
Applying the Semantic Web to Manage Knowledge on the
Grid

Feng Tao*, Colin Puleston^, Carole Goble^, Nigel Shadbolt*, Liming Chen*, Graeme

Pound+, Fenglian Xu+, Simon Cox+

* Department of Electronics and Computer Science, University of Southampton,
Southampton, U.K.

{ft, nrs, lc}@ecs.soton.ac.uk
2 Department of Computer Science, University of Manchester, Oxford Road, Manchester, U.K.

{carole, colin.puleston}@cs.man.ac.uk
+ e-Science centre, Scholl of Engineering Science, University of Southampton,

Southampton, U.K.
{gep, flx, s.j.cox}@soton.ac.uk

Abstract: Geodise [2] uses a toolbox of Grid enabled Matlab functions as building blocks on which
higher-level problem solving workflows can be built. The aim is to help domain engineers utilize the Grid
and engineering design search packages to yield optimized designs more efficiently. In order to capture
the knowledge needed to describe the functions & workflows so that they may be best reused by other
less experienced engineers we have developed a layered semantic infrastructure. A generic knowledge
development and management environment (OntoView) that is used to develop an ontology
encapsulating the semantics of the functions and workflows, and that underpins the domain specific
components. These include: an annotation mechanism used to associate concepts with functions (Function
Annotator); a semantic retrieval mechanism and GUI that allows engineers to locate suitable functions
based on a list of ontology-driven searching criteria; and a GUI-based function advisor that uses the
functions’ semantic information in order to help function configuration and recommend semantically
compatible candidates for function assembly and workflow composition (Domain Script Editor and
Workflow Construction Advisor). This paper describes this infrastructure, which we plan to extend to
include the semantic reuse of workflows as well as functions.

Keywords: Ontology, Semantic Grid, Engineering, Knowledge Management

1. Introduction
The Grid has provided an operational
infrastructure that enables distributed scientific
computing and resource sharing by those
working in various domains. In Geodise, a
toolbox of Grid enabled Matlab functions for
Engineering Design Search and Optimisation
(EDSO) have been developed [6] as building
blocks on which higher level problem solving
workflows can be built to help domain
engineers utilize the Grid and engineering
design search packages to yield optimized
designs more efficiently.

To support seamless scientific collaboration,
and intelligent process automation, it has
become increasingly important that information
and resources are consistently and semantically
enriched using a shared vocabulary, and made
machine understandable amongst distributed e-
Science virtual communities. This is particularly

required in the e-science vision of future large-
scale science over the Internet where the sharing
and coordinated use of diverse resources in
dynamic, distributed virtual organization is
commonplace [4].

In order to achieve this vision, Geodise has
adopted Semantic Web based knowledge
management. The aim is to help engineers
working in the EDSO domain to utilize the Grid
and engineering design search packages to yield
optimized designs more efficiently. In order to
capture the knowledge needed to describe the
functions & workflows so that they may be best
reused by less experienced engineers we had to
develop a layered semantic infrastructure as
illustrated in Figure 1
• OntoView [11]. A generic knowledge

development and management environment
that is used to develop the ontology and
underpins the other more domain specific
components.

• Function Annotator. A Matlab function
annotation mechanism used to associate
concepts with functions

• Semantic Retrieval GUI. A mechanism
that allows engineers to locate suitable
functions based on a list of ontology-driven
searching criteria.

• Workflow Construction Advisor. A GUI-
based component integrated with the
Geodise workflow construction
environment [9] and a domain script editor
that use the functions’ semantic information
in order to recommend semantically
compatible candidates for function
assembly and workflow composition as
well as to assist their configurations.

• An Ontology developed by an engineer
expert in the Geodise EDSO functions in
collaboration with knowledge workers. The
annotation makes use of the ontologies to
semantically describe available resources in
the domain such as the Grid enabled
functions, optimisation methods and their
configurable parameters. The ontologies are
represented using the RDF-based
DAML+OIL language [12].

Figure 1 Geodise Knowledge Architecture

This paper describes this infrastructure, which
are currently extending to include the semantic
reuse of workflows as well as functions. The
rest of the paper is organized as follows: Section
2 describes the knowledge capture by a
specialist domain expert using the OntoView
knowledge editor, working in collaboration with
the Geodise knowledge team. Section 3
describes the binding of the knowledge to
instances of Geodise functions, function
signatures and other Geodise entities by an
engineer using the annotator. Section 4 shows
how the knowledge is reused for enhanced

workflow construction. Section 5 gives related
works and Section 6 draws some conclusions
and points to future work.

2. Capturing Knowledge: Building
Ontologies
In order to form a conceptualization of the
domain in Engineering Design Search &
Optimisation, we interviewed domain experts,
domain system developers as well as studying
the domain application manuals and domain
source code for key EDSO concepts and their
relationships.

The ontologies are represented in a machine-
understandable language with formal semantics
and reasoning capability, namely DAML+OIL.
This language is based on Description Logics.
Ontologies in this language can be elaborate and
expressive, and the temptation is to over
complicate the interface to them, rendering
them daunting and incomprehensible to the user.
Instead we adopted a simplified presentation
interface that loses little of the expressivity of
the language but hides it from the user. We call
this OntoView – it provides a “domain expert-
sympathetic” view over the ontology,
configurable by the expert knowledge engineer
in collaboration with the domain specialists.

The view consists of a set of relatively simple
“view entities” that map to more complex
constructs in the underlying ontology. As these
entities are manipulated in the view,
corresponding modifications will be produced
in the ontology. The manner in which the
entities in a particular ontology view map to the
constructs in the underlying ontology, is
determined by a “view configuration” (Figure 2),
specifically created for that ontology, and stored
in an XML-based format.
The knowledge used in Geodise falls into two
categories:
• Concepts, represented by the ontologies,

for example “Geodise_Function”;
• Instances of the ontological concepts

whose descriptions include concrete data
values (e.g. integers and strings) as well as
references to other instances and other
concepts.

For example, the “OptionsMatlab” functon is
represented by an instance of the
“OptionsMatlabToolbox” concept (which in
turn is a sub-concept of “GeodiseFunction”, and
so on up the function hierarchy). It also has
other properties that can be represented by

references to other instances (e.g. the
“invokesSoftwarePackage” property has value
“Options”) and some that can be represented as
concrete data-values (e.g. the “author” property
has value “Graeme Pound” which is a simple
string value).

The instances, which naturally are greater in
number than the concepts, are managed by
OntoView using the Description Logic based iS
instance store [7].

The instance descriptions maintained by
OntoView can contain constructs that in
DAML+OIL would be part of a class
description, and others that would be part of an
individual description. Therefore they are not
simply equivalent to DAML+OIL individuals.

The ‘iS’ mechanism not only supports more
expressive instance descriptions than
DAML+OIL, it also supports reasoning over
large numbers of individuals in realistic time, in
contrast Racer [8] whose algorithms run in
something more like exponential time, or FaCT
[10] which can do no reasoning with individuals
whatsoever.

Another factor to consider is that the OntoView
instance descriptions may include instance-to-
instance references, which are not permitted by
‘iS’. To get round this restriction, OntoView
stores each instance as a recursive description,
with each instance-reference being replaced by
a full instance description. The price paid for
this extra expressiveness is that instance
descriptions can become quite large, which has
obvious effects on the efficiency of instance
storage and query execution. We are currently
investigating the various trade offs involved in
using ‘iS’ in this fashion, within the specific
context of Geodise.

Figure 2 View configuration GUI

Figure 3 OntoView editor GUI

Figure 3 shows the Geodise function ontology
loaded into the OntoView ontology editing GUI.

These tools collectively make it possible for the
domain expert to create and manipulate
complex DAML+OIL ontologies and instances.

OntoView also includes a Java API that allows
client code to perform ontology reasoning and
instance manipulation, as well as query
formation and execution. The domain specific
components - the function annotator, the
function query GUI and the knowledge advisor,
are all built on top of this API.

3. Binding Knowledge: Function
Annotation
In addition to capturing the knowledge of the
Geodise domain experts to form the basis of the
Geodise knowledge framework, we also want to
capture and reuse the domain knowledge of the
ordinary Geodise user. Hence we have created a
Function Annotator that allows end-users to
semantically annotate their own Matlab
functions, whilst incorporating them into the
Geodise environment, making them available
for use in building workflows, and equally
importantly making them available for reuse by
other end-users.

Figure 4 shows the GUI of the annotation tool,
which consists of a Matlab Function Category,
an Annotation Description Palette and a
Function Browser. The left hand panel, i.e the
Matlab Function Category contains a function
hierarchy derived from the function ontology,
and displaying available annotated functions
under the various function categories.

Figure 4 Function annotator GUI

The right hand panel is the Function Browser,
which is used to load Grid resources for
knowledge acquisition.

We have provided a parsing capability to
facilitate automatic information extraction. As
primitive Matlab functions have conventions for
interface specification, we are able to obtain
important information about a resource such as
input, output parameters and location details
directly from the Matlab code. The extracted
information will be listed on one tab panel on
the right-hand panel, and can be used directly
by the function provider in creating the
annotations. Other types of semantic
information can be expressed manually, either
as a result of viewing the code, or via the
utilization of knowledge that is not expressed
explicitly in the code.

In general the semantic annotations are
specified using a mixture of drag-and-drop of
formal ontological concepts, and the input of
simple data-values such as strings and integers.
The ontological concepts involved are presented
in the engineers’ own terminology as embodied
by the function ontology.

Using the Function Annotator the function
provider does the following:
1) Loads the Matlab function into Function

Browser;
2) Selects an appropriate function type from

Matlab Function Category by navigating
the concept tree of the function category in
the left hand panel.

3) Fills in ontology-driven forms,
automatically generated in the Annotation
Palette using direct input or drag and drop.

The resulting semantic descriptions of the
functions are finally archived via OntoView,
into the iS database.

The Function Annotator can operate recursively.
For instance if the function provider wishes to
specify that the function uses a particular
algorithm, then s/he may select either an
ontological concept representing a type of
algorithm, or possibly an existing instance
representing a specific algorithm, or else if there
is no existing concept or instance that provides a
suitable description of the algorithm, can create
a suitable new instance. To do this s/he will be
presented with a algorithm-definition panel that
is similar to the main Function Annotator panel.

4. Reusing Knowledge
Knowledge reuse is based on the semantic
information generated by the previous stages.
We demonstrate here the function query
mechanism and a higher-level knowledge
advisor that assists function discovery, function
configuration, function script assembly and
workflow composition.

4.1 Ontology driven function query
As functions have been previously annotated
with rich semantic information, they can be
queried based on various criteria such as
“invokeSoftwarePackage” and “author”. The
criteria are function properties defined in the
ontology and used in function annotation
activity therefore retaining the consistency
through out the knowledge management life
cycle.

As illustrated in Figure 5, in order to form a
query, end users fill out a ontology driven query
form by either selecting pre-defined ontological
concepts or concrete instances in a specific
category (as shown in the superimposed
screenshot) or directly providing a concrete
data-value. The query formed in this example is
“retrieve all Geodise functions whose author is
Graeme Pound and which invoke Software
Package JavaCog”. The query is then submitted
to the OntoView query mechanism which in
turn utilises the iS query mechanism

The query mechanism also allows the formation
of recursive queries. Hence if a concept or
instance required for the formation of the query
does not exist, the user is can define it
him/herself. For example rather than specifying
that a function should invoke a specific named
software package as represented by a current

instance, a query may just specify the
characteristics of the required package, such as
the tasks that it performs, or the methods it uses.

Description Logic based language such as
DAML+OIL support queries that are
unattainable by using standard database queries.
OntoView not only provides a means by which
complex Description Logic semantics can be
represented within the ontology and the instance
descriptions, it also takes advantage of these
semantics to allow the formation of complex
DL queries, which it then passes on to the
underlying the iS query mechanism. This allows
end-users who are totally unaware of the
existence of Description Logics to formulate
queries employing the following types of DL-
based constructs:

Concept Hierarchy: Given the hierarchical fact
that genetic algorithm is a kind of stochastic
algorithm, which is a kind of optimisation
algorithm, if A is a genetic algorithm with
properties x, y and z, then it will be found by
each of the following queries:

• Find all optimisation algorithms with

properties x, y and z
• Find all stochasic optimisation algorithms

with properties x, y and z
• Find all genetic algorithms with properties

x, y and z

Existential and universal quantification:
OntoView can use both existential and universal
quantification in various ways to allow the
following distinct types of queries to be framed:

• Find all function signatures with inputs x, y

and z, and no others
• Find all function signatures with inputs x, y

and z, and possibly others
• Find all function signatures that only

require inputs x, y or z
• Find all function signatures that do not

require inputs x, y or z

Cardinalities: It is possible to frame queries
involving minimum, maximum and exact
cardinality constraints, such as:

• Find all function signatures with exactly

three inputs of type x and at least 2 inputs
of type y.

Figure 5 Ontology driven query forming and
execution

4.2 Semantic matching based
knowledge advisor
Once semantic instances are made available, it
is possible to access and post-process these
instances to deduce actionable knowledge.

4.2.1 Reusing semantic instances in advice
giving

Functions can be assembled together only if
their interfaces semantically match each other to
some extents, i.e., a function’s input
semantically consumes the output of another
function. Workflow builders, especially
beginners are often not clear about the semantic
interfaces of the functions. We argue in this
paper that suggestions can be deduced through
semantic interface matching. This is especially
useful when the function repository is
dynamically updated or the number of functions
is large, which should be the case in the future
e-Science community.

Each function can be viewed as a domain
specific service that must be configured
correctly and assembled with other services to
form a problem solving workflow. The
granularity of the services varies from low-level
atomic functions (usually generic) to high-level
workflow building blocks (often more problem
specific), which are themselves made up of low-
level functions.

There are two types of advice:

1. Function configuration advice - this
provides automatically generated advice on

function configuration. We call it “horizontal
advice” as it is triggered during function
configuration, i.e., horizontal scripting.

Semantic decomposition is used when a
function parameter is a complex type, e.g., a
structure that contains a list of fields that are
either primary types or complex types. In such
cases, the semantic interface can be extended by
recursively decomposing the relevant parameter
and its subfields until there are no more
complex types. This often yields richer semantic
interfaces that contain more concepts and
relationships for semantic matching.

2. Function assembly advice – functions that
can be assembled together according to their
interface compatibility. This is referred to as
“vertical advice” which is triggered during the
vertical assembly of configured function
instances.

In addition to the primary data types such as
“string” and “integer” used in function
interfaces, semantic data types can be used to
consider function compatibility when
suggesting next step functions for a currently
deployed function. This is demonstrated in
Figure 6, which shows a semantically matched
chain of “FunctionSignature” instances. Each
such instance represents a valid set of input
variables for some (potentially overloaded)
function, and the associated set of output
variables. The semantic matches are represented
as links, indicating a valid function assembly.
Note that each I/O element has an
“ArgumentType”, the values of which are used
in comparison. The workflow at the bottom of
Figure 6 is the advised function assembly.

… generate_sample_points parameter_search check_jobs …

Figure 6 Semantic matching for function
assembly

Initial results are shown in Figure 7 where
advice is given in a console for a particular
function, showing the “forward” and

“backward” functions that are semantically
compatible for function assembly.

Matching function <parameter_search> on its signature
"parameter_search_1" ...
 Forward
Matchmaking with OptionsMatlab_1 ...
Incompatible.
... ...
Matchmaking with check_jobs_1 ...
Compatible.
... ...
<check_jobs> signature "check_jobs_1" matched on
[beam3d_handle]
<collect_data> signature "collect_data_1" matched on [job]
 BackWard
... ...
<generate_sample_points> signature "generate_sample_points_1"
matched on [number_of_points, sample_points]

Figure 7 Console result of the advisor

4.3 Using the knowledge advisor
There are two application scenarios in which the
advisor can be integrated in Geodise. In both
cases, semantic based knowledge can be reused
in Geodise.

a) Workflow Composition

Environment (WCE)
The workflow composer in Geodise is a GUI
based application that allows engineers to
visually select tasks from a function hierarchy,
configure and assemble them into a workflow
for EDSO problem solving.

The purpose of integrating the semantic based
advisor into the GUI based WCE is to make use
of rich semantic annotations and help the users
choose suitable functions and make appropriate
configuration during workflow assembly.

……
% Compile and transfer the beam3d executable to the client
compile_executables('blue02.iridis.soton.ac.uk', server, number_of_servers,
ldirectory)

% Generate the input file, and transfer it to the Globus servers
generate_input_file(server, number_of_servers, ldirectory)

% Clean-up. Remove all subdirectories starting with "job"
remove_subdirectories(server, number_of_servers)

% Generate sample points between lower and upper limits
 [sample_point, number_of_points, bounds, grids] =
generate_sample_points(2.5, 3.5, 1.5, 2.5, 3, 3)
……

Figure 8 Advisor integrated in the WCE and the
generated scripts

As illustrated in Figure 8, each function (in the
left hand side panel) that has been previously
semantically enriched, the workflow advisor can
be called to deduce its contextual functions (as
listed in the left bottom panel in Figure 8) that
can be deployed before/after it. This is achieved
by semantically processing the instances
generated. In this way, the users can focus on
compatible functions that can be of use to
further assemble the workflow without
tediously investigating the semantic interface of
all irrelevant functions. It then generates a
Matlab script and submits it to a Matlab server
for execution. It also takes care of the workflow
management, monitoring and execution, but this
is outside the scope of this paper, interested
reader can refer to [9] for further information.

b) Domain Script Editor (DSE)
Quite often, engineers need to edit domain
related scripts in addition to GUI based design
tools, such as the WCE. But manipulating plain
texts is painful and tedious to some people. In
Geodise, Matlab is the script language that glues
EDSO and grid computing resources together.
This motivated the design of a domain script
editor together with the advisor integrated.

Key features include:
• Horizontal advice on component

configuration – exposing the semantic
interface, tool-tipping semantic annotations,
auto-completions, etc, as shown in popping
up windows in Figure 9.

• Vertical advice on components assembly –
semantic interface matching and reasoning
for contextual component recommendation
as shown in left bottom panel in Figure 9,
where the blue arrow represents for a pre-
contextual candidate and the red one for a
consequence candidate.

• De-centralized - Semantic instances are
collected at the stage of knowledge
acquisition, separately from their use.

• Generic - The DSE is Ontology/Semantic
powered meaning that it can be used to
advise on different domain scripts when
loaded with corresponding semantic
annotations. E.g., Gambit scripts, Geodise
functions including computation toolbox
and database toolbox, problem specific
function scripts in Matlab, etc.

• Component based - It can be delivered as
a java swing GUI component that can be
used in any java application (e.g., in the
GUI based workflow composer as an
alternative view of the workflow).

Figure 9 Domain script editor integrated with the

advisor

5. Related work

We have been inspired by the on-going AKT
(www.aktors.org) which demonstrates
knowledge technologies addressing various
stages of knowledge management life cycle
from knowledge acquisition, modelling to
publication and reuse. While this is
demonstrated through list of different projects
under AKT, Geodise endeavors to adopt them in
the domain of Engineer design search and
optimisation and demonstrate an end-to-end
knowledge management life cycle within one
project.

Previously in [5] we used OWL [3] in the
knowledge management life cycle. Protégé2000
with OWL plug-in was used in building
ontology and instance population. By using Jena,
the advisor accesses the semantics, processes it
and provides advice.

We also used pre-defined rules in a JESS rule
base [1] to advise workflow assembly, the
advantage of this approach is that domain
experts can specify function assembly rules that
are not consistent to the result of function
semantic matching. The disadvantage is the
limitation of scalability and the high overhead
cost of a rule engine when there are only few
rules.

6. Summary

In this paper, we have introduced various tools
addressing three different stages of the semantic
web based knowledge management life cycle –
knowledge creation, knowledge capture and
knowledge reuse - for assisting engineers using
the Geodise toolkit. Accessing and reasoning
with the ontology and instances is facilitated via
the OntoView mechanism on top of which
function annotation and reuse services are built.
The reuse includes ontology driven queries over
instances and the semantic matching based
knowledge advisor for function configuration
and assembly. We are currently extending this
system to incorporate the semantic annotation
and retrieval of the configured workflows.

References:

1. Tao, F, Chen, L, Shadbolt, N,R. Pound, G,
Cox, S.J. (2003) Towards The Semantic Grid:
Putting Knowledge To Work In Design
Optimisation Proceedings of I-KNOW '03,
3rd International Conference of Knowledge
Management, pp. 555-566

2. The Geodise project. http://www.geodise.org

3. Web Ontology Language Overview.

http://www.w3.org/TR/2004/REC-owl-
features-20040210/

4. The Semantic Grid website.

http://www.semanticgrid.org

5. Feng Tao, Nigel Shadbolt, Liming Chen,

Fenglian Xu, Simon Cox, "Semantic Web
based Content Enrichment and Knowledge
Reuse in e-Science", submitted to the 3nd
International Conference on Ontologies,
DataBases, and Applications of Semantics
for Large Scale Information Systems

(ODBASE), Larnaca, Cyprus, 25-29 Oct,
2004.

6. G. Pound, H. Eres, J. Wason, Z. Jiao, A. J.

Keane, and S. J. Cox, A Grid-enabled
Problem Solving Environment (PSE) For
Design Optimisation Within Matlab. To
appear in - IPDPS-2003, April 22-26,
2003, Nice, France

7. Ian Horrocks, Lei Li, Daniele Turi, Sean

Bechhofer, "The Instance Store: DL
Reasoning with Large Numbers of
Individuals", International Workshop on
Description Logics - DL2004

8. Volker Haarslev, Ralf Möller , "RACER

System Description", International Joint
Conference on Automated Reasoning",
IJCAR'2001, June 18-23, 2001, Siena, Italy,
p.p. 701-706

9. Xu, F and Cox, S.J. “Workflow Tool for

Engineers in a Grid-Enabled Matlab
Environ-ment”, Proceedings of UK e-
Science All Hands Meeting 2003, pp. 212-
215

10. The FaCT reasoning system.

http://www.cs.man.ac.uk/%7Ehorrocks/FaC
T/

11. "The 'OntoView' Knowledge Management

System":
http://www.geodise.org/publications/papers.
htm

12. The DARPA Agent Markup Language

Homepage, http://www.daml.org/

