning. Such analysis is circular and therefore un-
founded. "It is like lifting yourself up by your own bootstraps. 20

The alternative to grounding a system's own reasoning in itself is
to establish grounding in a second system's reasoning. This ap-
proach, however, accomplishes little more than shifting the prob-

15. HOFSTADTER, supra note 2, at 90. Euclid's five axioms state:
(1) A straight line segment can be drawn joining any two points.
(2) Any straight line segment can be extended indefinitely in a straight line.
(3) Given any straight line segment, a circle can be drawn having the segment as
radius and one end point as center.
(4) All right angles are congruent.
(5) If two lines are drawn which intersect a third in such a way that the sum of the
inner angles on one side is less than two right angles, then the two lines inevitably
must intersect each other on that side if extended far enough. Id.

16. NAGEL & NEWMAN, supra note 3, at 13.
17. By "external truth," I refer to truth external to the Euclidean geometric

system.
18. See HOFSTADTER, supra note 2, at 19-21. Today, the possibility of multiple

truths is apparent; then, however, it was not. Id. at 20.
19. See id. at 19.
20. Id. at 24.

[Vol. XXXIII940
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lem to another domain.21 The proof of one system's consistency
becomes reliant upon the consistency of an additional system. A
rigorous proof of the former system's consistency would thus re-
quire proof of the latter system's consistency, which, in turn, must
face the same difficulties plaguing the former system's proof.22

Thus, a dilemma unfolds: proving consistency of a given logical
system seemingly requires the illogical reasoning of internal circu-
larity, or of "solving" one problem by creating an equivalent one.

C. Metamathematics

The solution to the consistency dilemma resides in a critical dis-
tinction between mathematics and metamathematics. The issue at
hand, the provability of the internal consistency of a formal system
(which, for now, I shall assume to be a mathematical system), is not
one that belongs to that system in the sense that it speaks the lan-
guage and to the domain of that system. Rather, it speaks about
the system. Statements about a mathematical system belong to
what German mathematician David Hilbert prescribed the term
"metamathematics," a language about mathematics.23

For example, the expressions "2 + 5 = 7," "X + 6 = 14," and "0 =

0" belong to the language of mathematics, while the expressions "7
is a prime number," "every number has a successor number," and
"formal system X is consistent" belong to the language of
metamathematics.24

Mathematicians Russell and Whitehead produced Principia
Mathematica, which set forth to create a universal and unambigu-
ous language of mathematical reasoning. Principia Mathematica
purported to deduce all of mathematics from logic without contra-
diction.26 It derived the axioms of number theory from formal
logic, thus reducing the issue of the system's consistency to the
question of consistency among the system of formal logic itself.27 It
was uncertain, however, whether the system contained all of math-
ematics, or whether the system of reasoning was even internally
consistent. Thus, the issue of proving consistency once again
prevails: could it be shown that no contradiction would ever be de-

21. NAGEL & NEWMAN, supra note 3, at 17.
22. See id. at 7-24.
23. See id. at 27-28; GODEL, supra note 5, at 1-2.
24. See NAGEL & NEWMAN, supra note 3, at 25-36.
25. See HOFSTADTER, supra note 2, at 23.
26. See id.
27. NAGEL & NEWMAN, supra note 3, at 43.
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rived from the methods delineated in Principia Mathematica?28

Hilbert challenged the world of mathematics to do just that!
Hilbert's program endeavored to skirt the aforementioned diffi-

culties resulting from relative proofs of consistency by constructing
"absolute" proofs, whereby proof of a system's consistency would
not require the assumption of consistency in a second system. Hil-
bert sought a proof of consistency or completeness that relied only
upon "finitistic" models of reasoning (a concept beyond the scope
of the current paper).29 His program was soon to be shattered by
GOdel's proof.3"

II. GODEL'S INCOMPLETENESS THEOREM

Kurt G6del revolutionized the study of systems and the field of
mathematics in his 1931 publication of the paper On Formally Un-
decidable Propositions of Principia Mathematica and Related Sys-
tems.31 G6del addressed the difficulties of proving consistency in
formal systems by ingeniously employing a mathematical tool
known as "mapping." He thereby laid to rest the ancient question
of completeness and consistency in formal mathematics. His con-
clusions, however, were not those sought or expected by the math-
ematics community.32 GOdel's proof shattered the possibility of
complete and consistent axiomatization. In so doing, it sent
shockwaves through the worlds of mathematics, the sciences, and
philosophy.

A. Mapping

Mapping is a fundamental mathematical technique used to mir-
ror concepts from one domain upon another while retaining their
abstract structure and relation. For example, geometric terms are
mirrored in algebra, spherical shapes are projected on geometric
planes, and electric currents are mapped in hydrodynamics.33

G6del utilized this feature of mapping to translate complicated
metamathematical statements about a formalized system of arith-
metic into arithmetical statements within the system itself.34

G6del's implementation of mapping enabled him to transcend the

28. See HOFSTADTER, supra note 2, at 23.
29. See id.
30. See id.
31. See id. This paper was later published under the same title. See supra note 5.
32. See supra notes 25-29.
33. See NAGEL & NEWMAN, supra note 3, at 64.
34. Id.
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difficulties and limitations of proving consistency in the language of
metamathematics (specifically, to transcend the complexities of
proof through finitistic metamathematical models).35

B. Incompleteness or Inconsistency

Proposition VI of G6del's proof asserts that any formal system
sufficiently complex to support arithmetic36 must contain state-
ments that are either internally "undecidable"-statements that
cannot be proved or disproved within the system-or provably in-
consistent.37 Proposition VI proves that every such formal system
must be incomplete or inconsistent.

G6del constructed a formula, G, within arithmetic, representing
the statement, "The formula G is not provable within the sys-
tem."38 He demonstrated that G is provable if, and only if, its ne-
gation, -G, is provable.39 (Try it! Ask yourself whether G has a
proof within the system.) If both a formula and its negation are
provable within a system, then the system is, by definition, incon-
sistent. Alternatively, if the system is consistent, then both G and
-G are not provable within the system.40 G6del's proof resulted in
the recognition that performance of higher mathematics requires
some degree of "informal metamathematical reasoning."41

III. LIMITATIONS ON FORMAL EXAMINATION OF CONSISTENCY

WITHIN THE LAW

The key ingredient to rigorous examination of the logical consis-
tency of a system is the formalization of that system.42 Up to this
point, I have referred to "formal systems" and "formalization"
with relative informality. I now explain exactly what is meant by
such terms.

A. Formalization

A formal system is a process of reasoning by which "truths" are
deduced from the system's assumptions, or axioms. A formal sys-
tem consists of three ingredients: 1) a definite (objective) language

35. See id. at 66.
36. Practically speaking, a system need not be very complex to support arithmetic.
37. GODEL, supra note 5, at 57-62.
38. See NAGEL & NEWMAN, supra note 3, at 92.
39. See id. at 93.
40. See id. at 57-62. See also NAGEL & NEWMAN, supra note 3, at 92-93; HOF-

STADTER, supra note 2, at 17-19.
41. See Brown & Greenberg, supra note 1, at 1468.
42. See GODEL, supra note 5, at 4; NAGEL & NEWMAN, supra note 3, at 10-14.
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of symbols and syntax; 2) a set of axioms defined as, "a finite list of
general propositions whose truth, given the meanings of the sym-
bols, is supposed to be self-evident"; and 3) a set of rules by which
new propositions may be inferred from axioms and established
propositions.43

"The system's rules must be defined solely in the system's lan-
guage," and must be solely in relation to "other rules within the
system. ' 44 The fundamental component of a formal system is that
its derivations depend solely upon the system's rules of inference
and its initial axioms.45 Deductions within a formal system are def-
inite and conclusive.

Note that a formal system does not require that any question be
determinately deducible, only that every deduction be complete,
consistent, and resultant solely from the axioms and rules of infer-
ence. A designedly formal system that is unable to answer certain
problems while maintaining consistency is said to be "indetermi-
nate" (G6del's theorem thus places limits on the determinacy of
formal systems).46

I use the term "formalization" to refer to the process of trans-
forming an informal system into a formal one while retaining the
system's basic properties. Thus, formalization of an informal sys-
tem of law refers to creating an objective legal language, a set of
axioms, and definite rules of inference, such that all results are con-
clusive deductions solely from the system's axioms and rules of in-
ference, while retaining the system's basic properties.

Consider the importance of formalization with regard to exami-
nation of a system's internal consistency.47 The reliance on "truth"
external to a system was a flaw that crushed ancient systems of
reasoning.48 As mentioned above, pure mathematics-the science
of deduction-has no concern for "truth," but only that its deduc-
tions are necessary and logical consequences of its axioms.49

Entertain the question of consistency in a system that lacks an
objective language, a definite set of axioms, and rules of infer-

43. Brown & Greenberg, supra note 1, at 1445 (quoting ROGER PENROSE, THE
EMPEROR'S NEW MIND: CONCERNING COMPUTERS, MINDS, AND THE LAWS OF PHYS-

iCs 102-05 (1989)).
44. Id.
45. See id.
46. See id. at 1444-48.
47. It may be helpful to review the section on the axiomatic method, supra notes

9-19 and accompanying text.
48. See supra notes 16-19 and accompanying text.
49. See supra notes 11-19.
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ence-a system that lacks formalization. The concept of consis-
tency within such a system is difficult to imagine, if not utterly
inexistent. Consider proving or disproving consistency between
one "derivation" and another in a system lacking definite axioms
from which "derivations" are to be deduced, or rules by which
"derivations" are to be inferred, or a language in which "deriva-
tions" are to be expressed with objectivity. The three components
of the formal system are critical to the examination of consistency
in the current understanding of the concept.

IV. MODELING LAW AS A FORMALIZED SYSTEM

The law in its current state is not formalized. It is true, however,
that only rarely do transactions become controversies, and seldom
do controversies become court cases, indicating that the legal sys-
tem does, in fact, enable parties to apply legal deductions accu-
rately in the vast majority of cases. (Consider the multitude of
transactions occurring each day of your life. How many of them
result in court cases?). Additionally, most court cases are easily
determinable and even those that are not usually result in agree-
ment among judges and scholars. 50 Only rarely do divided opin-
ions and interpretations result, and such divergence may result
from discrepancies in levels of intelligence or judicial error.'

The law, however, does allow for a great diversity of opinion and
interpretation. Legal language is vague; statutes and rulings are
wide open to interpretation; various conceptions of law-all
valid-create discrepancies in judicial focus and notions of justice;
and "justice" itself often promotes indeterminacy. However, of
relevance is not whether law is or is not formal, but whether law
can or cannot be modeled as a formal system for purposes of exam-
ination of consistency within the law.52

A. Legal Language

Legal English is the language of law in the United States. At
issue is whether legal English (or any language of equivalent com-
plexity) is sufficiently exact as to satisfy the first requirement of a

50. Supreme Court cases, however, are particularly selected for their difficulty,
thus resulting in divergent opinions and interpretations. See Frederick Schauer, Easy
Cases, 58 S. CAL. L. REV. 399, 409 (1985); see also Brown & Greenberg, supra note 1,
at 1452.

51. Brown & Greenberg, supra note 1, at 1452-54.
52. Note that a discussion of the advantages and disadvantages of formalization is

very interesting but exceeds the scope of the current paper, which is concerned with
formalization insofar as it allows examination of consistency within the legal system.

20061
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formal system-a definite and objective language of symbols and
syntax. Arguably, language is, by its very nature, subjective, thus
affording the judiciary free reign to interpret the law (such as stat-
utes and precedent) and decide cases in accordance with its own
standards and intentions.53 Such utter subjectivity, however, likely
overstates the case. More plausible is the view that aspects of lan-
guage are vague, but that generally language is quite clear. Fur-
ther, it is doubtful that language can appropriately be
dichotomized between clear and unclear concepts. Rather, varying
degrees of clarity likely exist within a continuum. Thus, the issue
turns upon the degree of precision necessary to establish objectiv-
ity. Since formal systems remain primarily a concept belonging to
mathematics, let us assume sufficient (but not necessarily required)
objectivity in languages of equal or greater clarity than that of
mathematics.54

It is quite clear that legal language has yet to achieve a level of
definition even close to that achieved by mathematics. Recall,
however, that the question at hand is not whether legal language
does satisfy the demands of formalism, but rather whether it can
satisfy such demands. It may be that relative objectivity may only
exist at the sacrifice of another property that is fundamental to a
just legal system. Perhaps subjectivity is a virtue in itself!
Whatever the case may be, until valid proof is offered one way or
the other, which is not the case currently, the possibility of objec-
tivity in the language of law cannot be ignored. Further, while the
complexities of legal language may limit the practicability of pro-
ducing an objective language, its accomplishment in mathematics
evinces otherwise (although, arguably, mathematics does not entail
at least equivalent complexity). Suffice it to say that impracticabil-
ity must not be assumed.

B. Implanting the Heart and Circulation of a Formal System:
Its Axioms and Rules of Inference

The heart of a formal system is its set of axioms and rules of
inference. This section examines the potential for establishing
rules of legal reasoning and axiomatizing the law while retaining its
fundamental values.

It is easy to imagine a determinate formal system of law that fails
to retain its fundamental values. For example, a legal system con-

53. See Stanley Fish, Interpretation and the Pluralist Vision, 60 TEX. L. REV. 495,
503 (1982); Stanley Fish, Wrong Again, 62 TEX. L. REV. 299, 314 (1983).

54. See Brown & Greenberg, supra note 1, at 1458-59.
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sisting of the rule, "All plaintiffs lose," provides a complete, consis-
tent, and conclusive ruling for each case. However, the system
fails to retain the current system's notion of justice (or anything
closely related to it) and is therefore uninteresting for purposes of
examining consistency in the law. Thus, it is of fundamental impor-
tance to design a formal model only while preserving the object
system's values.

Rather than discuss the heavily-debated role of "intuition" in the
law, and its implications with regard to the possibility of legal for-
malization, my goal in the following sections is to expound upon
issues intrinsic to a just legal system that may preclude the possibil-
ity of modeling a formalized system of law. Specifically, I discuss
problems inherent in formulating a single and definite set of axi-
oms, as well as in axiomatizing law generally.

A discussion of the various functions of the legal system is well
beyond the scope of the current paper. Thus, I assume that justice
is the primary goal of the legal system. My analysis, however, re-
quires only that justice be a fundamental value in the system.

1. Modeling a Single Set of Axioms from a Multitude
of Such Sets

Imagine a formalized legal system whereby all statutes and com-
mon-law precedent form the system's axioms (assume that statutes
and precedent embody societal values like fairness and efficiency).
New rules in the form of judicial rulings are produced only by ap-
plying the system's axioms to a set of facts (presumed to be known)
and deducing logical inferences from established axioms to pro-
duce rules explicitly directed to such facts.

The model's oversimplification reveals many problems that
would similarly apply to more complex models. One such problem
is the requirement that a formal system feature a finite list of pro-
positions, the truth of which is presumed-a definite set of axioms.
In the simplified example provided, a definite set of axioms com-
posed of statutes and precedent becomes a multitude of sets when
considered with respect to each judge (and other administrators of
the law), since no two judges maintain identical interpretations of
the law. Each judge's interpretation translates to its own set of
axioms-and that assumes that each judge has a clear idea of his
interpretation in the first place.

55. See Joseph W. Singer, The Player and the Cards: Nihilism and Legal Theory, 94
YALE L.J. 1, 5-6 (1984); see also Brown & Greenberg, supra note 1, at 1463.
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A model may arguably circumvent the problem of multitudinous
sets of axioms by assuming the potential of amalgamating contra-
dictory sets to produce a single set of axioms. Similarly, a model
may approach the law from the perspective of a single judge.

Thus, the issue turns upon the propriety of such models. At least
two objections can be made to them: first, that models assuming
amalgamation of many subjective interpretations, or law as con-
ceived by a single judge, ignore real-world conditions, and are
therefore trivial in value; second, that such models fail to align with
common conceptions of justice within the legal system.

Formulation of a single set of axioms that encompasses the mul-
titude of meanings-even contradictory meanings-attached to the
law is doubtful, if not, by definition, utterly impossible. Perhaps
more feasible is the establishment of a set of axioms that indirectly
embodies innumerable interpretations of the law by achieving con-
sensus on each axiom. The law is, of course, multifaceted such that
a simple average could never apply. However, just as statutes are
established in the first place through negotiation, compromise, and
ultimately consensus, a second order consensus as to the interpre-
tation of statutes and precedent may be achievable. Of course, in-
terpretations may differ on interpretations, thus requiring a third
order consensus, and so on and so forth, until, eventually, the im-
portance of consensus on higher order interpretations is phased
out. However, for the sake of simplicity, I will ignore this
complication.

Assuming the possibility of modeling a single set of axioms em-
bodying the law's multitudinous interpretations, doing so may chip
away properties fundamental to a just legal system, and, thus,
render the model barren. Specifically, the concept of competing
axioms may be critical to common notions of justice in the law. Of
course, if the virtue of competing axioms is moderation via com-
promise, the same may be achieved through the aforementioned
second-order consensus.

If, on the other hand, the value is intrinsic to multiple sets of
competing axioms, the property is irreplaceable. Such value, how-
ever, is not easily found. In fact, plausibility lies in the contrary:
competing axioms are likely detrimental insofar as they generate
arbitrariness and unequal treatment in the law. A case may have
one result before one judge and a contrary result before a second
judge. But perhaps a degree of comfort is found in small doses of
arbitrariness, better known as luck. The question of intrinsic value
attached to competing axioms is likely an empirical one.

[Vol. XXXIII



LOGIC OF LAW

Further, the question at hand concerns consistency in the legal
system generally, not consistency in the administration of law by
any single judge. The relevance of a single-judge model is there-
fore questionable, since the model would embody the values of an
individual judge, rather than those of the judiciary as a whole.
However, a single-judge model may, nevertheless, provide a step-
ping stone to creating a more realistic model; namely, one that
characterizes correspondence among contradictory sets of axioms
respectively applied by a multitude of judges.

2. Flexibility: A Concept Diametrically Opposed
to Axiomatization

A formal system features a definite set of axioms solely from
which conclusions within the system (e.g., theorems or rules) are
deduced. A formal legal model would, therefore, require that rul-
ings be derived exclusively from its established axioms. Herein lies
a second, perhaps more serious, issue with modeling law as a for-
mal system. Specifically, it may be impossible to maintain such re-
quirements while retaining an element that is perhaps fundamental
to justice: flexibility.

"Flexibility," as I use the term, refers to a system's capacity to
modify a set of axioms-to use the jargon of formalism-in light of
the facts of the object case, or, the case to which such axioms are to
apply. In other words, critical to the current conception of a just
legal system is the system's ability to "overturn," or "reverse," pre-
viously created precedent (axioms), or even simply to produce new
law (to add new axioms), rather than applying precedent (drawing
deductions solely from the current set of axioms). The issue of
such flexibility may pose a fatal blow to the possibility of establish-
ing a formal system of law, or, likewise, modeling such a system.

Flexibility, as I use the term, is a concept diametrically opposed
to that of axiomatization. In fact, it may be oxymoronic even to
define "flexibility" as an ability to modify the set of axioms in light
of the facts of the object case, since where such flexibility exists, a
set of definite axioms cannot. Flexibility is undoubtedly a critical
component of justice. Thus, the issue with regard to formalization
is seemingly incurable.

It is essential to distinguish the current usage of "flexibility"
from the term in its more common usage-namely, the law's ability
to account for "human" factors such as fairness or clemency. I as-
sume that such "human" elements can, in fact, be incorporated
within the system. For example, a given axiom may grant leniency,
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notwithstanding the system's more substantive-based axioms,
under certain predetermined circumstances, such as leniency for a
mother whose sole motivation for stealing food from a supermar-
ket was to provide food for her children. Thus, "flexibility" in the
sense of allowing for certain variables other than strict application
of substantive law-whether in the form of statutes or precedent,
or of axioms other than those created by statutes or precedent-is
not an issue effecting problems of formalization. Such flexibility
may indeed be consistent with supplying a definite set of axioms.

The problem at hand is different. A judge's ability to modify
precedent, for example, is critical to the current system's notion of
justice. However, the ability to modify the axioms of a system in
response to the object (case) to be determined conclusively by such
axioms (and rules of inference) defeats the very nature of a formal
system. A property intrinsic to justice is in direct contravention
with the fundamentals of a formal system, thus inhering ineluctable
incompatibility with formalization or any comprehensive model
thereof. That is to say, a model of law as a formal system cannot be
established insofar as it mirrors the dynamic nature of formaliza-
tion just described. A model whose purpose is the examination of
consistency within a system, however, need not necessarily retain
the dynamic nature of real-world formalization.

V. A STATIC MODEL OF LAW AS A FORMAL SYSTEM

The problem described above is unavoidable with regard to for-
malization of the law. However, a static model of the law as a for-
malized system may manage to circumvent the flexibility problem
confronted by formalization itself.

Flexibility to modify the system's axioms in response to the case
to be determined by such axioms renders each and every case, by
definition, indeterminate. It further erodes the fundamental na-
ture of a formal system: it liquefies the definitiveness of the sys-
tem's axioms.

A model whose purpose is the examination of consistency may,
however, circumvent the flexibility problem by maintaining a static
character. While a dynamic model may, for example, relate cur-
rently established axioms to future cases (even cases in the imme-
diate future), a static model details a system's axioms only insofar
as they exist at any given time. In other words, a model that is
dynamic in nature entertains future deduction, while a model that
is static in nature recognizes a system's axioms and deductions only
as the axioms currently exist. Thus, a static model may be of insig-
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nificant worth with respect to determination of case-outcomes
(since flexibility allows modification of axioms). It may, however,
be invaluable in examining a system's consistency, since such exam-
ination may require formalization. Unlike inquiry requiring a dy-
namic model, examination of the law's consistency at any given
time may, in certain circumstances, require only a model with re-
spect to the system's conditions, such as axioms, rules of inference,
and possible deductions, as they exist at any such time: a static
model.

CONCLUSION

The importance of examining consistency within the legal system
cannot be overstated. Consistency is the ground upon which fun-
damental values of fairness are rooted. Rigorous examination of
consistency requires contemplation of the law modeled as a formal
system. Comprehensive modeling of legal formalization may be
impracticable, just as formalization of law itself may be. However,
simplified models of formalized systems of law may provide the
fundamental elements necessary to examine consistency within the
law while retaining the fundamental values of the system.

I have shown that formalization of law ineluctably requires the
sacrifice of values critical to a just legal system, and that models of
such formalization may, therefore, be entirely spurious. However,
a static model of formalization may circumvent certain problems
extant in dynamic models while retaining the values that may allow
examination of consistency within the law.
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