
Applying Tree Languages in Proof Theory

Stefan Hetzl
Institute of Discrete Mathematics and Geometry

Vienna University of Technology

LATA 2012
Language and Automata Theory and Applications

A Coruña, Spain

March 6, 2012

1/ 14

Motivation

I Proof theory
I Hilbert’s Programme, Foundations of Mathematics, ∼ 1920s

I Study mathematical proof as formal objects (i.e. strings)

I Proof mining
I Extract concrete information from abstract proofs

I Example: proof of ∃x (x = f (x)). Find such x , a “witness”.

I Theorem. There are x , y ∈ R \Q s.t. xy ∈ Q.

Proof. If
√

2
√

2 ∈ Q, let x = y =
√

2 and we are done as
√

2 ∈ R \Q. Otherwise
√

2
√

2 ∈ R \Q, let x =
√

2
√

2
, y =

√
2

and observe xy =
√

2
√

2·
√

2
=
√

2
2

= 2 ∈ Q. �

I In general: a finite set of witnesses, i.e. a finite tree language!

2/ 14

Motivation

I Proof theory
I Hilbert’s Programme, Foundations of Mathematics, ∼ 1920s

I Study mathematical proof as formal objects (i.e. strings)

I Proof mining
I Extract concrete information from abstract proofs

I Example: proof of ∃x (x = f (x)). Find such x , a “witness”.

I Theorem. There are x , y ∈ R \Q s.t. xy ∈ Q.

Proof. If
√

2
√

2 ∈ Q, let x = y =
√

2 and we are done as
√

2 ∈ R \Q. Otherwise
√

2
√

2 ∈ R \Q, let x =
√

2
√

2
, y =

√
2

and observe xy =
√

2
√

2·
√

2
=
√

2
2

= 2 ∈ Q. �

I In general: a finite set of witnesses, i.e. a finite tree language!

2/ 14

Motivation

I Proof theory
I Hilbert’s Programme, Foundations of Mathematics, ∼ 1920s

I Study mathematical proof as formal objects (i.e. strings)

I Proof mining
I Extract concrete information from abstract proofs

I Example: proof of ∃x (x = f (x)). Find such x , a “witness”.

I Theorem. There are x , y ∈ R \Q s.t. xy ∈ Q.

Proof. If
√

2
√

2 ∈ Q, let x = y =
√

2 and we are done as
√

2 ∈ R \Q. Otherwise
√

2
√

2 ∈ R \Q, let x =
√

2
√

2
, y =

√
2

and observe xy =
√

2
√

2·
√

2
=
√

2
2

= 2 ∈ Q. �

I In general: a finite set of witnesses

, i.e. a finite tree language!

2/ 14

Motivation

I Proof theory
I Hilbert’s Programme, Foundations of Mathematics, ∼ 1920s

I Study mathematical proof as formal objects (i.e. strings)

I Proof mining
I Extract concrete information from abstract proofs

I Example: proof of ∃x (x = f (x)). Find such x , a “witness”.

I Theorem. There are x , y ∈ R \Q s.t. xy ∈ Q.

Proof. If
√

2
√

2 ∈ Q, let x = y =
√

2 and we are done as
√

2 ∈ R \Q. Otherwise
√

2
√

2 ∈ R \Q, let x =
√

2
√

2
, y =

√
2

and observe xy =
√

2
√

2·
√

2
=
√

2
2

= 2 ∈ Q. �

I In general: a finite set of witnesses, i.e. a finite tree language!

2/ 14

Outline

I Proof mining: cut-elimination

I Rigid tree languages

I From proofs to grammars

I From grammars to proofs

3/ 14

Cut-Elimination

I Cut: formalisation of the use of a lemma

T ` A T ,A ` B

T ` B
cut

I Cut-elimination: stepwise transformation of proof

I Cut-free proof: possible to read of witnesses

I Witnesses for T ` ∃x A: t1, . . . , tn s.t. T `
∨n

i=1 A[x\ti].

I Basic idea of this talk:

proof π with cuts −→cut-elimination cut-free proof π∗

↓ ↓

grammar G(π) −→defines witnesses of π∗

= L(G(π))

4/ 14

Cut-Elimination

I Cut: formalisation of the use of a lemma

T ` A T ,A ` B

T ` B
cut

I Cut-elimination: stepwise transformation of proof

I Cut-free proof: possible to read of witnesses

I Witnesses for T ` ∃x A: t1, . . . , tn s.t. T `
∨n

i=1 A[x\ti].

I Basic idea of this talk:

proof π with cuts −→cut-elimination cut-free proof π∗

↓ ↓

grammar G(π) −→defines witnesses of π∗

= L(G(π))

4/ 14

Outline

√
Proof mining: cut-elimination

I Rigid tree languages

I From proofs to grammars

I From grammars to proofs

5/ 14

Tree Automata with Equality Contraints

I Local equality contraints, e.g. f (q1, q1)
1=2→ q2

I Global equality contraints via states, e.g. TAGED [Filiot,
Talbot, Tison ’07]

I Rigid tree automata [Jacquemard, Clay, Vacher ’09]

I subclass of TAGED

I Rigid tree automaton 〈Q,R,F ,∆〉 where R ⊆ Q

I Rigidity condition on run r : Pos(t)→ Q:
∀p1, p2 ∈ Pos(t) with r(p1) = r(p2) ∈ R: t|p1 = t|p2 .

I L(A) = all terms which have runs satisfying rigidity condition

6/ 14

Rigid Tree Grammars

I Rigid tree grammar 〈α,N,R,Σ,P〉 where R ⊆ N rigid

I Rigidity condition on derivation:
if two productions with β ∈ R as left hand side are applied at
positions p1, p2, then t|p1 = t|p2 .

I Example: α→ f (β, β), β → g(γ), γ → a | g(γ) with R = {β}
has L = {f (gn(a), gn(a)) | n ≥ 1}.

I Theorem. L language of a rigid tree grammar iff L language
of rigid tree automaton.

I Definition. A grammer is called totally rigid if N = R.

I Definition. A grammar is called acyclic if there is no
derivation β → t with β ∈ V(t)

I this paper: totally rigid acyclic tree grammars (!)

7/ 14

Rigid Tree Grammars

I Rigid tree grammar 〈α,N,R,Σ,P〉 where R ⊆ N rigid

I Rigidity condition on derivation:
if two productions with β ∈ R as left hand side are applied at
positions p1, p2, then t|p1 = t|p2 .

I Example: α→ f (β, β), β → g(γ), γ → a | g(γ) with R = {β}
has L = {f (gn(a), gn(a)) | n ≥ 1}.

I Theorem. L language of a rigid tree grammar iff L language
of rigid tree automaton.

I Definition. A grammer is called totally rigid if N = R.

I Definition. A grammar is called acyclic if there is no
derivation β → t with β ∈ V(t)

I this paper: totally rigid acyclic tree grammars (!)

7/ 14

Rigid Tree Grammars

I Rigid tree grammar 〈α,N,R,Σ,P〉 where R ⊆ N rigid

I Rigidity condition on derivation:
if two productions with β ∈ R as left hand side are applied at
positions p1, p2, then t|p1 = t|p2 .

I Example: α→ f (β, β), β → g(γ), γ → a | g(γ) with R = {β}
has L = {f (gn(a), gn(a)) | n ≥ 1}.

I Theorem. L language of a rigid tree grammar iff L language
of rigid tree automaton.

I Definition. A grammer is called totally rigid if N = R.

I Definition. A grammar is called acyclic if there is no
derivation β → t with β ∈ V(t)

I this paper: totally rigid acyclic tree grammars (!)

7/ 14

Outline

√
Proof mining: cut-elimination

√
Rigid tree languages

I From proofs to grammars

I From grammars to proofs

8/ 14

From Proofs to Grammars

I Definition. Given a proof π, define a totally rigid acyclic tree
grammar G(π).
(next slide: example)

I Definition. A proof is called simple if every cut-formula
contains at most one quantifier.

I Theorem. Let π be a simple proof of T ` ∃x A with A
quantifier-free. Then L(G(π)) = {A[x\t1], . . . ,A[x\tn]} and
T `

∨n
i=1 A[x\ti] is provable.

(in other words: L(G(π)) contains the witnesses for ∃x A)

9/ 14

Example

` P(a),P(b)

` ∃xP(x),P(b)
∃r

` ∃xP(x),∃xP(x)
∃r

` ∃xP(x)
cr

P(α) ` Q(f (α))

P(α) ` ∃xQ(x)
∃r

P(α),Q(β) ` R(g(α, β))

P(α),Q(β) ` ∃xR(x)
∃r

P(α), ∃xQ(x) ` ∃xR(x)
∃l

P(α) ` ∃xR(x)
cl, cut

∃xP(x) ` ∃xR(x)
∃l

` ∃xR(x)
cut

G(π) = 〈ϕ,R,Σ,P〉 where R = {ϕ, α, β} and
P = {

Hence L(G(π)) = {R(g(a, f (a))),R(g(b, f (b)))}

10/ 14

Example

` P(a),P(b)

` ∃xP(x),P(b)
∃r

` ∃xP(x),∃xP(x)
∃r

` ∃xP(x)
cr

P(α) ` Q(f (α))

P(α) ` ∃xQ(x)
∃r

P(α),Q(β) ` R(g(α, β))

P(α),Q(β) ` ∃xR(x)
∃r

P(α), ∃xQ(x) ` ∃xR(x)
∃l

P(α) ` ∃xR(x)
cl, cut

∃xP(x) ` ∃xR(x)
∃l

` ∃xR(x)
cut

G(π) = 〈ϕ,R,Σ,P〉 where R = {ϕ, α, β} and
P = {ϕ→ R(g(α, β))

Hence L(G(π)) = {R(g(a, f (a))),R(g(b, f (b)))}

10/ 14

Example

` P(a),P(b)

` ∃xP(x),P(b)
∃r

` ∃xP(x),∃xP(x)
∃r

` ∃xP(x)
cr

P(α) ` Q(f (α))

P(α) ` ∃xQ(x)
∃r

P(α),Q(β) ` R(g(α, β))

P(α),Q(β) ` ∃xR(x)
∃r

P(α), ∃xQ(x) ` ∃xR(x)
∃l

P(α) ` ∃xR(x)
cl, cut

∃xP(x) ` ∃xR(x)
∃l

` ∃xR(x)
cut

G(π) = 〈ϕ,R,Σ,P〉 where R = {ϕ, α, β} and
P = {ϕ→ R(g(α, β)), β → f (α)

Hence L(G(π)) = {R(g(a, f (a))),R(g(b, f (b)))}

10/ 14

Example

` P(a),P(b)

` ∃xP(x),P(b)
∃r

` ∃xP(x),∃xP(x)
∃r

` ∃xP(x)
cr

P(α) ` Q(f (α))

P(α) ` ∃xQ(x)
∃r

P(α),Q(β) ` R(g(α, β))

P(α),Q(β) ` ∃xR(x)
∃r

P(α), ∃xQ(x) ` ∃xR(x)
∃l

P(α) ` ∃xR(x)
cl, cut

∃xP(x) ` ∃xR(x)
∃l

` ∃xR(x)
cut

G(π) = 〈ϕ,R,Σ,P〉 where R = {ϕ, α, β} and
P = {ϕ→ R(g(α, β)), β → f (α), α→ a, α→ b}

Hence L(G(π)) = {R(g(a, f (a))),R(g(b, f (b)))}

10/ 14

Example

` P(a),P(b)

` ∃xP(x),P(b)
∃r

` ∃xP(x),∃xP(x)
∃r

` ∃xP(x)
cr

P(α) ` Q(f (α))

P(α) ` ∃xQ(x)
∃r

P(α),Q(β) ` R(g(α, β))

P(α),Q(β) ` ∃xR(x)
∃r

P(α), ∃xQ(x) ` ∃xR(x)
∃l

P(α) ` ∃xR(x)
cl, cut

∃xP(x) ` ∃xR(x)
∃l

` ∃xR(x)
cut

G(π) = 〈ϕ,R,Σ,P〉 where R = {ϕ, α, β} and
P = {ϕ→ R(g(α, β)), β → f (α), α→ a, α→ b}

Hence L(G(π)) = {R(g(a, f (a))),R(g(b, f (b)))}

10/ 14

Outline

√
Proof mining: cut-elimination

√
Rigid tree languages

√
From proofs to grammars

I From grammars to proofs

11/ 14

From Grammars to Proofs

I Given grammar find proof!
Caveat: L(G) is a set of terms, L(G(π)) is a set of formulas
⇒ Wrap up L(G) using a new predicate symbol

I Theorem. For every totally rigid acyclic tree grammar
G = 〈β,R,Σ,P〉 there is a simple proof π with
G(π) = 〈α,R ∪ {α},Σ,P ∪ {α→ Q(β)}〉 s.t.
cut-elimination of π computes L(G(π)).

⇒ Compression power of totally rigid acyclic tree grammars
corresponds exactly to that of simple proofs.

⇒ Characterisation of class of proofs by class of grammars.

12/ 14

Conclusion

I Proofs and tree languages are intimately related

Applications / Future Work:

I Proof mining using tree grammars

I Cut-introduction (LPAR paper)

I Lower bounds on proofs

I Operations on languages get proof-theoretic meaning

13/ 14

Concrete Open Questions

I Go beyond simple proofs

I Does there exist a finite set T of terms s.t. every totally rigid
acyclic tree grammar G with L(G) = T has |G | = |T |.
(Uncompressible term-set ⇒ lower bounds on proof length)

I What is the complexity of the problem: Given finite set T of
terms, find minimal G with L(G) = T?
(Cut-introduction)

I Further cut-introduction algorithms

14/ 14

