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ABSTRACT

Motivation: The limited availability of protein structures often
restricts the functional annotation of proteins and the identification
of their protein–protein interaction sites. Computational methods to
identify interaction sites from protein sequences alone are, therefore,
required for unraveling the functions of many proteins. This article
describes a new method (PSIVER) to predict interaction sites, i.e.
residues binding to other proteins, in protein sequences. Only
sequence features (position-specific scoring matrix and predicted
accessibility) are used for training a Naïve Bayes classifier (NBC),
and conditional probabilities of each sequence feature are estimated
using a kernel density estimation method (KDE).
Results: The leave-one out cross-validation of PSIVER achieved
a Matthews correlation coefficient (MCC) of 0.151, an F-measure
of 35.3%, a precision of 30.6% and a recall of 41.6% on
a non-redundant set of 186 protein sequences extracted from
105 heterodimers in the Protein Data Bank (consisting of
36 219 residues, of which 15.2% were known interface residues).
Even though the dataset used for training was highly imbalanced,
a randomization test demonstrated that the proposed method
managed to avoid overfitting. PSIVER was also tested on
72 sequences not used in training (consisting of 18 140 residues,
of which 10.6% were known interface residues), and achieved an
MCC of 0.135, an F-measure of 31.5%, a precision of 25.0% and
a recall of 46.5%, outperforming other publicly available servers
tested on the same dataset. PSIVER enables experimental biologists
to identify potential interface residues in unknown proteins from
sequence information alone, and to mutate those residues selectively
in order to unravel protein functions.
Availability: Freely available on the web at
http://tardis.nibio.go.jp/PSIVER/
Contact: yoichi@nibio.go.jp; kenji@nibio.go.jp
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Identification of protein–protein interaction sites is not only
critical for understanding how proteins perform their biological
functions, but also helpful in developing new drugs (Burgoyne
and Jackson, 2006; Russell and Aloy, 2008). Experimentally
determined protein 3D structures indeed provide important clues
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to identifying interaction sites and understanding protein functions
(Fariselli et al., 2002; Fernandez-Recio et al., 2005; Jones and
Thornton, 1997a, 1997b; Neuvirth et al., 2004). However, in spite
of significant efforts in determining many protein structures, the
number of known 3D structures is still considerably smaller than
that of protein sequences [as of February 2010, 514 212 entries
in UniprotKB/Swissprot (release 57.13 statistics) compared with
63 093 in the Protein Data Bank (PDB; Berman et al., 2000)]. The
limited availability of structures often restricts the identification of
interaction sites of proteins and their functional annotation. New
computational methods are, therefore, needed to identify interface
residues from protein sequences alone and to assist experimental
studies, which mutate these residues selectively and assess their
effects on interaction.

Is it possible to predict interaction sites, i.e. residues binding to
other proteins, from sequence information alone? Ofran and Rost
(2003) and Yan et al. (2004) have reported that residues involved
in interactions tend to form clusters in sequences; within four
neighboring residues on either side, 97–98% of interface residues
have at least one additional interface residue and 70–74% have
at least four additional interface residues. This analysis indicates
that neighboring residues of an actual interface residue have
high potential for being interface residues, and also suggests that
fragments of sequences (referred to as sub-sequences hereafter)
potentially have informative features to discriminate between
interaction and non-interaction sites. Thus, sequence features
contained in sub-sequences are expected to allow us to predict
interface residues in sequences. Ofran and Rost (2007) used
sub-sequences of nine consecutive residues to develop a neural
network (NN)-based method using predicted structural features and
evolutionary information. In addition, they improved the method by
using a post-processing filter to eliminate all the isolated residues
that were predicted as interface but had fewer than seven predicted
interface residues in a sub-sequence of 11 residues, and achieved
over 90% accuracy (ACC; the proportion of correctly predicted
residues) in a 3-fold cross-validation. Yan et al. (2004) also used
sub-sequences of nine residues to develop a two-stage classifier by
combining support vector machines (SVMs) and Bayesian network
classifiers trained only on surface residues extracted from protein–
protein heterocomplexes, and achieved an ACC of 72% and a
Matthews correlation coefficient (MCC) of 0.30. Both methods
used sub-sequences of 9 consecutive residues for the prediction of
protein–protein interaction sites.

Several other computational methods have been reported, to
predict residues binding to other proteins in protein sequences, using
machine learning techniques such as NNs, SVMs and the random
forest method. Zhou and Shan (2001) and Fariselli et al. (2002)
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applied NNs to classify surface residues into interface and non-
interface residues based on analysis of the composition of residues
and their structural neighbors. Res et al. (2005) trained SVMs to
classify whether or not a residue is involved in protein–protein
interactions based on evolutionary information on the sub-sequence
of nine consecutive residues, and achieved an ACC of 64%
in leave-one out cross-validation (LOOCV). Wang et al. (2006)
also applied SVMs to predict interface residues using features
extracted from sequence profiles obtained from the HSSP database
(Dodge et al., 1998) and evolutionary conservation scores based
on phylogenetic trees, and trained the SVMs on a non-redundant
set of heterodimeric proteins and achieved an ACC of 65.4%
and an MCC of 0.297. Chen and Jeong (2009) applied a random
forest-based integrative method to predict interaction sites with
a number of features: physicochemical properties, evolutionary
conservation scores, residue-based distance matrices and sequence
profiles, from protein sequences. Sikic et al. (2009) attempted to
identify interaction sites in protein sequences using the random
forests method and nine consecutive residues in a sequence, and
achieved a precision of 85% with a 26% recall and an F-measure of
40% in 10-fold cross-validation.

In this article, we present a new machine-learning method to
predict residues binding to other proteins in protein sequences using
the Naïve Bays classifier (NBC) and kernel density estimation
(KDE) with two features; position-specific scoring matrix (PSSM)
and predicted accessibility (pA). The NBC has been so far applied
to the prediction of DNA/RNA-binding residues (Yan et al., 2006;
Terribilini et al., 2007) and to the prediction of protein interaction
partners (Qi et al., 2006). Although it ignores cooperative effects
of input features (unless cross-features are computed before the
implementation), it has been known as an efficient machine learning
method that works well for different classification tasks (Mitchell,
1997). In the case of protein–protein interactions, the degree of
independence between features is not fully understood and hence
an application of this method is worth attempting. The method
presented here is the first to apply the NBC with KDE to the
prediction of protein–protein interaction sites using PSSM and pA.
The method is tested using LOOCV on a non-redundant set of
186 protein sequences extracted from 105 heterodimeric proteins
with known interaction sites, and is assessed on an additional
set of 72 protein sequences extracted from the protein–protein
docking benchmark set version 3.0 (Hwang et al., 2008). We will
demonstrate that the NBC with KDE contribute to building effective
classifiers for imbalanced data and that PSVIER outperforms a
publicly available sequence-based prediction server.

2 DATASETS AND METHODS
A schematic diagram of the algorithm of the new method presented here is
shown in Figure 1. A query sequence enters to two different NBCs created
based on PSSM and pA, respectively. Probability ratios for each targeted
residue in the sequence are calculated using both NBCs and then normalized
on a scale of 0 to 1 using a sigmoid function, and combined to a score for
classifying residues as interface (positive class) or non-interface (negative
class). Isolated residues predicted as interface are finally filtered out.

2.1 A training dataset of 186 protein sequences
Atraining dataset of protein–protein complexes was extracted from structures
of known protein–protein complexes in the PDB (Berman et al., 2000)

Fig. 1. A schematic diagram of the algorithm of our method presented in
this article.

solved by X-ray crystallography with a resolution of ≤3.0 Å and with the
author-provided biological unit being dimeric. In this work, we focused
on (transient) heterodimeric complexes that consist of two non-identical
chains. To construct a suitable dataset, we applied the following filters in
this order. (i) Following the reasoning that structures with many missing
residues may affect learning, any protein complexes whose chains had
the missing residues ratio (= the number of missing residues of a chain
listed in REMARK465/the total number of residues of the chain ×100) ≥
30% were removed. (ii) UniProtKB/Swiss-Prot (UniProt_Consortium, 2008)
accessions and SCCS (SCOP Concise Classification Strings; Murzin et al.,
1995) were assigned to proteins and any complexes consisting of two chains
with either the same UniProt accessions or the same SCCS, or both, were
removed, but proteins to which SCCS were not yet assigned were retained.
If there were multiple proteins with either the same accession or the same
SCCS, or both, only the protein with the highest resolution was retained.
(iii) Transmembrane proteins listed in PDBTM (Tusnady et al., 2004) were
excluded. (iv) Some of the retained structures, determined as dimeric by the
authors, may be part of larger oligomeric complexes found in other PDB
entries. These structures would have additional interaction sites and might
affect the prediction performance of the method. To eliminate such structures
as much as possible, each of the retained sequences was scanned against the
BLAST pdb database (Altschul et al., 1990) and entries with percentage
identity (= match/max{length_sequence1, length_sequence2}) ≥ 95% were
retrieved as related structures and their oligomeric states examined. Any
sequences whose related structures were determined in an oligomeric state
higher than dimeric were removed. For example, the structure of cyclin-
dependent kinase-2 (CDK2) was determined as a dimer complexed with cell
cycle-regulatory protein CksHs1 (PDB-ID: 1buh), but it was also determined
as a trimer complexed with cycline A and P27klp1 cycline-dependent-kinase
inhibitor (PDB-ID: 1jsu) and thus, CDK2 was removed. (v) Interface buried
surface accessibility (iBSA) and interface polarity was calculated for each
complex by using NACCESS (Hubbard, 1993). Any protein complexes with
iBSAof <500 Å2 or ≥2500 Å2 and interface polarity of ≤25% were removed
to eliminate structures, which may permanently exist in the living cells,
based on the analysis reported by Nooren and Thornton (2003). (vi) The
remaining sequences were clustered using BLASTClust (Altschul et al.,
1990) into groups with ≥25% intra-cluster pair-wise sequence identity over
a 90% overlap on both sequences. From each cluster, the highest resolution
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protein was selected and in case of a tie, the protein with the longest sequence
length was selected. After removal of redundant sequences from each cluster,
we obtained a set of 186 protein sequences from 105 (likely transient)
heterodimeric protein complexes with sequence identity <25% (Dset186;
listed in Supplementary Table S1).

2.2 Definition of interface residues
To determine surface residues, the relative solvent accessibility (rSA) was
calculated for each residue using NACCESS (Hubbard, 1993), which is an
implementation of the Lee and Richards (1971) algorithm. A residue was
considered surface if its rSA was <5% (Jones and Thornton, 1997a, 1997b).
Using this definition, 76.4% (27 670 residues) of a total of 36 219 residues in
Dset186 were defined as surface residues. Furthermore, an interface residue
was defined as a surface residue that lost absolute solvent accessibility (SA)
of <1.0 Å2 on complex formation (Jones and Thornton, 1997a, 1997b). As
a result, we defined 15.2% (5517 residues) of the residues in Dset186 as
interface.

2.3 A test dataset of 72 protein sequences
To construct an independent test set, we used the protein–protein docking
benchmark set version 3.0 (Hwang et al., 2008), the previous version of
which, 2.0 (Mintseris et al., 2005) has been used for an assessment of
structure-based protein–protein interface prediction servers (Zhou and Qin,
2007). Any sequences showing ≥25% sequence identity over a 90% overlap
with any of the sequences in Dset186, using BLASTClust, were removed
from the benchmark set. After the removal, 72 protein sequences from
36 protein complexes were obtained (Dtestset72; listed in Supplementary
Table S2). Proteins that are part of larger oligomeric complexes are not
removed from Dtestset72, because the oligomeric states of unannotated
proteins are often unknown in the real prediction problem. According to
the definition of surface and interface residues described above, we defined
72.8% (13 213 residues) of a total of 18 140 residues in Dtestset72 as surface
residues and 10.6% (1923 residues) as interface.

2.4 Naïve Bayes classifier
The proposed method uses a NBC to distinguish between interface and non-
interface residues. The NBC is generally known as a simple probabilistic
classifier and assumes the independence of features given a class. This
assumption can greatly reduce the complexity of the development of the
classifier. The sequence features of an n-residue sub-sequence (also called
a window), with the target residue being described in the centre, were used
for the input X = (x1 x2 ...xi ...xn) to the NBC. For each target residue, our
NBC produced a binary class C ∈{0,1} where 1 denotes that the target residue
was predicted as interface and 0 denotes non-interface. The NBC was trained
using a set of labeled training dataset (X,C). In the binary classification, the
class for the target residue was determined by comparing two posteriors as
in Equation (1)

P(C =1|X =x1x2 ...xi ...xn )

P(C =0|X =x1x2 ...xi ...xn )
=

P(C =1)
n∏

i=1
Pi(xi |C =1 )

P(C =0)
n∏

i=1
Pi(xi |C =0 )

(1)

and by taking the logarithm as in Equation (2).

log
P(C =1|X =x1x2 ...xi ...xn )

P(C =0|X =x1x2 ...xi ...xn )
= log

P(C =1)

P(C =0)
+

n∑

i=1

Pi(xi |C =1 )

Pi(xi |C =0 )
(2)

The target residue of the input X was classified as 1 (interface residues) if

log
P(C =1|X =x1x2 ...xi ...xn )

P(C =0|X =x1x2 ...xi ...xn )
≥θ (3)

and 0 (non-interface residues) otherwise. The classification threshold θ

determines the trade-off between sensitivity and specificity, and was trained
on the training dataset to maximize the prediction performance.

2.5 Sequence features
Two sequence features were used as the input to the NBC.

(1) PSSM was obtained using PSI-BLAST (Altschul et al., 1997) with
an E-value threshold of 0.001, for three iterations against the BLAST
non-redundant protein sequence database (using BLAST options; −j 3
−d nr −h 0.001). The PSSM describes the evolutionary conservation
of the residue positions, and its scores are typically in the range ±7.
The input X to the NBC was constructed by concatenating the n rows
of the PSSM for each target residue, covering a sub-sequence; X =
(p(1,1) ...p(1,20) p(2,1) ...p(2,20) ...p(i,1) ...p(i,20) ...p(n,20)).

(2) Predicted accessibility (pA) of a residue was obtained using SABLE
(version 2.0; Wagner et al., 2005). The pA represents the rSA of each
residues and is expressed on a scale of 0 (fully buried) to 100 (fully
exposed). SABLE has been reported to achieve overall correlation
coefficients of about 0.66 between actual rSA and pA in independent
test sets (Adamczak et al., 2005), and it was compared with several
other rSA prediction methods and shown to predict most consistently
the observed rSA in protein complexes (Porollo and Meller, 2007).
The input X to the NBC was constructed by concatenating the pA for
each residue in a sub-sequence; X = (a1 a2..ai ...an).

Both features were expressed in integers.

2.6 Kernel density estimation
Conditional probabilities: Pi(xi|C =c), the probability that the feature value
in the i-th position is equal to xi given class c, were estimated using KDE
from a set of labeled training data (X ,C). KDE is a non-parametric way of
estimating the probability density function population (Parzen, 1962). The
probability Pi(xi|C =c) was estimated using Equation (4).

Pi(xi |C =c )= 1

Nch

Nc∑

j=1

K(xi,xj|i|c ) K(a,b)= 1√
2π

e
(a−b)2

2h2 (4)

where K is a Gaussian function kernel with mean zero and variance 1, Nc is
the number of the input data X belonging to class c, xj|i|c is the feature value
in the i-th position of the j-th input X = (x1 x2 ...xi ...xn) in class c, and h is a
bandwidth, or a smoothing parameter. To optimally estimate the conditional
probabilities, h was optimized on the training dataset.

For comparison with KDE, conditional probabilities Pi(xi|C =c) were
also estimated using Laplace (or add-one) smoothing (LS), which is a simple
conventional smoothing method to avoid zero probability as in Equation (5).

Pi(xi |C =c )= mxi |c +1

nc +k
(5)

where mxi|c is the number of the input X that belong to class c and the i-th
position of which is equal to xi, nc is the total number of input X in class c,
and k is the number of possible unique feature values for input X.

2.7 Sigmoid function
Probability ratios calculated from the two different NBCs, based on PSSM
and pA, respectively, were normalized from 0 to 1 using a sigmoid function
as in Equation (6).

σ(ratio)= 1

1+e−(ratioi−s)
(6)

where g (gain or slope parameter) is the steepness factor and s sets the mid
point of the sigmoid curve along the horizontal axis. The final Scorei for
target residue i was determined by combining the two normalized ratios as
in Equation (7).

Scorei = σ(ratio_PSSMi)+σ(ratio_pAi)

2.0
(7)
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2.8 Evaluation measures and validation
The following six measures were calculated to assess the NBC performance,
using counts of true positives (TP; residues correctly predicted as interface),
false positives (FP; residues incorrectly predicted as interface), true negatives
(TN; residues correctly predicted as non-interface) and false negatives (FN;
residues incorrectly predicted as non-interface).

• Recall, or sensitivity, measures the proportion of the known interface
residues that are correctly predicted as interface residues and is defined
as TP/(TP + FN).

• Precision measures the proportion of the residues predicted as interface
that are known interface residues and is defined as TP/(TP + FP).

• Specificity (SP) measures the proportion of the known non-interface
residues that are correctly predicted as non-interface residues and is
defined as TN /(TN + FP).

• Accuracy (ACC) is the proportion of the known residues that
are correctly predicted in all predictions and is defined as
(TP + TN)/(TP + FN + TN + FP).

• MCC indicates the degree of the correlation between the
actual and predicted classes of the residues (Matthews, 1975).
MCC values range between 1, where all the predictions are
correct, and −1 where none are correct. MCC is defined as
((TP×TN)−(FP×FN))/

√
(TP + FP)×(TP + FN)×(TN + FP)×(TN + FN).

• F-measure (Hripcsak and Rothschild, 2005) combines precision and
recall into their harmonic mean, and is defined as 2×(precision
×recall)/(precision + recall).

ACC is known to be inappropriate for an imbalanced dataset since it becomes
high when residues in the majority class are favorably predicted. On the other
hand, the MCC score is considered to be the best evaluation measure for the
overall performance of a method (Baldi et al., 2000).

LOOCV : the performance of the NBC models trained on Dset186 was
assessed using LOOCV. One protein sequence was taken out of the 186
protein sequences and was used as test data, and the remaining sequences
were used as training data. This process was repeated 186 times, and the
final performance results were averaged over all the test results. To find the
best threshold that can optimally classify each residue as interface or non-
interface, predictions were made for each test data at a given threshold and
the averaged performance measures calculated over the 186 iterations. A
range of probability ratios and the final scores from 0 to 1 were examined,
in increments of 0.01. In addition, an area under the receiver operator
characteristic curve (AUC) (Bradly, 1997) was calculated for each test data,
and then the final AUC was averaged over the 186 iterations. To optimize
the NBC models, all possible combinations of KDE smoothing parameter
h, ranging from 0.01 to 0.2 in increments of 0.01, and various lengths of
sub-sequences covering 3–21 residues (wsize), were examined by LOOCV.
Furthermore, to optimally normalize and combine the probability ratios, all
possible combinations of sigmoid parameters g, ranging from 1 to 10 in
increments of 1, and s, ranging from −1 to 1 in increments of 0.1, were
examined.

Randomization test: a randomization test was also carried out to assess
whether or not the method was sensitive to the training dataset (Salzberg,
1997). In the current work, the original class labels of the training dataset
were replaced with randomly determined class labels, while preserving the
class ratio between the number of positive examples and that of negative
examples. The performance of NBC trained on the randomized Dset186
using the same method was then compared with the model trained on the
original Dset186 to assess over-fitting.

True test: the best model, trained on Dset186 and validated by LOOCV,
was tested on Dtestset72, which was independent of Dset186. The
performance measures were calculated for each protein sequence in the
test set, and the averaged performance over the 72 protein sequences was
calculated using the best threshold trained on Dset186.

3 RESULTS

3.1 Performance of NBC with KDE
The NBCs were trained on a set of 186 non-redundant
protein sequences (Dset186) extracted from 105 (likely transient)
heterodimeric complexes to distinguish between interface and non-
interface residues. The dataset contains 5517 interface residues
(15.2%, the positive class) and 30 702 non-interface residues
(84.8%, the negative class). The proposed prediction method was
built on two different NBCs based on PSSM and pA, respectively.
The conditional probabilities that the feature value in the i-th position
is equal to xi given class c were estimated using KDE. To train
the NBCs, we used all possible combinations of KDE smoothing
parameter values 0.01–0.2 and window sizes of length 3–21. All
possible combinations of g parameter values 1–10 and s parameter
values −1.0 to 1.0 in a sigmoid function were used to optimally
combine the two probability ratios. The probability ratios calculated
from the two different NBCs were then combined using the sigmoid
function. The NBCs were evaluated in LOOCV experiments.

To assess over-fitting of the proposed method to the highly
imbalanced training dataset, randomization tests were performed
on the randomized Dset186 using both the PSSM-based and pA-
based NBCs with KDE (Table 1, Model I). Compared with the
models trained on the original Dset186 (Table 1, Model II), the
models trained on the randomized Dset186, where the class labels
of the original dataset were randomly replaced while preserving
the original class ratio, performed much worse (in terms of MCC,
F-measure andAUC). This indicates that the proposed method based
on the NBC with KDE was insensitive to the highly imbalanced
dataset.

Table 1, Model II shows the best performance of the two
NBCs based on PSSM and pA, respectively, and also shows, for
comparison purposes, the best performance of two other models
whose conditional probabilities were calculated using LS. The
PSSM-based NBC with KDE gave slightly higher MCC (0.111)
and F-measure (33.1%) values than those with LS, although they
achieved the same AUC of 0.61. The pA-based NBC with KDE gave
significantly higher MCC (0.130) and F-measure (34.9%) values
than those with LS, and also achieved slightly higher AUC of 0.61.
The window size that achieved the highest performance was 9 in
all the models. Although the changes in AUC were moderate, the
MCC was greatly improved in both models with KDE, especially
in the pA-based model. The best NBCs based on PSSM and pA,
respectively were combined by optimally integrating two probability
ratios for each targeted residues calculated by those NBCs using
a sigmoid function. The performance of the integrated models is
shown in Table 1, Model III. With two different NBCs integrated, the
MCC improved significantly with both KDE and LS. The PSSM+pA
model with KDE achieved an MCC of 0.14, a significantly higher
value than that with LS.

3.2 Reducing isolated positive predictions
To see whether we can improve the performance by eliminating
isolated positive predictions, we investigated the sequence
neighborhood of the actual interface residues observed in the protein
sequences in Dset186. Table 2 shows the distribution of the number
of interface residues in a window of 3–11 consecutive residues
centered on an interface residue. About 79%, 90% and 96% of
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Table 1. The prediction performance evaluated on Dset186 using different NBC models (I–IV)

Model MCC Precision (%) Recall (%) SP (%) ACC (%) AUC F-measure (%) Window size Threshold

(I) Models trained on randomized Dset186 (Randomization Test)
PSSM with KDE 0.018 18.3 2.8 98.1 83.3 0.51 4.9 7 −0.50
PSSM with LS 0.023 19.0 7.1 94.4 80.9 0.51 10.3 1 −0.57
pA with KDE 0.010 15.9 33.3 68.2 62.8 0.50 21.5 3 −0.73
pA with LS 0.025 17.5 18.6 84.0 73.8 0.50 18.0 1 −0.71

(II) Models trained on original Dset186
PSSM with KDE 0.111 25.4 47.4 65.4 62.6 0.61 33.1 9 −0.39
PSSM with LS 0.101 24.7 46.7 63.7 61.2 0.61 32.3 9 −0.80
pA with KDE 0.130 25.6 54.9 61.0 58.8 0.61 34.9 9 −0.72
pA with LS 0.099 22.7 62.0 49.9 51.9 0.59 33.2 9 −0.80

(III) Models created by integrating the best PSSM-based NBC with the best pA-based NBC using a sigmoid function
PSSM + pA with KDE 0.140 27.2 48.2 68.2 64.2 0.62 34.8 – 0.37
PSSM + pA with LS 0.124 23.7 65.7 49.2 52.4 0.61 34.8 – 0.38

(IV) The best performance of models (III) after filtering
PSSM + pA with KDE 0.151 30.6 41.6 74.3 67.3 – 35.3 – 0.37
PSSM + pA with LS 0.130 24.1 65.9 50.3 53.2 – 35.3 – 0.43

(I) The best performance of the PSSM-based and pA-based models trained on randomized Dset186 either with KDE or with LS (without KDE) in LOOCV. (II) The best performance
of the PSSM-based and pA-based models trained on original Dset186 either with KDE or with LS in LOOCV. (III) The best performance of the models created by integrating
the best PSSM-based model with the best pA-based model using a sigmoid function. (IV) The best performance after reducing false positives using filtering, which eliminates
isolated positive predictions with ≤N additional interface residues in a sub-sequence. For the PSSM + pA based NBC with KDE, wsize (a length of a sub-sequence) = 11, N =2 and
threshold = 0.37 achieved the best performance. For the PSSM + pA-based NBC with LS, wsize = 7, N =1 and threshold = 0.43 achieved 0.43.

Table 2. The ratio of interface residues observed within a sub-sequence with an interface residue being described in the centre

Number of interface residues observed within a sub-sequence belonging to the positive class (%)

Window size 1 2 3 4 5 6 7 8 9 10 11

3 21.35 47.22 31.48
5 10.42 24.72 28.55 23.60 12.80
7 4.42 13.56 20.81 25.09 19.32 11.55 5.38
9 2.23 7.94 13.90 19.27 21.32 16.77 11.09 5.18 2.47
11 1.87 6.00 10.80 15.35 17.20 17.91 13.88 8.50 4.82 2.65 1.21

the observed interface residues had at least one additional interface
residue in a sub-sequence of 3, 5 and 7 residues, respectively.
Furthermore, about 98% of the observed interface residues had at
least one additional interface residue and about 76% had at least
four interface residues in a window of nine consecutive residues
(within four residues on either side). These results are similar to those
reported by Ofran and Rost (2003) and Yan et al. (2004), and clearly
indicate that interface residues tend to form clusters in sequences. A
filtering methods has been previously proposed to eliminate isolated
positive predictions with ≤N additional interface residues in a
sub-sequence (Ofran and Rost, 2003; Res and Lichtarge, 2005).

In the current work, we implemented a similar filtering method.
To maximize the ability of the filtering, all possible combinations
of wsize ranging from 3 to 11 and the cutoff N ranging from 1 to
(wsize + 1)/2 were examined. As a result, when we converted all
isolated positive predictions with ≤2 other positive residues in a
window of 11 residues, the MCC of the PSSM+pA-based NBC with
KDE and that with LS increased to 0.151 and 0.130, respectively, and
the F-measure also increased from 34.8% to 35.3% in both models

(Table 1, Model, IV). This filtering method may convert some of the
true positives to false negatives, yet overall, it was shown to produce
the class labels better correlated with the actual class labels (Table 1).
Therefore, the PSSM+pA based NBC with KDE that achieved the
highest MCC of 0.151 was selected as the final model (and named
PSIVER, Protein–protein interaction SItes prediction serVER).

3.3 Predicting binding residues in Dtestset72
A test that makes predictions for protein sequences not related
to those used in training enables us to compare the performance
of our method directly to that of other previously published
methods, if their implementations are publicly available. For this
purpose, we created an independent dataset (Dtestset72) from
the dockingbenchmark set v3.0 (Hwang et al., 2008), and made
predictions using the best model trained on Dset186 (PSIVER).
For comparison, we chose ISIS (Ofran and Rost, 2007) and
SPPIDER (Porollo and Meller, 2007, the sequence-based method
was introduced as an experimental function on 25 November 2008).
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These servers have been trained on datasets different from Dset186;
ISIS was trained on a set of 1134 protein chains extracted from
333 transient protein complexes, and SPPIDER used a set of
436 chains including 262 from heterocomplexes and 173 from
homocomplexes. The interface residues were differently defined
in these three servers; ISIS used ≤6 Å distance constraints for
interatomic contacts between any atoms of the target chain and
any atoms of the interacting chains (Ofran and Rost, 2007), and
SPPIDER defined the interface residues based on >4% rSA change
and >5 Å2 SA change on complex formation of the exposed surface
residues, which were defined if their rSA was >5% (Porollo and
Meller, 2007). According to the definitions of ISIS and SPPIDER,
15.4% (2791 residues) and 9.0% (1629 residues) of the residues in
Dtestset72 were defined as interface residues, respectively. In our
definition shown in section 2.2, 10.6% (1923 residues) were defined
as interface residues. The ISIS interface definition produces a larger
number of interface residues, and this could give a higher chance
for predictors to correctly predict interface residues. Thus, these
three serves were assessed on Dtestset72 using the three different
interface definitions with default parameters. The default threshold
for PSIVER was 0.37, which gave the best performance in the
LOOCV. The prediction results were evaluated based on MCC and
F-measure (Table 3).

Table 3. The prediction performance of PSIVER, ISIS (Ofran and Rost,
2007) and SPPIDER (Porollo and Meller, 2007) tested on Dtestset72 with
different interface definitions

Method MCC Precision Recall SP (%) ACC (%) F-measure
(%) (%) (%)

PSIVER interface definition (>1.0 Å2 SA change)
PSIVER 0.135 25.0 46.5 69.3 66.1 32.5
ISIS 0.091 21.0 35.0 76.2 70.9 26.3
SPPIDER 0.081 20.4 45.4 64.7 61.7 24.6

ISIS interface definition (<6 Å interatomic distance)
PSIVER 0.129 30.6 44.3 69.5 64.7 31.4
ISIS 0.091 26.9 33.3 76.6 68.9 27.9
SPPIDER 0.072 26.0 43.1 63.9 60.6 27.1

SPPIDER interface definition (>4% rSA and >5 Å2 SA change)
PSIVER 0.130 22.2 47.0 69.0 66.4 25.6
ISIS 0.097 18.9 36.6 76.1 71.9 23.2
SPPIDER 0.077 17.8 45.6 63.6 62.0 21.9

As shown in Table 3, the performance values of the three servers
changed little with different interface definitions. Although ISIS
produced a higher ACC score than PSIVER and SPPIDER, ACC
is generally considered to be an inapropriate evaluation measure
for imbalanced datasets (Baldi et al., 2000); for example, if all
residues in Dtestset72 were predicted as non-interface, ACC would
be 84.8%. The MCC score represents how well predictions correlate
with observed class labels, and is considered to be the best evaluation
measure for the overall performance of a method (Baldi et al., 2000).
Based on MCC and also F-measure values, PSIVER outperformed
ISIS and SPPIDER as shown in Table 3. The performance of
each protein sequence in Dtestset72 is shown in Table S2. We
further benchmarked PSIVER against ISIS and SPPIDER using
subsets of Dtestset72. As highlighted by Ezkurdia et al. (2009),
the performance of predictors depends to a certain extent on the
dataset used for testing. Thus, we assessed the performance of the
three servers on five non-overlapping test sets of 30 or 50 protein
sequences, randomly chosen from Dtestset72. As shown in Table 4,
the performance of the servers tested on different subsets did change
indeed, but PSIVER always outperformed the other servers.

4 DISCUSSION AND CONCLUSION
This article presents a new machine learning method (PSIVER) for
the prediction of protein-protein interaction sites, using the NBC
and KDE with two sequence features, PSSM and pA. The proposed
method was assessed using LOOCV, which is generally known
to be an almost unbiased (but expensive) validation method, on
a dataset of 186 non-redundant protein sequences obtained from
105 (likely transient) heterodimers (Dset186) and by prediction
on a dataset of 72 protein sequences not related to those used
in training (Dtestset72). From Dset186, we excluded permanent
homocomplexes (Jones and Thornton, 1997a, 1997b; Nooren and
Thornton, 2003), because protein–protein interactions regulating a
variety of functions in the cells tend to be transient. Both datasets
were highly imbalanced ones; the proportion of the residues known
to be interface in Dset186 and Dtestset72 was 15.2% and 10.6%,
respectively. These figures were considerably smaller than those
in the datasets used by other published methods (Ofran and Rost,
2007; Res et al., 2005; Sikic et al., 2009; Wang et al., 2006; Yan
et al., 2004). Imbalanced datasets are generally considered to cause
over-fitting to the majority class and affect the performance.

To deal with these imbalanced datasets, we applied, in the current
work, the NBC and KDE to the prediction of protein–protein

Table 4. Prediction results for five subsets of 30 or 50 non-overlapping protein sequences randomly chosen from Dtestset72

Method Subset1 Subset2 Subset3 Subset4 Subset5

Five subsets of 30 non-overlapping sequences
PSIVER 0.125 (26.5) 0.118 (26.9) 0.138 (27.8) 0.136 (26.6) 0.144 (28.8)
ISIS 0.102 (24.7) 0.086 (24.6) 0.075 (23.8) 0.118 (24.9) 0.106 (26.6)
SPPIDER 0.059 (22.5) 0.068 (24.4) 0.044 (20.6) 0.054 (22.2) 0.080 (24.6)

Five subsets of 50 non-overlapping sequences
PSIVER 0.140 (27.7) 0.136 (27.2) 0.150 (29.3) 0.136 (27.1) 0.145 (29.1)
ISIS 0.098 (24.6) 0.082 (23.7) 0.090 (24.8) 0.091 (24.4) 0.099 (26.1)
SPPIDER 0.077 (23.5) 0.091 (24.0) 0.081 (24.5) 0.083 (23.4) 0.076 (23.9)

The MCC score and F-measure (in brackets, %) are shown.
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interaction sites. The NBC assumes that the sequence features of
each residue in a sub-sequence of proteins are independent of
each other. Although this assumption is not always true, it does
dramatically reduce the complexity of the model development
and classification task, since the estimation of high-dimensional
probabilities is reduced to that of one-dimensional conditional
probabilities. Furthermore, the conditional probabilities for each
feature in each position of a sub-sequence were estimated using
KDE, which can effectively extrapolate a probability density
function from a collection of feature values. These two elements used
in the proposed method contributed to dealing with the imbalanced
data effectively, as demonstrated clearly in the randomization test.

Although we included only those protein structures that were
annotated as dimeric by the authors and we also eliminated any
protein whose related structures were determined in an oligomeric
state higher than dimeric, some of the proteins in Dset186 and
Dtestset72 might still have additional protein–protein interaction
sites and thus might have affected the performance of the method.
Nevertheless, the method had to be assessed based on the class
labels of residues observed in available protein complexes. As a
result of the assessment, the highest performing model used both
features over a window of nine residues, and achieved an MCC of
0.140, an F-measure of 34.8% and an AUC of 0.62 in LOOCV. The
calculation time required for LOOCV was 14 min 23 s (about 4.7 s
for one testing) on the system of a single 3GHz dual core CPU and
2 GB memory. The calculation time is likely to be 1000 times faster
than that required for an equivalent operation using SVMs (data not
shown). When filtered out all isolated positive predictions with ≤2
additional interface residues in a window of 11 residues, the model
achieved an MCC of 0.151 and an F-measure of 35.3%.

An objective comparison with previously published methods is
an important issue in the development of almost all computational
methods. Ofran and Rost (2007) and Sikic et al. (2009) pointed
out that direct comparison with the performance reported in the
literature is nearly impossible, since different datasets, different
definition of interaction sites, and different cross-validation methods
were used, and also since not all method implementations were
publicly available. Even when the details of the training datasets
were available, those we have examined contained a number of
highly similar sequences (≥25% sequence identity over a 90%
overlap of both sequences using BLASTClust) or were inconsistent
in some other ways, for example, the dataset of 99 polypeptide chains
used by Chen and Jeong (2009), upon inspection, was found to
contain a number of highly similar sequences [e.g. PDB-IDs; 1got
(chain B) and 1mct (chain A) were the same proteins as PDB-IDs;
1gg2 (chain B) and 1avw (chain A), respectively], and therefore, we
had to abandon the use of these datasets, as a reliable validation and
comparison would have been impossible. Instead, we devised a true
test that makes predictions for protein sequences not related to those
used in training. Such a test enables us to compare the performance
of our method directly to that of other previously published methods,
if their implementations are publicly available. We compared the
performance of PSIVER on Dtestset72 with that of the ISIS server
(Ofran and Rost, 2007) and the sequence-based version of SPPIDER
(Porollo and Meller, 2007) with default parameters. This test showed
that PSIVER outperformed ISIS and SPPIDER, with an MCC of
0.135 and an F-measure of 32.5% (PSIVER interface definition;
Table 3), and the results of the individual proteins (Supplementary
Table S2) suggested no bias from the training using transient

heterodimeric complexes alone, since PSIVER outperformed the
other servers that had been trained on different types of oligomeric
complexes.

The proposed method, therefore, enables experimental biologists
to identify potential interface residues in unknown proteins from
sequences alone, and to design targeted mutations in order to unravel
protein functions. Furthermore, incorporating PSIVER predictions
with structural information (if available) will give further valuable
insights into the identification of protein–protein interaction sites
and the functional annotation of unknown proteins. PSIVER is freely
available at http://tardis.nibio.go.jp/PSIVER/.
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