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Because computation is becoming increasingly inex-
pensive, statistical algorithms that would have required a 
supercomputer a decade ago are now practical on a desk-
top personal computer. One example is the permutation 
test, a computationally intensive alternative to the F or 
t test. Unlike the F test, the permutation test (also called a 
randomization test) does not assume a particular distribu-
tion for error, and, unlike nonparametric tests that trans-
form the data into ordinal values, it uses all information in 
the data (see Bradley, 1968).

The Permutation Test
Because the permutation test may be unfamiliar, a re-

view of its logic is in order. Perhaps the most straightfor-
ward comparative experiment is the two-group completely 
randomized experimental design. The unit of analysis in 
such an experiment (i.e., the subjects) might be plots of 
land in a study of fertilizers, pigs in a study of animal 
growth, or undergraduates in a study of recall. At the out-
set of the study, a pool of subjects is selected to be as 
uniform as possible, but the individual subjects within the 
pool are inherently variable. The experimenter divides the 
subjects into conditions: an experimental cell and a con-
trol cell. To assess the possibility that variability among 
the subjects is large enough to mask the treatment, we turn 
to statistical reasoning.

Statistical reasoning enlists probability theory to deal 
with the possibility that variability among subjects has 
masked the treatment of interest. The justification for 
applying probability concepts rests on how the subjects 
were assigned to the conditions in the experiment before 
the treatment was administered. Assignment at random 

implies that each subject has an equal chance to be as-
signed to either condition; random assignment introduces 
chance to the experiment and simultaneously defines a di-
rect model for how chance may affect the outcome. If the 
treatment has no effect, differences between the groups 
must reflect subject-to-subject variability. Before the 
groups were formed, however, each subject had an equal 
chance of being assigned to either group. When he or she 
ran the experiment, the experimenter picked one assign-
ment at random from the set of possible assignments. By 
using a random assignment, the experimenter introduced 
a chance component to the experiment. The chance com-
ponent justifies the use of probability theory to assess the 
outcomes of the possible assignments. To do so, he or she 
must first select an appropriate measure with which to 
compare the cells (e.g., the difference in two means), then 
calculate that measure for each of the ways in which the 
subjects could have been assigned to the cells. Armed with 
the chance calculation, the experimenter need only count 
the number of outcomes that would have yielded a differ-
ence in the measure as extreme as, or more extreme than, 
the difference actually obtained. If the number of extreme 
outcomes is small relative to the number of possible out-
comes, the experimenter has to accept one of two propo-
sitions: (1) The difference reflects noise, and chance has 
played an unlikely trick, or (2) the effects of the treatment 
are real. It is conventional to reject the first proposition 
(known as the null hypothesis, H0) in favor of the second if 
the number of extreme outcomes represents less than 5% 
of the possible outcomes. The test leading to the choice 
is called the test for significance, and a test conducted by 
considering all of the possible outcomes is called a per-
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Perhaps the best-known example of a permutation test 
is Fisher’s (1966) reanalysis of Charles Darwin’s data from 
a study of plant fertilization. In Darwin’s experiment, 15 
pairs of plants were grown in pots, one pair per pot. One 
randomly selected plant from each pair was self-fertilized, 
the other was cross-fertilized, and Darwin measured the 
plants’ growth as a function of fertilization. There are 215 

possible outcomes for the experiment; the set of outcomes 
can be computed by systematically swapping the sign of 
the difference in growth for the two plants in each pot (see 
Mewhort, 2005, for a 25-line f90 subroutine to compute the 
set of outcomes). The normal-error chance model yielded 
the same result as the permutation test, and Fisher used that 
fact to argue for the validity of tests based on normal error. 
In effect, Fisher treated the permutation test as the bench-
mark against which to judge the normal-error model. In his 
words, because permutation tests “assume less knowledge, 
or more ignorance, of the experimental material than do the 
standard [normal-distribution] tests” (p. 47), they provide 
the means with which to assess an experiment when there is 
reason to believe that “simpler tests may have been injured 
by departures from normality” (p. 48).

APPLYING THE RANDOMIZATION TEST  
TO FACTORIAL EXPERIMENTS

Despite its several advantages, discussions of the permu-
tation test are usually focused on two-cell designs largely 
because the randomization test becomes unmanageable in 
larger designs. Recall the two-cell completely randomized 
example. With 10 subjects in each cell, the number of combi-
nations of possible outcomes was C(20,10)  184,756. Three 
or four times that number is manageable on a modern PC. 
Suppose, however, that the experimental question calls for a 
2  2 factorial design of four cells with 10 subjects in each 
cell. Now the number of combinations is huge: C(40,10)  
C(30,10)  C(20,10)  847,660,528  30,045,015  
184,756  4,705,360,871,073,570,227,520—a value large 
enough to render the randomization test impractical for rou-
tine work.

Is there a practical way to use the permutation test in a 
factorial experiment? In this article, we suggest that there 
is a practical technique, at least for within-subjects experi-
mental designs. In particular, we show that the computa-
tional load can be reduced by using orthogonal contrasts 
to exploit Gill’s (2007) new computational algorithm to 
count cases.

Reducing the Computational Labor
Approximate tests based on sampling. One way to 

reduce the load is to exploit an approximate method based 
on sampling a subset of the possible outcomes. Hayes 
(2000), for example, studied the problem of heterogeneity 
of variance for cells with unequal numbers of observa-
tions by sampling 5,000 of the possible outcomes instead 
of computing the full number of possible outcomes (see 
also Edgington, 1995; Manly, 1997; Mewhort, Kelly, & 
Johns, 2009).

The approximate permutation test has the advantage of 
limiting the computational load, but it introduces a potential 

mutation, or randomization, test (Box & Andersen, 1955; 
Pitman, 1937).

A permutation test is tedious to compute. For ex-
ample, if two cells each contain 10 subjects, there are 
184,756 combinations to consider.1 Hence, even though 
the chance model maps directly onto the procedure of 
the experiment—a procedure common in many areas of 
science, including agriculture, biology, medicine, and 
 psychology—the permutation test is not widely used. In-
stead, researchers use a test based on an indirect model for 
chance, first proposed by C. F. Gauss (1777–1855) as part 
of an analysis of measurement error (see Stigler, 1986).

Gauss’s analysis of measurement error treats each score 
as the sum of two parts: a constant defined by the condi-
tions common to the subjects (e.g., the apparatus and mea-
surement procedures) and an error component defined by 
the individual subjects when the measurement was taken. 
Because the subjects were assigned to cells at random, 
the error values can be treated as random samples from a 
single population defined by the constant and by measure-
ment error. The test for significance estimates the prob-
ability that the scores came from the same distribution of 
error, assuming, of course, that the treatment(s) had no 
real effect.

A test for significance based on sampling theory re-
quires calculation of only the mean and variance for each 
cell, and, for that reason, the arithmetic is easier to com-
pute than the arithmetic for a permutation test. The fly in 
the ointment is that the indirect chance model requires the 
experimenter to know (or assume) the distribution of error. 
Gauss derived the normal distribution and discovered that 
it often describes measurement error; experimenters rou-
tinely rely on his discovery. Whether measurement error 
is well described by the normal distribution remains an 
open question (e.g., Mecceri, 1989). According to Gabriel 
Lippmann (1908 Nobel Laureate in Physics), empiricists 
accept it because they think it is a mathematical theorem, 
and mathematicians accept it because they think it is an 
experimental fact (cited by Thompson, 1942).

Because the permutation test’s chance model is based 
on the assignment of experimental units to conditions, the 
test does not assume a particular distribution of error. Nev-
ertheless, it works best when error has the properties that 
Gauss built into his account of measurement error: Small 
errors are more frequent than large ones, and the distribu-
tion is symmetrical, so the mean of the measurements is 
not biased systematically (Hoeffding, 1952). Because the 
chance model is based on the assignment of subjects to 
conditions, each test is local to a particular experiment, 
and, for that reason, how the underlying distribution of 
error affects the test’s performance remains largely unex-
plored (but see Baker & Collier, 1966; Keller-McNulty & 
Higgins, 1987; Kempthorne & Doerfler, 1969; Romano, 
1990). Finally, because the permutation test closely paral-
lels the procedure of a comparative experiment, there is 
good reason to prefer it over parametric tests (e.g., Lud-
brook & Dudley, 1998), and because it does not depend on 
a particular error distribution, it can be more sensitive to 
true differences among cells than the corresponding F test 
can (e.g., Mewhort, 2005).
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be recast into a set of two-cell comparisons, Gill’s algorithm 
could be applied to factorial designs. The idea in recasting 
factorial designs into two-cell comparisons is to reduce the 
computational load while escaping the potential problem, 
identified by Pagano and Tritchler (1983), of different in-
vestigators obtaining different results from the same data.

Orthogonal contrasts provide a possible method with 
which to decompose factorial designs (see Doncaster & 
Davey, 2007). Orthogonal contrasts are usually used in an 
ANOVA to partition variance into nonoverlapping com-
ponents. To illustrate, consider the sum of squares (SS) 
for any arbitrary four values. Using M to denote the mean 
of the four values and mi to denote each of the separate 
values, the SSvalues can be defined as
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Table 1 shows orthogonal contrasts for 2  2 facto-
rial designs. The table shows the two levels of each factor 
(labeled A1, A2, B1, and B2) associated with a weight in-
dicating how the cell contributes to each factor. For Fac-
tor A, for example, there are two cases labeled A1, and, to 
compute the A effect, their combined values are compared 
with the combined values for the two cases of A2. The 
weights for Factors A and B appear in the first rows of the 
table, and the weights for their interaction—calculated by 
multiplying the weights for the main effects—appear in 
the bottom row.

With the weights presented in Table 1, it is easy to com-
pute the SSvalues into three components, one for each fac-
tor: A, B, and A B. For Factor A, we use WTAi to refer 
to the four weights that define the A effect; for Factor B, 
we use WTBi to refer to the four weights that define the B 
effect; and so forth. For Factor A, the calculation is
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The SSs for the other components are defined analogously.3
Because the comparisons are orthogonal, the SSmeans  

SSA  SSB  SSA B; that is, all of the information (i.e., 
variability) among the scores has been taken into account 
in nonoverlapping parts. Nonorthogonal comparisons are 
not independent. Because nonorthogonal contrasts use 
overlapping information, the corresponding sum of non-
orthogonal contrasts will not equal the SS for the scores.

Using orthogonal contrasts to recast a factorial de-
sign into two-cell comparisons, the computational load 
is greatly reduced. If each cell has 10 subjects in a com-

problem. As Pagano and Tritchler (1983) noted, an approxi-
mate test is unsatisfying, because it raises “the possibility 
of different investigators obtaining different results with 
the same data” (p. 435).2 In the 27 years since Pagano and 
Tritchler noted the problem, computing costs have dropped 
dramatically. As a result, one can minimize the problem by 
increasing the sample size. Nevertheless, what is needed 
is a method that will limit the computational load without 
introducing the possibility that different investigators might 
obtain different conclusions from the same data.

Gill’s (2007) algorithm. Gill (2007) invented an ex-
tremely clever algorithm that brings the computing cost 
for a two-cell permutation test into manageable propor-
tions. His method involves a Heaviside impulse function 
and a Fourier expansion to count extreme cases. Briefly, 
under H0, all combinations of the data in a permutation test 
are equally likely. The idea is to compute the proportion 
of cases that is as extreme as, or more extreme than, the 
data observed. Gill defined a statistic T with an observed 
value t. Hence, the one-tailed probability of interest can 
be defined as p(T  t)  p(T  t)/2.

To compute the probability, Gill (2007) exploited the 
Heaviside function, H,

 

H x

x

x

x

( )

,

,

,

.

1 0

1
2

0

0 0  

(1)

Using the Heaviside function, the one-tailed alpha can be 
defined as
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where tr is the value on the rth combination. To evaluate 
alpha, Gill used the Fourier expansion; that is,
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where k  2  k   1 (k  is an iteration parameter with 
a theoretical limit at infinity), and (a) is the imaginary 
part of a. For practical purposes, 50 terms of the series 
yields a satisfactory answer; hence, we set the upper limit 
for k  to 50. To ensure the validity of the expansion (i.e., 
to ensure that a  ), Gill scales the data so that

 
max .t tr 9

10  
(4)

The value of max(t  tr) is easy to compute by first rank-
ing the data to obtain the most extreme combination.

With Gill’s (2007) algorithm, the computational cost of 
computing a two-cell permutation test can be brought to 
a practical level on a recent PC; it is no more costly than 
computing an F or t, and it is vastly faster than comput-
ing the full enumeration of all combinations (an f90 pro-
gram to compute Gill’s algorithm is available at http://brm 
.psychonomic-journals.org/content/supplemental).

Approximate Tests Without Sampling
Gill’s (2007) algorithm reduces the computational load 

magnificently in two-cell designs. If a factorial design could 

Table 1 
Orthogonal Contrasts for a 2  2 Factorial Design

A1 A2

 Factor  B1  B2  B1  B2  

A 1 1 1 1
B 1 1 1 1

 A B  1  1  1  1  
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there are 2N permutations to consider; for a four-cell ex-
ample, there are (4!)N permutations to consider. Using 
orthogonal comparisons, we can apply Gill’s (2007) 
algorithm to three contrasts, each of which requires 2N 
permutations.

In the first Monte Carlo study, we generated data for 
each of 20 subjects for the eight cells of a three-factor ex-
periment (Factors A, B, and C; see Table 2). We used a ran-
dom number generator adapted from software by Press, 
Teukolsky, Vetterling, and Flannery (1992; called ran3) 
combined with a normal-deviate filter (called gasdev; also 
adapted from Press et al., 1992). We selected the param-
eters so that the sensitivity of the tests for each effect (A, 
B, C, A B, A C, B C, and A B C) would cover a full 
range—that is, so that the probability of rejecting the null 
hypothesis at the 5% level of significance would range 
from .05 with a null treatment to approximately 1 with a 
large separation between the means. Specifically, we set 
the mean, , of the normal generator at 0 and the standard 
deviation, , at 1. We increased the separation among the 
means for each factor and interaction from 0 to 5.5 in 11 
equal steps.

For each set of artificial data, we computed seven per-
mutation tests defined by contrasts for the comparisons 
shown in Table 2. In addition, we computed the corre-
sponding ANOVA using the same data; each F test used 
an error term based on the interaction of the contrast with 
subjects (i.e., C  S)—the standard procedure for a facto-
rial design.

To facilitate the calculation, we defined a vector C 
of difference scores for each contrast, C, calculated by 
weighting each subject’s data by the appropriate contrast 
weights; that is,
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where i indexes the subject, and j indexes each of the eight 
cells in turn.

Armed with C, the necessary SS can be computed:

 

SSC

iC
i

N

jC
j

N WT

1

2

2

1

8

 

(8)

pletely randomized experimental design, the total number 
of ways in which they can be assigned to the cells is

 C(40,10)  C(30,10)  C(20,10) 
 4,705,360,871,073,570,227,520 (~4  1021).

Using orthogonal contrasts, however, each factor (A, B, 
and A B) combines the data into two 20- subject 
cells. Hence, each factor requires only C(40,20)  
137,846,528,820 combinations. Combining the three 
comparisons, the factorial analysis would require 3  
C(40,20)  413,539,586,460 combinations—a reduc-
tion in the computational cost by more than 10 orders of 
magnitude (specifically, by a factor of 11,378,259,845). 
In summary, using orthogonal contrasts to define the 
comparisons, the number of combinations can be re-
duced to a fraction of the total, but, unlike sampling-
based approximate tests, there is no danger that differ-
ent investigators might obtain different results using the 
same data.

Reducing the computational requirements by several 
orders of magnitude is a step forward, however, only if 
the resulting comparisons are sound. Although approxi-
mate tests based on sampling reduce the computational 
load, their validity is based on the idea that a large sample 
of possible comparisons is representative of the complete 
set. Approximate tests are open to sampling error, as Pa-
gano and Tritchler (1983) noted. The question remains, 
then, whether orthogonal contrasts cheat the logic of the 
permutation test. Recall that the permutation test requires 
us to assess the proportion of cases that yield results as 
extreme as or more extreme than the results obtained, not 
a subset of those cases. Because the contrasts organize 
the analyses into components that examine fewer than the 
total number of the cases, a skeptic might ask whether 
permutation tests based on orthogonal contrasts are fair to 
the logic of the test.

One way to address the skeptic’s question is to com-
pare results using permutation tests based on contrasts 
against the corresponding results using an ANOVA. The 
logic, here, is to apply Fisher’s (1966) validation strategy 
in reverse. Fisher used the permutation test to validate 
tests based on normal error. The following analyses re-
verse the logic by comparing results from an ANOVA 
against results from randomization tests. In both cases, 
the tests will be based on orthogonal contrasts under 
conditions that meet the assumptions of an ANOVA. If 
the exact and distribution-based tests yield substantially 
the same result, it follows that permutation tests based 
on orthogonal contrasts do not cheat the logic of the ran-
domization test.

Correlated observations. The first Monte Carlo 
analysis is based on a repeated- or correlated-measures 
design of the sort illustrated by Fisher’s (1966) reanalysis 
of Darwin’s plant fertilization experiment. In a repeated 
measures design, each condition is administered to the 
same subjects, and the order of the conditions is ran-
domized across time. The chance model is based on the 
number of ways in which each condition can be ordered 
across subjects. For a two-cell example with N subjects, 

Table 2 
Orthogonal Contrasts for a 2  2  2 Factorial Design

A1 A2

B1 B2 B1 B2

Factor  C1  C2  C1  C2  C1  C2  C1  C2

A 1 1 1 1 1 1 1 1
B 1 1 1 1 1 1 1 1
C 1 1 1 1 1 1 1 1
A B 1 1 1 1 1 1 1 1
A C 1 1 1 1 1 1 1 1
B C 1 1 1 1 1 1 1 1
A B C  1  1  1  1  1  1  1  1
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proportion of times that the F test allowed the null hypoth-
esis to be rejected at the 5% level of significance as a func-
tion of the separation between means. The bottom panel 
shows the corresponding data using the permutation test 
instead of the F test.

As is shown in Figure 1, when the null hypothesis was 
true, both the permutation test and the F test allowed the 
null hypothesis to be rejected about 5% of the time. The 
probability of detecting the effect increased systematically 
as the separation between the means was increased. There 
was no systematic advantage for the permutation test over 
the F test or vice versa, and there was no difference be-
tween main effects and interactions. Performance of all 
of the tests was identical. As Fisher (1966) anticipated, 
when the underlying error is normal, the F and permuta-
tion tests provided essentially the same results. We con-
clude, therefore, that by using a subset of the total number 
of outcomes, the contrast-based calculation does not cheat 
the permutation test. Rather, by organizing the compari-
son among the cells into nonoverlapping components, or-
thogonal contrasts also provide an efficient approximate 
permutation test that escapes the problems associated with 
approximate tests based on sampling.

Figure 1 shows results for 20 subjects. We have run the 
comparison using several numbers of subjects and several 
different repeated measures designs. With one qualifica-
tion, the F and permutation tests are equivalent when the 
assumptions of the F test have been met. The qualifica-
tion concerns the number of subjects: When N is small 
(e.g., 4), the number of possible outcomes for each factor 
is so small (e.g., 24  16) that it is not possible for the 
permutation test to find a significant result, regardless of 
the difference between the means. The F test—based on 
normal distribution theory—can show a significant differ-
ence if the difference between means is large enough. The 
difference can be attributed to the gift of information pro-
vided by the Gaussian assumptions in the F test’s model 
for error. Hence, the randomization test should not be used 
when N is less than about 10.

Independent observations. In the next Monte Carlo 
study, we generated data for eight cells using the same 
software tools as before. Each cell included data for 10 in-
dependent subjects. As before, we selected parameters 
so that the sensitivity of the tests for each effect (A, B, 
C, A B, A C, B C, and A B C) would cover a full 
range—that is, so that the probability of rejecting the null 
hypothesis at the 5% level of significance would range 
from .05 with a null treatment to approximately 1 with a 
large separation between the means. Specifically, we set 
the mean, , of the normal generator at 0 and the stan-
dard deviation, , at 1. We increased the separation among 
the means for each factor and interaction from 0 to 5.5 in 
11 equal steps.

When the null hypothesis was true, both the permuta-
tion test and the F test allowed the null hypothesis to be 
rejected about 5% of the time. The probability of detect-
ing a true effect increased systematically as the separa-
tion between the means was increased. Provided that all 
of the variability among cells could be described by ex-
actly one comparison, the F and randomization tests were 
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Hence, the FC  SSC /SSC S / (N 1). For the ANOVA, we 
calculated the probability using routines recommended by 
Press et al. (1992).

To compute the permutation test, we calculated the 
differences between the means for each possible factor 
(i.e., the  vectors) and tallied the number of outcomes 
as extreme as or more extreme than the obtained (ini-
tial) outcome using Gill’s (2007) algorithm. The result-
ing probability was defined by the ratio of the number 
of extreme cases to the number of possible assignments. 
Finally, we repeated the exercise 10,000 times to obtain 
stable estimates.

Note that the ANOVA and the permutation test use the 
same data from the experiment, namely the  vectors. 
Nevertheless, the probability calculations are based on 
very different principles: sampling from the same Gauss-
ian distribution and permutation of possible differences, 
respectively.

Figure 1 summarizes the results. The top panel shows 
a family of sensitivity curves obtained by calculating the 
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Figure 1. Comparison of the F and permutation tests using or-
thogonal contrasts. The curves labeled A to A B C refer to the 
factorial effects described in Table 2.
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sensitivity to the true effect of Factor A. The three decreas-
ing curves presented in Figure 2 show the probability of 
rejecting a true null hypothesis (a null A C interaction) 
when systematic variance was added to Factors A, B C, 
and C. In the demonstration illustrated in Figure 2, all of 
the effects were of the same magnitude; the conservative 
behavior of the test would be exaggerated further if the 
magnitude of the additional factor(s) were increased.

The reason for the increasingly conservative behavior 
of the randomization test is easy to understand. For each 
comparison, the data are split into two equal cells. The 
randomization test compares the difference between the 
means of the cells with the variability within the two cells 
defined by the contrast. When only one of the factors or 
interactions is non-null, all of the variability within the 
two cells constitutes noise. When more than one factor 
or interaction is non-null, the variability in the two cells 
is inflated by the variability associated with the non-null 
factor(s). As a result, the randomization test becomes too 
conservative.

Summary and Conclusions
The randomization/permutation test does not depend on 

a known distribution for error and can be more sensitive to 
real effects than is the corresponding parametric test. In 
spite of its advantages, the randomization/ permutation test 
is usually thought to be impractical for factorial designs, 
because the computational costs become unmanageable in 
larger designs. Gill’s (2007) algorithm brings the compu-
tational costs of a permutation test to a practical level, but 
it was designed for a two-cell problem. A factorial design 
can be recast as a series of two-cell comparisons using 
orthogonal contrasts, but because orthogonal contrasts 
examine only a subset of the full number of permutations 
in a full permutation test, they might cheat the logic of the 
test. We examined the issue by comparing the orthogonal-
contrast approach against a standard ANOVA under con-
ditions that met the ANOVA’s assumptions.

For repeated measures designs, the results showed that 
orthogonal contrasts work well; they are equivalent to 
normal-distribution tests when applied to data that meet 
the assumptions of the latter tests. For within-subjects 
(correlated-observation) designs, then, one can apply the 
randomization test with confidence.

For completely randomized (between-subjects) de-
signs, by contrast, orthogonal contrasts produce a flawed 
test for significance. Depending on the number of non-
null factors, it can become too conservative. Specifically, 
it becomes too conservative if systematic variance lies 
on more than one factor (i.e., contrast). In practice, the 
test’s conservative nature implies that one can trust that a 
contrast shown to be a significant result is reliable. That 
said, because the between-subjects test is insensitive to 
true effects if systematic variance lies on more than one 
contrast, there is a serious risk that it might miss small but 
true effects.

In summary, the randomization test is a practical op-
tion for repeated measures factorial designs: Recasting 
the analysis into orthogonal contrasts does not cheat the 
logic of the permutation test. The permutation test follows 

equivalent. When there were two or more effects (e.g., two 
main effects, two interactions, a main effect and an inter-
action, or some combination) the randomization test and 
the F test diverged. Specifically, the randomization test 
became increasingly too conservative as more true effects 
were added.

To illustrate the increasingly conservative behavior of 
the randomization test, we compared three situations: the 
case in which all systematic variability among the means 
fell on one effect (Factor A), on two contrasts (A and 
B C), and on three contrasts (A, C, and B C). Figure 2 
summarizes the probability of rejecting the H0 for Fac-
tor A as a function of the difference between means. The 
three increasing curves show, in the first case, that the 
randomization test behaved as expected: The probability 
of detecting a true effect (Factor A) increased as the sepa-
ration of the means increased; although not shown in the 
figure, the probability of rejecting H0 for other effects was 
stable at the nominal 5%. In the second and third cases, 
by contrast, the sensitivity curve was lower than that in 
the first case, and the probability of rejecting a true null 
hypothesis fell below the nominal 5%. As is shown in the 
figure, adding additional systematic variance to additional 
contrasts (A C and C) systematically reduced the test’s 
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Figure 2. The independent-observation randomization test 
when systematic variance lies on one, two, or three contrasts. 
Contrasts A, B C, and C are as described in Table 2. The in-
creasing curves show the probability of detecting a true effect for 
Contrast A. The decreasing curves show the probability of reject-
ing a null effect. As additional effects are added, the test becomes 
more conservative.
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NOTES

1. In general, the number of combinations of N objects taken r objects 
at a time, C(N, r), is C(N, r)  N! / [(N r)!  r!].

2. Mewhort et al. (2009) confirmed Hayes’s (2000) results using full-
enumeration permutation tests.

3. In an ANOVA, of course, the scores labeled mi are means of cells, 
and calculation of the sum of squares includes weights based on the 
number of observations summarized by each mean.

SUPPLEMENTAL MATERIALS

Code to execute the routines described here, to be used with the f90 
compiler, and a short demo to illustrate the code’s use may be downloaded 
from http://brm.psychonomic-journals.org/content/supplemental.

(Manuscript received October 13, 2009; 
revision accepted for publication December 6, 2009.)

directly from the procedure in a comparative experiment 
(Ludbrook & Dudley, 1998), does not depend on a known 
distribution for error, and is sometimes more sensitive to 
real effects than are the corresponding parametric tests 
(e.g., Mewhort, 2005). Our results suggest that it can be 
used instead of an ANOVA for all of these reasons.
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