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Abstract

Planning algorithms have traditionally been geared toward achievement goals in single-agent
environments. Such algorithms essentially produce plans to reach one of a specified set of
states. More general approaches for planning based on temporal logic (TL) are emerging.
Current approaches tend to use linear TL, and can handle sets of sequences of states. How-
ever, they assume deterministic actions with all changes effected solely by one agent.

By contrast, we use a branching model of time that can express concurrent actions by
multiple agents and the environment, leading to nondeterministic effects of an agent’s actions.
For this reason, we view plans not as sequences of actions, but as decision graphs describing
the agent’s actions in different situations. Thus, although we consider single-agent decision
graphs, our approach is better suited to multiagent systems. We also consider an expressive
formalism, which allows a wider variety of goals, including achievement and maintenance
goals. Achievement corresponds to traditional planning, but maintenance is more powerful
than traditional maintenance goals, and may require nonterminating plans.

To formalize decision graphs requires a means to “alternate” the agent’s and the environ-

ment’s choices. From logics of program, we introduce the propositional mu-calculus, which

has operators for least and greatest fixpoints. We give a semantics, a fixpoint characteriza-

tion, and an algorithm to compute decision graphs.

1 Introduction

There is an increasing interest in systems based on intelligent agents, which are ex-
panding into a variety of important mainstream applications. Consequently, such
agent-based intelligent systems must be built and verified to the same rigorous stan-
dards we expect elsewhere. This speaks to the importance of logic-based approaches
for agent design, and highlights the potential usefulness of classical logics of program
and other formal techniques. There is some historical support for applying conven-
tional techniques in AI. For instance, dynamic logic was introduced into the AI and
logics of program communities at about the same time. The applicability of temporal
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logic techniques in planning is well recognized and is studied by several researchers,
for example, Bacchus & Kabanza [1].

Planning and reasoning about action are widely regarded as among the key com-
ponents of intelligent agency, and are ideal targets for the application of formal tech-
niques. This paper studies these subjects in an abstract setting. We characterize
planning problems in a way that better captures their structure than in traditional
approaches, and show how conventional logics of program techniques can be adapted
in solving them. In particular, we introduce control progression as a planning tech-
nique that selects actions with which the agent can control a branching future.

Motivation. Roughly, planning involves finding a series of choices through which
an agent can accomplish a given task. Traditionally, planners have considered tasks
that correspond to simple goals of achievement, which are satisfied when a desired
state is reached. However, it is now recognized that temporally extended goals are
often necessary, for example, see Bacchus & Kabanza [1]. These goals are satisfied
when a desired sequence of states is achieved.

Although achievement goals are usually considered, we can also allow maintenance
goals. Much as one would expect, achievement goals call for the attainment of states
in which the given condition is satisfied, whereas maintenance goals call for continual
action to preserve the truth of the given condition. Maintenance goals are important,
because an agent may not only need to achieve different states, but also to maintain
safety conditions and, equivalently, to prevent harmful conditions. This basic idea
is common in theories of know-how (to achieve a condition), for example, see Singh
[26] and seeing-to-it-that, for example, see Belnap & Perloff [3] and Chellas [7]. How-
ever, existing theories tend to focus exclusively on achieving a condition, rather than
maintaining one, or achieving and then maintaining a condition.

The idea of maintenance also emerges in implemented planning systems, which
from the time of Waldinger [30] have considered maintenance as a key functionality
in constructing effective plans, especially when more than one goal must be brought
about. Maintenance features also in the dMARS system [15]. It is therefore quite
interesting that maintenance has not received corresponding attention in the formal
reasoning about action community. Consequently, implemented systems usually han-
dle maintenance in a seat-of-the-pants manner.

Previous TL approaches assume that all changes in the environment are caused by
the agent through deterministic actions. We propose a relaxed approach that allows
concurrent actions by different agents. This leads naturally to a model of time that
allows multiple future paths from each moment [11]. Plans in such a model cannot be
sequences of actions, but must be decision trees or graphs that describe the agent’s
actions under different situations.

Branching TLs include path quantifiers, which allow us to make assertions about
all or some of the paths. However, branching TLs are not suited to capturing decision
trees as described above. This is because universal path quantification is too strong,
and existential path quantification is too weak. Typically, a good action will not
lead to success on all paths that can result from it, and a bad action may lead
to success on some path that can result from it. What we require is a systematic
means to obtain the effect of an alternation of the agent’s choices with moves by the
environment (although these may be physically concurrent, of course). This logical
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alternation cannot be readily captured in TLs, because different parties have to choose
alternating actions. For example, if a goal like AGEFp (in the notation of CTL [11],
and formally defined below) is considered, then it is not clear what is being planned
by the agent and what arises due to environmental effects. Recall that AGEFp is true
in a moment where at all future moments on all branches, there will always be a
branch on which there will be a moment where p holds. As a result, AGEFp turns out
to be stronger than maintenance, because a state as described by AGEFp may not be
found even though p can be maintained.

Approach. However, this effect is obtained by specifying the desired behavior in
terms of the propositional mu-calculus, or the mu-calculus, for short [16]. The mu-
calculus includes operators to specify the greatest and least fixpoints of expressions.
It leads to a succinct formulation of achievement and maintenance goals. Algorithms
to compute mu-calculus expressions exist, and can be adapted for planning.

The mu-calculus is a generalization of temporal and dynamic logics. Our con-
tribution is in showing how it can be applied in formulating planning problems, and
developing algorithms for them. Our approach applies to achievement goals as well as
maintenance goals, but we emphasize the latter, because they are more interesting. A
benefit of our approach is that the nature of the goal is itself expressed in the object
language. Thus goals can be nested, for example, “achieve a state where the agent
can maintain a condition.”

We choose a formal language related to CTL∗ and dynamic logic [11] as popu-
larized in the AI community by, among others, Rao & Georgeff [21] and Singh [26].
Another option would be the situation calculus, whose recent versions even allow
concurrency, nondeterminism, and even continuity, for example, see Miller [18] and
Reiter [23]. However, we would need additional extensions to these approaches to
allow path quantifiers and operators for fixpoints as in our approach.

Although fixpoint calculations are commonly used implicitly in the interpreters of
the logic programming languages, explicit fixpoint calculations as developed here are
less common there.

Organization. Section 2 describes our formal language and model. Section 3 dis-
cusses achievement and maintenance conceptually. Section 4 gives a formal semantics
maintenance along with a recursive characterization. Finally, Section 5 derives a
fixpoint characterization of maintenance and outlines an algorithm to compute main-
tenance plans. Throughout, we relate our approach to one for achievement.

2 The Technical Framework

The framework described below combines time and nondeterministic actions; it is
related to the frameworks of Chellas [7], Rao & Georgeff [21], and Singh [26]. We
consider discrete time with concurrent, unit-length atomic actions. As a consequence,
there is a finite number of actions between any pair of connected moments.

Figure 1 shows the formal model. Each point in the picture is a moment. Each
moment defines a unique possible state of the world. The term state is used informally
in the literature. For our technical purposes, the state that holds at a moment is given
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(x is the agent whose actions are listed first)

Figure 1: The Formal Model

by the atomic propositions that hold at that moment. A state may occur at several
moments. Each moment also identifies the knowledge each agent has in that moment.
A partial order on moments denotes temporal precedence.

Figure 1 is labeled with the actions of two agents. The first agent, x, can constrain
the future to some extent by choosing action a or action b. If he does action a, then
the world progresses along one of the top two branches out of t0; if he does action b,
then it progresses along one of the bottom two branches. However, the agent cannot
control what exactly transpires. For example, if he does action a, then whether t1
or t2 becomes the case depends on the actions of the second agent. Consequently,
in Figure 1, x can choose between the set {t1, t2} and the set {t3, t4}. However, he
cannot choose among the members of the above sets.

The state of the world that holds at a moment is identified by the atomic propo-
sitions that hold there. We require moments with the same world states to have iso-
morphic future fragments. This corresponds to the constraint of weak determinism,
motivated in [26]. It means that although the individual actions are nondeterministic,
the set of possible actions and outcomes depends on the given state. If, in addition,
two moments have the same knowledge for all the agents, we can treat them as a
single moment for representational efficiency. Hence, the partial order of temporal
precedence may be represented as having cycles: this representation saves repetition
in computation.

2.1 Syntax

ACTL∗ (“A” for actions), our formal language, enhances CTL∗, a branching-time logic
[11]. ACTL∗π is an auxiliary definition and includes the “path-formulae.” Below, Φ
is a set of atomic propositional symbols and X is a set of agent symbols. A is a set of
basic action symbols, partitioned into Ac and Av, sets of constant and variable action
symbols, respectively. Informally, xKp, xKap, and xKmp respectively mean that x
knows that p, x knows how to achieve p, and x knows how to maintain p.

L1. ψ ∈ Φ implies that ψ ∈ ACTL∗
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L2. p, q ∈ ACTL∗, x ∈ X , and α ∈ Av implies that p ∧ q, ¬p, xKp, xKmp, xKap,
(
∨
α : p) ∈ ACTL∗

L3. ACTL∗ ⊆ ACTL∗π

L4. p, q ∈ ACTL∗π, x ∈ X , and a ∈ A implies that p ∧ q, ¬p, pUq, x[a]p ∈ ACTL∗π

L5. p ∈ ACTL∗π implies that Ap ∈ ACTL∗

For notational simplicity, we use the following naming conventions in this paper.

• x, etc. are agents

• ψ, etc. are atomic propositions

• p, q, r, etc. are formulae in ACTL∗ or ACTL∗π (determined by the surrounding
syntax—this is essential because of rule L3)

• a, b, etc. are basic actions, constant or variable

• α, etc. are variables that range over basic actions

• t, etc. are moments

• P , etc. are paths.

2.2 Formal Model

A model for ACTL∗ is a tuple, M = 〈T, <,A, [[ ]],K〉, where we have the following.

• T is a set of possible moments.

• A assigns agents to different moments; that is, A : T 7→ ℘(X ).

• The relation <⊆ T×T is a discrete and finitely branching partial order on T.
Pt is the set of all paths induced by < that begin at moment t. We assume that
for all t, Pt 6= ∅. [P ; t, t′] denotes a period on path P from t to t′, inclusive—we
require t, t′ ∈ P and t ≤ t′. We label periods with paths to allow branching in
both the past and the future. Formally, [P ; t, t′] is the intersection of P with
the set of moments between t and t′, both inclusive. Thus it is possible that
[P ; t, t′] = [P ′; t, t′] even though P 6= P ′.

• The intension, [[ ]], gives the semantics of atomic propositions and actions. The
intension of an atomic proposition is the set of moments at which it is true. The
intension of an action constant a is, for each agent symbol x, the set of periods
in the model in which an instance of a is done by x. Thus t ∈ [[p]] means that
p is true at moment t; and, [P ; t, t′] ∈ [[a]]x means that agent x is performing
action a from moment t to moment t′. When [P ; t, t′] ∈ [[a]]x, t corresponds
to the initiation of a and t′ to its ending. Basic actions take time. That is, if
[P ; t, t′] ∈ [[a]]x, then t < t′.

• K assigns to each agent a binary relation on moments. (t, t′) ∈ K(x) means that
for agent x moments t′ is an epistemic alternative for moment t. We assume
that, for each agent x, K(x) is reflexive and transitive.
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A useful notation is the [[ ]]xt , which indicates the projection of [[ ]]x on to moment t.

Definition 1 [[a]]xt
def= {[P ; t, t′] : [P ; t, t′] ∈ [[a]]x}

Perfect knowledge means that the agent knows every proposition that is true. This
is captured by making K(x) the self-loop relation over T. Our approach does not
assume perfect knowledge, although some of our examples do so, for simplicity.

Definition 2 K denotes perfect knowledge of agent x when K(x) = {(t, t) : t ∈ T}

2.3 Semantics

The semantics of ACTL∗ is given relative to a model and a moment in it. M |=t p
expresses “M satisfies p at t.” This is the main notion of satisfaction. For formulae
in ACTL∗π, M |=P,t p expresses “M satisfies p at moment t on path P” (we require
that t ∈ P ). This is an auxiliary notion of satisfaction. We say p is satisfiable iff for
some M and t, M |=t p; we say p is valid in M iff it is satisfied at all moments in M .
Each action symbol is quantified over at most once in any formula. Below, p|αb is the
formula resulting from the substitution of all occurrences of α in p by b. We define
false ≡ (p ∧ ¬p), for any p ∈ Φ, and true ≡ ¬false. Formally, we have:

M1. M |=t ψ iff t ∈ [[ψ]], where ψ ∈ Φ

M2. M |=t p ∧ q iff M |=t p and M |=t q

M3. M |=t ¬p iff M 6|=t p

M4. M |=t Ap iff (∀P : P ∈ Pt⇒ M |=P,t p)

M5. M |=t (
∨
α : p) iff (∃b : b ∈ Ac and M |=t p|αb )

M6. M |=P,t pUq iff (∃t′ : t ≤ t′ and M |=P,t′ q and (∀t′′ : t ≤ t′′ ≤ t′⇒ M |=P,t′′ p))

M7. M |=P,t x[a]p iff [P ; t, t′] ∈ [[a]]x implies M |=P,t′ p

M8. M |=P,t p ∧ q iff M |=P,t p and M |=P,t q

M9. M |=P,t ¬p iff M 6|=P,t p

M10. M |=P,t p iff M |=t p, where p ∈ ACTL∗

M11. M |=t xKp iff (∀t′ : (t, t′) ∈ K(x) implies M |=t′ p)

The semantic definitions of Ka and Km are not included above. They are discussed at
length and given below.

We define t and t′ to be congruent moments as follows. As explained above,
congruent moments can be represented as a single state.

Definition 3 t ∼= t′
def= (∀ψ ∈ Φ : M |=t ψ iff M |=t′ ψ) and (∀x, t′′ : (t, t′′) ∈ K(x)

iff (t′, t′′) ∈ K(x))
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2.4 Temporal and Action Operators

pUq is true at a moment t on a path iff q holds at a future moment on the given path
P , and p holds on all moments between t and the selected occurrence of q. F and G
are abbreviations. Fp means that p holds sometimes in the future on P . Gp means
that p always holds in the future on P . The branching-time operator, A, denotes “in
all paths at the present moment.” Here “the present moment” refers to the moment
at which a given formula is evaluated. E is an abbreviation denoting “in some path
at the present moment.”

Definition 4 Fp
def= trueUp.

Definition 5 Gp
def= ¬F¬p.

Definition 6 Ep
def= ¬A¬p.

Example 7 In Figure 1, EFr and AFq hold at t0, since r holds on some moment on
some path at t0 and q holds on some moment on each path. Similarly, AG(p ∨ ¬p)
holds at t0 because (p ∨ ¬p) holds at every moment in the future of t0. Assuming p
always holds on the top path in the picture, EGp also holds at t0.

For an action symbol a, an agent symbol x, and a formula p, x[a]p holds on a
given path P and a moment t on it iff if x performs a on P starting at t, then p holds
at the moment where a completes. x〈a〉p is the dual of x[a]p.

Definition 8 x¬〈a〉¬p def= x[a]p

A[a]p denotes that on all paths P at the present moment, if a is performed on P ,
then p holds when that execution of a is completed. Similarly, E〈a〉p denotes that a
is done on some path at the present moment and that p holds when that execution
of a is completed.

Example 9 Figure 1 satisfies the following at t0:

(a) Ex〈a〉true

(b) Ex〈b〉p ∧ Ex〈b〉¬p

(c) Ax[a]p

(d) Ax[d]false (since x does not perform d at t0).

Existential quantification over basic actions enables us to restrictively talk of in-
teresting sets of actions. (

∨
α : p) means that substituting some action symbol for

occurrences of α in p yields a true formula. We define
∧

as the dual of
∨

.

Definition 10 (
∧
α : p) def= ¬(

∨
α : ¬p)

Example 11 Figure 1 satisfies the following at t0:

(a) (
∨
α : Ex〈α〉¬p) (since b can be substituted for α)
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(b) (
∨
α : Ax[α]p) (since a can be substituted for α).

Because formulae of the form (
∨
α : xK(E〈α〉true ∧ A[α]p)) arise frequently in

our discussion, we define an abbreviation C, which we term the control necessitation
operator. Cp means that the agent knows an action α, which he can perform, and of
which he knows that on all paths where he performs α, p comes to hold when it ends.

Definition 12 Cp
def= (

∨
α : K(E〈α〉true ∧ A[α]p))

3 Achievement and Maintenance, Conceptually

We consider only a single agent in the remainder of this paper. Other agents and the
environment can be thought of as being implicit in the nondeterminism of the given
agent’s actions.

Broadly put, there are two main classes of approaches to know-how, discussed
at length in [27]. One class follows traditional philosophical intuitions in separating
ability from opportunity, for example, Brown [6] and van der Hoek et al. [29]. This
class of approaches preserves the natural language meaning of knowing how to do
something even if one cannot actually do it. However, this naturalness comes at the
price of defining know-how based on counterfactual situations. In contrast, the second
class is situated and considers the ability as manifest in the opportunities of the given
situation. Here, the ability and opportunity go hand-in-hand, and an agent cannot
have one without the other. This class is exemplified by Belnap & Perloff [3], Chellas
[7], and Singh [26]. Our present approach is in the latter category. This facilitates
reading the figures and examples below: what you see is what you get!

3.1 Achievement

Intuitively, an agent knows how to achieve a condition if he can knowingly force it
to become true. In other words, the agent can select an action after which the given
condition is obtained or a state is achieved from where the agent can perform further
necessary actions. The key idea is that along any path where the agent exercises his
know-how only a finite number of actions should need to be performed to obtain the
given condition. If the condition is already known to hold, then the agent is done. If
not, the agent must perform an action that brings him closer to the condition.

Notice that, in our framework, the agents act concurrently. Thus the given agent
must choose his action such that no combination of the other agents’ actions can
prevent his eventual achievement of p. His next action will of course depend on the
present actions of others, since the state in which he performs his next action will be
determined by the present actions of all.

3.2 Maintenance

An agent knows how to maintain a condition if he can continually and knowingly
force it to be true, that is, if he can always perform an action that would counteract
the potentially harmful actions of other agents. This entails that not only must the
actions of other agents not cause any immediate damage, but the given agent should
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also ensure that they do not lead to a state where he will not be able to control the
situation.

A key difference with knowing how to achieve some condition is that achievement
necessarily requires a bounded number of steps, whereas maintenance does not. Often,
an infinite number of actions would not be necessary, since the agent would need to
maintain a condition only long enough for another condition to occur. This, for
instance, is the case in planning multiple goals, where the goal achieved first must be
protected for only as long as the other goals are being worked on. We shall finesse
this aspect for simplicity.

If initially the agent does not know that p holds, then he clearly does not know how
to maintain it. One cannot maintain that which is false and one cannot knowingly
maintain that which one believes to be false. This gives us the base case for our
definitions. Suppose that p is known to hold at the given moment. Then, to know how
to maintain it, the agent must be able to respond to all eventualities that might cause
p to become false. The given agent must choose his action such that no combination
of the other agents’ actions can violate p. Not only must the agent’s chosen action
maintain p, it should also maintain his ability to maintain p further.
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Figure 2: Maintenance

Example 13 Consider Figure 2. For simplicity assume that the agent has perfect
knowledge, which means that the agent knows every proposition that is true in a given
moment. We assume that t′0, which has the same state and the congruent successor
moments is the only successor of all the fringe moments.

Then, the agent can maintain p at t0, since he knows p in t0 and he can select a in
t0 after which he can still maintain p. From t1, the choice of action is irrelevant, since
the successors of t1 are all succeeded by t0. Similarly, t2 is succeeded by t0. Thus the
agent can just cycle through t0. The agent cannot maintain p in t3, but can maintain
p in all successors of t3.

9



3.3 Putative Definitions of Maintenance

We consider some strawman definitions, and argue why they are intuitively unac-
ceptable. This is anecdotal evidence that maintenance cannot be reduced to more
common concepts and must be formalized independently. It is impossible to establish
the above claim formally, because we are trying to evaluate formal definitions with
respect to our intuitive understanding of maintenance.

Maintenance is not the formal dual of know-how to achieve p. Since main-
tenance resembles traditional safety properties, one might wonder if it is a dual of
the corresponding achievement, that is, liveness, concept [11]. But it is not so. Just
because an agent does not know how to achieve ¬p does not entail that other agents
do not know how to achieve ¬p. Thus if the other agents exercise their know-how,
the given agent is unable to maintain p.

Maintenance is not the know-how to achieve AGp. As discussed in Example 7,
AGp means that p holds in all future moments (of the given moment). Clearly, if a
condition is known to hold forever on all futures, it is trivially maintained. The agent
need select no special action to ensure its continued truth. The converse is not true.
For example, a condition may be maintainable, but only by repeated actions on part
of the agent. Many interesting conditions fall into the latter category.

Maintenance is not the know-how to achieve EGp. EGp means that there is a
good path, but it does not entail that the agent will be able to prevent a bad path: the
agent’s actions may not be sufficiently selective. However, if the agent can maintain p,
then under some common assumptions, he should know how to achieve EGp. Indeed,
at any moment where he can maintain p, there is at least one path where p holds
forever.

4 Formalization

We formalize maintenance using trees of actions. We next define trees, use them to
give a formal semantics for maintenance, and characterize it recursively.

4.1 Trees of actions

A tree of actions of an agent can be (a) empty, or (b) a single action (its radix)
adjoined with a set of subtrees (each with a different radix). Trees are used to encode
the choices made by an agent in maintaining p. The radix represents the current
choice. The depth of a tree is the number of actions along any branch of it—we
require all branches to have the same depth. We formalize the structure and depth
of trees in mutual inductive definitions.

Definition 14 Υ, the set of trees, is defined as follows:

(a) ⊥∈ Υ, where ⊥ is the empty tree.
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(b) 〈a; τ1, . . . , τm〉 ∈ Υ, where a ∈ Ac, τ1, . . . , τm ∈ Υ, and depth(τ1)= . . . =
depth(τm). The trees τ1, . . . , τm must have distinct radices, unless m = 1 and
τ1 =⊥.

Definition 15 The depth of trees is defined as follows:

• depth(⊥) def= 0.

• depth(〈a; τ1, . . . , τm〉)
def= 1+depth(τ1).

For simplicity, we write a instead of 〈a;⊥〉. Notice that trees can defined purely
in terms of action symbols. However, a tree can be executed only if its actions are
aligned with the available actions at the given moment.
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Figure 3: Maintenance over Trees of Actions

Figure 3 adds some annotations to Figure 2 in terms of the paths from t0.

Example 16 Considering the maintenance of p in Figure 3, a tree at t1 is 〈b;⊥〉 or
b. A tree at t2 is c. Similarly, composing the two we get 〈a; b, c〉 as a tree at t0. This
is highlighted.

4.2 Semantics of Maintenance

An agent maintains p over an empty tree if he knows that p holds currently. He
maintains p over a single action, a, if he knows that he can perform a in the given
state and p holds where a begins and where it ends. An agent maintains p over a
general tree if he maintains it over its initial action and then over some applicable
subtree.

Example 17 In Figure 3, assume that the agent has perfect knowledge. Then the
agent can maintain p at moments t8 and t9 because he knows p there, that is, through
the tree ⊥. At t2, the agent can maintain p using the tree c and at t1 using the tree
b. At t0, the agent maintains p using the tree 〈a; b, c〉.
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In order to give the formal semantics of maintenance, we define [[τ ]]t,p, the main-
tenance denotation of a tree τ , as the set of periods beginning at t over which p is
maintained by τ . These are the periods over which the agent can knowingly select
the right actions. [[τ ]]t,p = { } means that p cannot be maintained using τ .

Definition 18 The maintenance-intension of a tree is defined as follows:

• [[⊥]]t,p
def= (if M |=t Kp, then {[P ; t, t]} else { })

• [[a]]t,p
def= {[P ; t, t′] : [P ; t, t′] ∈ [[a]] and M |=t Kp and (∀tk : (t, tk) ∈ K(x)⇒

(∃Pk, t′k : [Pk; tk, t′k] ∈ [[a]] and (∀Pk, t′k : [Pk; tk, t′k] ∈ [[a]]⇒ M |=t′
k

Kp)))}

• [[〈a; τ1, . . . , τm〉]]t,p
def= {[P ; t, t′′] : (∃t′, j : [P ; t, t′] ∈ [[a]]t,p and [P ; t′, t′′] ∈

[[τj ]]t′,p) and (∀tk : (t, tk) ∈ K(x)⇒ (∃Pk, t′k : [Pk; tk, t′k] ∈ [[a]]tk,p and (∀Pk, t′k :
[Pk; tk, t′k] ∈ [[a]]tk,p⇒ (∃t′′k , j : [Pk; t′k, t

′′
k ] ∈ [[τj ]]t′

k
,p))))}

In other words, the agent maintains p over [P ; t, t′′] iff the agent knows at t that he
will maintain p over a, that is, till t′, and then maintain p till t′′ using some subtree.
Notice that if a tree has a radix that is not an available action at a given moment,
then its maintenance-intension at that moment would be empty.

Example 19 We can determine the maintenance-intension of the tree of Example 17.
[[〈a; b, c〉]]t0,p = {[P0; t0, t4], [P1; t0, t5], [P4; t0, t8], [P5; t0, t9]}.

Lemma 20 shows that maintenance-intensions are stable in that if they are nonempty,
they contain all of the alternatives at the moments epistemically related to the given
moment.

Lemma 20 ([[a]]t ∩ [[a]]t,p 6= ∅)⇒ (∀tk : (t, tk) ∈ K(x)⇒ ∅ ⊂ [[a]]tk ⊆ [[a]]tk,p)

An agent maintains p to depth i if there is a tree of depth i over which he maintains
p. An agent maintains p if he maintains it to all depths.

M12. M |=t Km
ip iff (∃τ : depth(τ) = i and [[τ ]]t,p 6= { })

M13. M |=t Kmp iff (∀i : M |=t Km
ip)

Example 21 Following Example 17, we can verify that Km
0p holds at t0, t1, t2, t4,

and t5. Similarly, Km
1p holds at t0, t1, and t2, because of trees a, b, and c, respectively.

Also, Km
2p holds at t0 because of the tree 〈a; b, c〉. Assuming that t′0 ∼= t0 is the sole

successor for moments t4–t11, we also have that Kmp holds at t0, t1, t2, t4, t5, and
t7–t10.

4.3 Recursive Characterization

Now we present a recursive characterization of maintenance. This characterization
is used in Section 5, where we develop an approach based on the mu-calculus for
computing know-how and maintenance.

Lemma 22 Kp ∧ (
∨
α : K(E〈α〉true ∧ A[α]Km

ip)) ≡ Km
i+1p
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Proof The base case (for i = 0) follows from the definition of [[a]]t,p. The inductive
case follows from the definition of [[〈a; τ1, . . . , τm〉]]t,p.

Theorem 23 Kp ∧ (
∨
α : K(E〈α〉true ∧ A[α]Kmp)) ≡ Kmp

Proof This follows from the definition of Kmp and Lemma 22.

The above characterization reflects the intuition of the formal definition of mainte-
nance. Its conjuncts reflect the cases of the definition of maintenance intensions using
which maintenance was formalized above.

4.4 Achievement

We now introduce the semantics for know-how with slight modifications from [26]. An
agent achieves p over an empty tree if he knows that p holds currently. He achieves
p over a single action, a, if he knows that he can perform a in the given state and p
holds along any branch where a ends. An agent achieves p over a general tree if he
knows that he can perform its initial action at the end of which (a) p will hold or (b)
he will know which subtree to execute.

Example 24 In Figure 3, assume that the agent has perfect knowledge. Then the
agent can achieve q at moments t1 and t2 because he knows q there, that is, through
the tree ⊥. At t0, the agent can achieve q using the tree a.

In order to give the formal semantics of achievement, we define [(τ)]t,p as the set
of periods corresponding to the execution of τ , which begin at t and end at a moment
at which p is achieved. [(τ)]t,p = { } means that p cannot be achieved using τ .

Definition 25 The achievement-intension of a tree is defined as follows:

• [(⊥)]t,p
def= (if M |=t Kp, then {[P ; t, t]} else { })

• [(〈a; τ1, . . . , τm〉)]t,p
def= {[P ; t, t′′] : (∀tk : (t, tk) ∈ K ⇒ (∃Pk, t′k : [Pk; tk, t′k] ∈

[[a]]tk,p and (∀Pk, t′k : [Pk; tk, t′k] ∈ [[a]]tk,p⇒ (∃t′′k , j : [Pk; t′k, t
′′
k ] ∈ [(τj)]t′

k
,p))))}

In other words, the agent achieves p over [P ; t, t′′] with respect to a tree of the form
〈a; τ1, . . . , τm〉 iff the agent knows at t that he will either (a) achieve p over a, or (b)
after a, will achieve p (till t′′) using some τi.

Example 26 We can determine the achievement-intension of the tree of Example 24.
[(a)]t0,p = {[P0; t0, t1], [P1; t0, t2]}.

Recall that xKap formalizes that the agent x knows how to achieve p. Our semantic
definition of Kap is as follows. An agent achieves p if there is a tree over which he
achieves p.

M14. M |=t Kap iff (∃τ : [(τ)]t,p 6= { })

We now give a recursive characterization of achievement, which resembles the one
given above for maintenance,and captures essentially the same intuition.

Theorem 27 Kp ∨ (
∨
α : K(E〈α〉true ∧ A[α]Kap)) ≡ Kap

13



5 Computing Decision Graphs

One may use a formalization of a concept in various ways, such as in automatic
or guided theorem provers, and tools for checking prespecified models. The latter
approach, which we adapt,has proved particularly effective in program verification [8].
We discuss maintenance at length and then show how achievement can be similarly
handled. Given a model, describing moments and actions among them, and a formula,
describing a goal, we compute the set of moments at which the formula holds. The
model may be implicitly specified without enumerating all the moments. In fact, our
approach incrementally builds a models that verifies the given formula. The result
encodes the actions that must be performed in each moment to realize the given goal.

In our framework, the (maintenance) planning problem is posed in terms of the
following three components:

• t0, an initial state

• p, a condition to be maintained (or, more generally, any goal expressed in our
formal language)

• M , a means of generating a model.

Recall that the denotations or intensions of formulae in ACTL∗ are sets of mo-
ments. The fixpoint approach is based on a lattice of denotations. This lattice uses as
its partial order the standard set-inclusion ordering on sets of moments. Intuitively,
we begin with the most permissive assignment, namely, one reflecting the assumption
that a formula can be maintained everywhere. We then prune the set of moments
based on whether the base case of knowledge about the given proposition obtains.
From this reduced set of moments, we recursively prune moments at which actions
cannot be selected that would guarantee maintenance, until a fixpoint is attained. The
prune operation is based on the monotonic functional we define below. The fixpoint
attained is the greatest fixpoint of this functional and yields the desired answer.

The above approach naively generates all states, although several of them would
not be needed for the final plan. We later show how we can avoid generating useless
states, thus leading to greater efficiency. We now turn to the formal development.

5.1 The Propositional Mu-Calculus

Our presentation below is self-contained. It has been simplified to include just the
features we need. Let ACTL∗µ be ACTL∗ extended to accommodate the mu-calculus.
Let Ξ be a set of propositional variables. The operators µ (mu) and ν (nu) bind
propositional variables. Notice that we could replace the temporal operators by their
mu-calculus abbreviations, but for simplicity we leave them in.

L6. Replace ACTL∗, ACTL∗π by ACTL∗µ ACTL∗µπ in the syntax rules of Section 2

L7. Z ∈ Ξ implies that Z ∈ ACTL∗µ

L8. Z ∈ Ξ, ζ(Z) ∈ ACTL∗µ implies that (νZ : ζ(Z)), (µZ : ζ(Z)) ∈ ACTL∗µ

14



Definition 28 A functional on Z ∈ Ξ is an expression free in Z in which Z occurs
inside an even number of negations. Functionals are typically notated with ζ(Z) with
subscripts.

The above entails that ζ(Z) is monotone in Z and, by the Tarski-Knaster theorem,
has both a greatest and a least fixpoint.

For p ∈ ACTL∗, the semantics of Section 2.3 holds—the definitions below lift [[ ]]
from atomic propositions to all of ACTL∗. [[ ]]π is the path version of [[ ]].

Semantically, the propositional variables are treated just like propositions except
that their interpretation is not fixed in the model, but rather given explicitly. Thus
M |=t Z iff t ∈ [[Z]], where [[Z]] is the denotation of Z. The functionals in ACTL∗µ
are functions from sets of moments to sets of moments.

Definition 29 Let fζ : ℘(T) 7→ ℘(T) be a function derived from the syntax and
semantics of ACTL∗µ. Given a set of moments S ⊆ T, fζ(S) = [[ζ(Z)]], where
[[Z]] = S.

Intuitively, fζ is the function corresponding to the expression ζ. (µZ : ζ(Z)) and
(νZ : ζ(Z)) are, respectively, the least and greatest fixpoints of the functional ζ(Z).
By the Tarski-Knaster theorem, (νZ : ζ(Z)) =

⋂
i≥0 ζ

i(true) and (µZ : ζ(Z)) =⋃
i≥0 ζ

i(false). Here ζi denotes ζ composed i times.

M15. [[p]] = {t : M |=t p}, where p ∈ ACTL∗

M16. [[p]]π = {P : P ∈ Pt and M |=P,t p}, where p ∈ ACTL∗π

M17. [[ζ]] = fζ

M18. [[(µZ : ζ(Z))]] =
⋃
i≥0[[ζi(false)]]

M19. [[(νZ : ζ(Z))]] =
⋂
i≥0[[ζi(true)]]

Example 30 We have the equation AGp ≡ p ∧ (
∧
α : A[α]AGp). This merely states

that p holds at all moments in the future of a given moment, t, iff p holds at t, and p
holds in the future of all successor moments of t (after any action). This idea can be
captured in the mu-calculus with the equation AGp ≡ (νZ : p∧ (

∧
α : A[α]Z)), where

Z’s denotation ranges over ℘(T).

For simplicity, we assume that boolean, temporal, and knowledge expressions are
calculated by a subroutine.

5.2 Maintenance in the Mu-Calculus

Given a formula p, we define a functional ζm (which incorporated p) to capture main-
tenance. Here C refers to control necessitation as given in Definition 12.

Definition 31 ζm(Z) def= Kp ∧ CZ

This functional is obvious from the characterization given in Section 4.3. Lemma 32
states that ζm(Z) is monotonic in Z.
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Lemma 32 Z1 ⊆ Z2⇒ ζm(Z1) ⊆ ζm(Z2)
Thus ζm(Z) must have a greatest and a least fixpoint. The least fixpoint is { }

and is uninteresting. However, Theorem 33 states that the greatest fixpoint of ζm(Z)
equals Kmp.

Theorem 33 Kmp ≡ (νZ : ζm(Z))

Proof Theorem 23 indicates that Kmp is a fixpoint of ζm(Z). Let Z be some fixpoint
of ζm(Z). Because Kp holds everywhere in Z, it is clear that Km

0p holds everywhere
in Z. Therefore, using the actions (selected by the existential quantifier in CZ) that
occur to make CZ true, we can inductively construct trees of depths 1, 2, . . . , using
Km

0p as the base case. Thus, for all depths i, Km
ip holds everywhere in Z. Hence,

Kmp holds everywhere in Z. Consequently, Z ⊆ [[Kmp]]. In other words, Kmp includes
every fixpoint of ζm(Z). Therefore, Kmp is the greatest fixpoint of ζm(Z).

5.2.1 Naive Approach

A naive algorithm for computing the above formula follows directly from the definition
of greatest fixpoints. An obvious observation is that in calculating (νZ : ζ(Z)) =⋂
i ζ
i(true), we can limit i to be the first j such that ζj(true) = ζj+1(true). Since

[[true]] = T and at least one moment must be removed by each iteration of ζ, we have
that j ≤ |T|. Thus termination is guaranteed if T is finite.

Example 34 Consider Figure 3 again. Let T = {t0 . . . t11}—that is, identify t0
with t′0. We wish to compute [[Kmp]]. Initially, [[true]] = {t0 . . . t11}. And, [[ζm(true)]]
= {t0 . . . t2, t4 . . . t10} (t3 and t11 are eliminated). No further moments are elimi-
nated, that is, [[ζ2

m(true)]] = [[ζm(true)]]. Hence, we have found the fixpoint, which
is the desired answer for [[Kmp]]. From this we can derive the maintenance plan
as an infinite decision tree rooted at t0, finitely expressed as a decision graph τ =
〈a; 〈b, a,#τ〉, 〈c, a,#τ〉〉, where #τ refers back to τ .

5.2.2 Control Progression

The above, naive approach computes [[(νZ : ζm(Z))]], and in the process also computes
all of [[true]], only to check if t0 is part of the answer. This is obviously too wasteful. A
better approach can be designed that directly tests whether t0 ∈ [[(νZ : ζm(Z))]], and
computes only the states necessary to make that determination. This is based on the
following definitions and results, which intuitively capture the idea that we only need
to explore the moments that result from an action in t0. Further, we need explore the
successors of only those moments that remain candidates for maintenance—moments
where maintenance fails can be pruned immediately.

We define β(z, Z) as the set of all minimal subsets Y of Z, such that z ∈ [[ζm(Y )]]
guarantees that z ∈ [[ζm(Z)]]. Thus β(z, Z) is the set of minimal certificates for
z ∈ [[ζm(Z)]]. The point of defining β(z, Z) is that each of its member sets contains
moments that are relevant for evaluating Kmp, and no more—typically, the set of
relevant moments would be much smaller than [[true]].

But how can we construct β(z, Z)? Given our intuitions about the role of control
necessitation in the definition of maintenance, each member of β(z, Z) should be a
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set of moments that result from an action performed in z. For this reason, we define
γ(a, z) as the post-image of action a. Next, we use γ to define β.

Definition 35 γ(a, z) def= {t : (∃P : [P ; z, t] ∈ [[a]])}

Definition 36 β(z, Z) def= {Y : Y ⊆ Z and (∃a : Y = γ(a, z)) and (∀b : γ(b, z) 6⊂ Y )}

Thus, β(z, Z) preserves the property that all or no outcomes of an action are
included in any of its member sets of moments—this prevents declaring success erro-
neously. Lemma 37 follows from the monotonicity of ζm.

Lemma 37 β(z, Z) 6= { } iff z ∈ [[ζm(Z)]]

Similarly, z ∈ [[ζi+1
m (Z)]] iff β(z, ζim(Z)) 6= { }. Computing β(z, ζ2

m(Z)) requires
computing the post-images of the available actions when performed in the states of the
post-images of the actions performed in z. However, these post-images are determined
as part of β(z, Z). This process is inductive. We term it control progression, because
it behaves like temporal progression in determining successor states, but takes into
account the control necessitation inherent in correct decision graphs.

5.2.3 Algorithm to Compute Decision Graphs

The above observations yield the following procedure for determining a decision graph
from a state z and an active set of moments Z. Importantly, Z is specified implicitly—
only those members of it that immediately affect whether z ∈ [[ζm(Z)]] are made
explicit.

First compute β(z, Z). If β(z, Z) is empty, return failure. If β(z, Z) is nonempty,
construct an AND-OR graph with z as an OR node, and each member of β(z, Z) as
an AND node. Since each member of β(z, Z) corresponds to the post-image of some
action, the edge from z to an AND node is labeled by the action whose post-image is
captured by the AND node.

Inductively, determine whether y ∈ [[ζm(Z)]] for each state y in an AND node. If
it fails, delete the entire AND node. When all AND successors of an OR node are
deleted, delete it as well. Since we identify moments that represent the same state,
the computation need not be repeated for states that are previously explored. The
procedure essentially involves constructing and searching the AND-OR graph. As
usual, it helps to search depth first to reduce the space requirements. The program
given in Figure 4 is invoked as maint(t0, { }, { }, p).

Example 38 We redo Example 34 by invoking our algorithm from t0. Figure 5
illustrates this case. As before, for simplicity we assume perfect knowledge. In the
first iteration, the algorithm selects action a and the moments t1 and t2; the moment t3
and its successors are pruned. From t1, the algorithm identifies action b and moments
t4 and t5. From t2, it identifies action c and moments t8 and t9. Thus, it effectively
computes the result of Example 19. From each of the moments t4, t5, t8, and t9,
action a may be chosen to get to t0, or rather to t′0 ∼= t0.
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maint(node, graph, explored, p)
if node ∈ graph return (node, graph, explored)
if node ∈ explored return (nil, nil, explored)
if node 6|= Kp return (nil, nil, explored ∪ {node})
beta ← {(a, Y): Y is the post-image of a in node}
g ← graph
e ← explored
forall (a, Y) ∈ beta {

(nY, gY, eY) ← and maint(Y, g, e, p)
g ← splice(g, node, a, nY, gY) //equals g if gY = nil
e ← eY
}

if no out-edge from node return (nil, nil, e)
return (node, g, e)

and maint(Y, graph, explored, p)
and node ← new And Node
g ← graph
e ← explored
forall n ∈ Y {

(nn, gn, en) ← maint(n, g, e, p)
if nn = nil return (nil, nil, en)
insert into(and node, nn)
g ← gn
e ← en
}

return (and node, g, e)

Figure 4: Maintenance by Control Progression
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Figure 5: Control Progression Illustrated (Final graph in bold)

5.3 Achievement

Given the above development, the case of achievement is quite straightforward. We
define a functional ζa to capture the achievement of p:

Definition 39 ζa(Z) def= Kp ∨ CZ

This functional is obvious from the characterization of Section 4.4. Theorem 40 states
that the least fixpoint of ζa(Z) equals Kap.

Theorem 40 Kap ≡ (µZ : ζa(Z))

The computation of the corresponding decision graph proceeds along similar lines
to the above.

6 Discussion

We showed how a logics of program approach can be adapted for AI planning, yielding
more power than previous approaches. The similarities between AI planning and
logics of program are known, but have not been fully exploited. Ultimately, we believe,
this synergy must be exploited for building robust intelligent systems. Our approach

• uses logics of program tools for AI ends

• is formal and rigorous

• allows a richer variety of goals than traditional approaches

• involves algorithms that exploit the special structure of the computations, as
reflected in the syntax of the mu-calculus formulation.
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The mu-calculus enables declarative descriptions of complex computations through
fixpoints. Fixpoints are well-suited to describing important concepts from planning.
An expanding body of research exists to construct efficient tools for the mu-calculus
and TL, which can be marshaled for planning. Recent examples include Bhat &
Cleaveland [4], Clarke et al. [8], and Holzmann [14].

Our approach is orthogonal to how one determines the formulae true in each state
in the post-image of an action, but one can assume a theory of actions with fully spec-
ified effects for this purpose, such as that of Schubert [24], with some enhancements to
allow nondeterminism. The problem of modeling concurrent events and their effects
was also considered in an abstract setting by Georgeff, who developed an approach
based on persistence and causality [13]. More recent approaches, for example, by
Baral [2] and Thielscher [28], seek to characterize the effects of actions in different
circumstances.

Complexity. The complexity of the above approach has not been carefully studied.
It relies on having a finite set of moments to explore. Termination requires identifying
moments with those of the same state (that is, the same atomic propositions and
knowledge of the agent) that have been visited. The number of iterations if bounded
by the length of the longest path in T, where length is given by the number of actions.

Literature. There has been an enormous amount of research on various kinds of
planning. We mention only some selected works relating TL and planning. (TL
approaches to be distinguished from temporal reasoning in general, which all planners
must perform to some degree.)

One of the first applications of classical techniques in planning was identified by
Georgeff [12]. Georgeff proposed process models to represent how the actions were
selected by different agents. He also suggested the use of model-based as opposed to
axiomatic techniques for reasoning about the relationships among process models.

Singh [26] and Belnap & Perloff [3] define operators, but do not develop algorithms
to compute them. The present approach shows how algorithms can be derived from
the semantics of those operators.

Bacchus & Kabanza define goals as sequences of states, and develop an algorithm
to produce plans that satisfy such goals [1]. The heart of their approach is a pro-
gression algorithm, which given formulae for a state, derives formulae for the next
state. This assumes that actions are deterministic, and changes to the environment
are brought about solely by the agent (p. 1217). In a fundamental sense, we capture
intuitions similar to temporal progression, but extend them to branching, nondeter-
ministic models. Bacchus & Kabanza allow metric goals, which we believe can be
added to our approach as well.

Pain-Barre [20] combines heuristic planning with a deductive approach to world
changes due to actions. This approach also involves depth-first search, but focuses
exclusively on achievement goals. Dengler also uses TL to go beyond traditional
achievement planners, but he focuses on enhancing the interactivity of the planner
with a human user [10]. This approach is quite sophisticated in considering the
stepwise refinement of plans, although the underlying framework is linear. We believe
it could be fruitfully combined with our approach.
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Another use of TL in planning involves modeling actions as procedural programs
in the style of Algol, for instance, and using conventional TL techniques for proving
properties about them. Biundo & Stephan [5] and  Lukaszewicz & Madalińska-Bugaj
[17] develop such approaches.

Singh introduced the mu-calculus for reasoning about action and developed a
model-checking approach [25]. Independently, De Giacomo & Chen [9] give a mu-
calculus characterization of plans, which however is based on a process algebra rem-
iniscent of Milner’s CCS [19], rather than an explicit branching-time logic as in the
present approach. Both of the above approaches assume a fully specified model,
instead of constructing one incrementally as here.

Future Directions. The technique proposed here generalizes mu-calculus tech-
niques for temporal and dynamic logic operators to handle interesting forms of AI
planning. Although this technique is only the beginning, it hints at more what can
be accomplished. We are studying syntax-directed techniques for generating models
and plans from the common kinds of mu-calculus expressions that arise in planning
problems. Another challenge is to consider more complex goal specifications than
allowed above.

We have taken some early steps in formalizing plans for multiagent environments.
Much of our technical development considers the plans of a single agent, but by allow-
ing branching and nondeterminism, it enables planning in multiagent environments.
In this way, it is similar in style to [12, 13]. We leave it to future research to formalize
ideas from cooperative planning to the same level of detail as carried out above.
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