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Abstract

Motivated by the rising popularity of electronic appointment booking systems, we develop
appointment scheduling models that take into account the patient preferences regarding when
they would like to be seen. The service provider dynamically decides which appointment days
to make available for the patients. Patients arriving with appointment requests may choose
one of the days offered to them or leave without an appointment. Patients with scheduled
appointments may cancel or not show up for the service. The service provider collects a “revenue”
from each patient who shows up and incurs a “service cost” that depends on the number of
scheduled appointments. The objective is to maximize the expected net “profit” per day. We
begin by developing a static model that does not consider the current state of the scheduled
appointments. We give a characterization of the optimal policy under the static model and bound
its optimality gap. Building on the static model, we develop a dynamic model that considers the
current state of the scheduled appointments and propose a heuristic solution procedure. In our
computational experiments, we test the performance of our models under the patient preferences
estimated through a discrete choice experiment that we conduct in a large community health
center. Our computational experiments reveal that the policies we propose perform well under
a variety of conditions.



1 Introduction

Enhancing patient experience of care has been set as one of the “triple aims” to improve the

healthcare system in many developed countries including the United States, Canada, and the

United Kingdom. This aim is considered as equally, if not more, important as the other aims of

improving the health of the population and managing per capita cost of care; see Berwick et al.

(2008) and Institute for Healthcare Improvement (2012). An important component of enhancing

patient experience of care is to provide more flexibility to patients regarding how, when and where to

receive treatment. In pursuit of this objective, the National Health Service in the United Kingdom

launched its electronic booking system, called Choose and Book, for outpatient appointments in

January 2006; see Green et al. (2008). In the United States, with the recent Electronic Health

Records and Meaningful Use Initiative, which calls for more and better use of health information

technology, online scheduling is being adopted by an increasingly larger percentage of patients and

clinics; see US Department of Health and Human Services (2011), Weiner et al. (2009), Silvestre

et al. (2009), Wang and Gupta (2011)and Zocdoc (2012).

In contrast to the traditional appointment scheduling systems where patients are more or less

told by the clinic when to come and whom to see or are given limited options on the phone, electronic

appointment booking practices make it possible to better accommodate patient preferences by

providing patients with more options. Giving patients more flexibility when scheduling their

appointments has benefits that can go beyond simply having more satisfied patients. More satisfied

patients lead to higher patient retention rates, which potentially allow providers to negotiate better

reimbursement rates with payers; see Rau (2011). More satisfied patients can also lead to reduced

no-show rates, helping maintain the continuity of care and improve patient health outcomes; see

Bowser et al. (2010) and Schectman et al. (2008). An important issue when providing flexibility to

patients is that of managing the operational challenges posed by giving more options. In particular,

one needs to carefully choose the level of flexibility offered to the patients while taking into account

the operational consequences. It is not difficult to imagine that giving patients complete flexibility

in choosing their appointment times would lead to high variability in the daily load of a clinic. Thus,

options provided to the patients need to be restricted in a way that balances the benefits with the

costs. While such decisions have been studied in some industries, such as airlines, hospitality

and manufacturing, scheduling decisions with consideration of patient preferences has largely been

ignored in the appointment scheduling literature; see Cayirli and Veral (2003), Gupta and Denton

(2008) and Rohleder and Klassen (2000). The goal of this paper is to develop models that can aid

in the appointment scheduling process while considering the patient preferences.

In this paper, with electronic appointment booking systems in mind, we develop models, which

can be used to decide which appointment days to offer in response to incoming appointment

requests. Specifically, we consider a single service provider receiving appointment requests every

day. The service provider offers a menu of appointment dates within the scheduling window

for patients to choose from. During the day, patients arrive with the intention of scheduling
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appointments and they either choose to book an appointment on one of the days made available

to them or leave without scheduling any. We assume that patient choice behavior is governed by a

multinomial logit choice model; see McFadden (1974). In the meantime, patients with appointments

may decide not to show up and those with appointments on a future day may cancel. The service

provider generates a “revenue” from each patient who shows up for her appointment and incurs

a “cost” that depends on the number of patients scheduled to be seen on a day. The objective is

to maximize the expected net “profit” per day by choosing the offer set, the set of days offered to

patients who demand appointments. We begin by developing a static model, which can be used

to make decisions without using the information about the currently booked appointments. Then,

we build on the static model and develop a dynamic formulation, which can be used to take the

current state of the booked appointments into consideration when making scheduling decisions.

Our static model is a mathematical program in which the decision variables are the probabilities

with which different subsets of appointment days will be offered to the patients, independent of

the state of the booked appointments. One difficulty with this optimization problem is that the

number of decision variables increases exponentially with the length of the scheduling window. To

overcome this, we exploit the special structure of the multinomial logit model to reformulate the

static model in a more compact form. The number of decision variables in the compact formulation

increases only linearly with the number of days in the scheduling window, making it tractable to

solve. We show that if the no-show probability, conditional on the event that the patient has not

canceled before her appointment, does not depend on patient appointment delays, then there exists

an easily implementable optimal policy from the static model, which randomizes between only two

adjacent offer sets. To assess the potential performance loss as a result of the static nature of the

model, we provide a bound on the optimality gap of the static model. The bound on the optimality

gap approaches zero as the average patient load per day increases, indicating that the static model

may work well in systems handling high patient demand with respect to their capacity. In addition

to randomized scheduling policies, we discuss how our approach can also be used to calculate the

optimal deterministic policy, which may be even easier to implement.

Our dynamic model improves on the static one by taking the state of the booked appointments

into consideration when making its decisions. The starting point for the dynamic model is the

Markov decision process formulation of the appointment scheduling operations. Unfortunately,

solving this formulation to optimality using standard dynamic programming tools is not practical

since the state space is too large for realistically sized instances. Therefore, we propose an

approximation method based on the Markov decision process formulation. This approximation

method can be seen as applying a single step of the standard policy improvement algorithm on an

initial “good” policy. For the initial “good” policy, we employ the policy provided by the static

model. Implementing the policy provided by the dynamic model allows us to make decisions in

an online fashion by solving a mathematical program that uses the current state of the booked

appointments. The structure of this mathematical program is similar to the one we solve for the

static model. Thus, the structural results obtained for the static model, at least partially, apply
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to the dynamic model as well. We carry out a simulation study to investigate how our proposed

methods perform. In order to create a clinic environment that is as realistic as possible, we estimate

patient preferences using data from a discrete choice experiment conducted in a large community

health center. We also generate numerous problem instances by varying model parameters so

that we can compare the performance of our policies with benchmarks over a large set of possible

settings regarding the clinic capacity and the patient demand. These benchmarks are carefully

chosen to mimic the policies used in practice. Our simulation study suggests that our proposed

dynamic policy outperforms benchmarks, in particular when capacity is tight compared to demand

and overtime cost is high.

The studies in Ryan and Farrar (2000), Rubin et al. (2006), Cheraghi-Sohi et al. (2008), Gerard

et al. (2008) and Hole (2008) all point out that patients do have preferences regarding when to

visit the clinic and which physician to see. In general, patients prefer appointments that are sooner

than later, but they may prefer a later day over an earlier one if the appointment on the later day

is at a more convenient time; see Sampson et al. (2008). Capturing these preferences in their full

complexity while keeping the formulation sufficiently simple can be a challenging task, but our static

and dynamic models yield tractable policies to implement in practice. The models we propose can

be particularly useful for clinics that are interested in a somewhat flexible implementation of open

access, the policy of seeing today’s patient today; see Murray and Tantau (2000). While same-day

scheduling reduces the access time for patients and keeps no-show rates low, it is a feasible practice

only if demand and service capacity are in balance; see Green and Savin (2008). Furthermore, some

patients highly value the flexibility of scheduling appointments for future days. A recent study

in Sampson et al. (2008) found that a 10% increase in the proportion of same-day appointments

was associated with an 8% reduction in the proportion of patients satisfied. This is a somewhat

surprising finding, attributed to the decreased flexibility in booking appointments that comes with

restricting access to same-day appointments. Our models help find the “right” balance among

competing objectives of providing more choices to patients, reducing appointment delays, increasing

system efficiency, and reducing no-shows.

While past studies have found that patients have preferences regarding when they would like to

be seen, to our knowledge, there has been limited attempt in quantifying the relative preferences of

patients using actual data. To understand patient preferences in practice and to use this insight in

populating the model parameters in our computational study, we collected data from a large urban

health center in New York City and used these data to estimate the parameters of the patient choice

model. For the patients of this particular clinic, the choice model estimates how patients choose

one day over the other. The choice model confirms that when patients have a health condition that

does not require an emergency but still needs fast attention, they do prefer to be seen earlier, even

after taking their work and other social obligations into account.

In addition to capturing the preferences of the patients on when they would like to be seen, a

potentially useful feature of our models is that they capture the patient no-show process in a quite
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general fashion. In particular, the probability that a customer cancels her appointment on a given

day depends on when the appointment was scheduled and how many days there are left until the

appointment day arrives. In this way, we can model the dependence of cancellation probabilities on

appointment delays. Similarly, we allow the probability that a patient shows up for her appointment

to depend on how much in advance the appointment was booked. Past studies are split on how

cancellation and no-show probabilities depend on appointment delays. A number of articles find

that patients with longer appointment delays are more likely to not show up for their appointments;

see Grunebaum et al. (1996), Gallucci et al. (2005), Dreiher et al. (2008), Bean and Talaga (1995)

and Liu et al. (2010). However, other studies found no such relationship; see Wang and Gupta

(2011) and Gupta and Wang (2011). In this paper, we keep our formulation general so that no-show

and cancellation probabilities can possibly depend on the delays experienced by patients.

The rest of the paper is organized as follows. Section 2 reviews the relevant literature. Section 3

describes the model primitives we use. Section 4 presents our static model, gives structural results

regarding the policy provided by this model, provides a bound on the optimality gap, and derives

solutions for the optimal deterministic policies. Section 5 develops our dynamic model. Section 6

discusses our discrete choice experiment on patient preferences, explains our simulation setup and

presents our numerical findings. Section 7 provides concluding remarks. In the Online Appendix,

we discuss a number of extensions that can accommodate more general patient choice models, and

present the proof of of the results that are omitted in the paper.

2 Literature Review

The appointment scheduling literature has been growing rapidly in recent years. Cayirli and Veral

(2003) and Gupta and Denton (2008) provide a broad and coherent overview of this literature.

Most work in this area focuses on intra-day scheduling and is typically concerned with timing

and sequencing patients with the objective of finding the “right” balance between in-clinic patient

waiting times and physician utilization. In contrast, our work focuses on inter-day scheduling and

does not explicitly address how intra-day scheduling needs to be done. In that regard, our models

can be viewed as daily capacity management models for a medical facility. Similar to our work,

Gerchak et al. (1996), Patrick et al. (2008), Liu et al. (2010), Ayvaz and Huh (2010) and Huh et al.

(2013) deal with the allocation and management of daily service capacity. However, none of these

articles take patient preferences and choice behavior into account.

To our knowledge, Rohleder and Klassen (2000), Gupta and Wang (2008) and Wang and Gupta

(2011) are the only three articles that consider patient preferences in the context of appointment

scheduling. These three articles deal with appointment scheduling within a single day, whereas our

work focuses on decisions over multiple days. By focusing on a single day, Rohleder and Klassen

(2000), Gupta and Wang (2008) and Wang and Gupta (2011) develop policies regarding the specific

timing of the appointments, but they do not incorporate the fact that the appointment preferences

5



of patients may not be restricted within a single day. Furthermore, their proposed policies do

not smooth out the daily load of the clinic. In contrast, since our policies capture preferences of

patients over a number of days into the future, they can improve the efficiency in the use of the

clinic’s service capacity by distributing demand over multiple days. Another interesting point of

departure between our work and the previous literature is the assumptions regarding how patients

interact with the clinic while scheduling their appointments. Specifically, Gupta and Wang (2008)

and Wang and Gupta (2011) assume that patients first reveal a set of their preferred appointment

slots to the clinic, which then decides whether to offer the patient an appointment in the set or to

reject the patient. In our model, the clinic offers a set of appointment dates to the patients and

the patients either choose one of the offered days or decline to make an appointment.

While there is limited work on customer choice behavior in healthcare appointment scheduling,

there are numerous related papers in the broader operations literature, particularly in revenue

management and assortment planning. Typically, these papers deal with problems where a firm

chooses a set of products to offer its customers based on inventory levels and remaining time in

the selling horizon. In response to the offered set of products, customers make a choice within

the offered set according to a certain choice model. Talluri and van Ryzin (2004) consider a

revenue management model on a single flight leg, where customers make a choice among the fare

classes made available to them. Gallego et al. (2004), Liu and van Ryzin (2008), Kunnumkal and

Topaloglu (2008) and Zhang and Adelman (2009) extend this model to a flight network. Bront et al.

(2009) and Rusmevichientong et al. (2010) study product offer decisions when there are multiple

customer types, each type choosing according to a multinomial logit model with a different set

of parameters. The authors show that the corresponding optimization problem is NP-hard. In

contrast, Gallego et al. (2011) show that the product offer decisions under the multinomial logit

model can be formulated as a linear program when there is a single customer type. We refer the

reader to Talluri and van Ryzin (2004) and Kök et al. (2009) for detailed overview of the literature

on revenue management and product offer decisions.

Two papers that are particularly relevant to ours are Liu et al. (2010) and Topaloglu (2013). Liu

et al. (2010) consider an appointment scheduling problem. Their model keeps track of appointments

over a number of days and uses the idea of applying a single step of the policy improvement

algorithm to develop a heuristic method. Liu et al. (2010) do not take patient preferences into

account in any way and assume that patients always accept the appointment day offered to

them. This assumption makes the formulation and analysis in Liu et al. (2010) significantly simpler

than ours. Furthermore, we are able to characterize the structure of the optimal state-independent

policy and provide a bound on the optimality gap of this policy, whereas Liu et al. (2010) do

neither. On the other hand, Topaloglu (2013) considers a joint stocking and product offer model

over a single period. The model in Topaloglu (2013) is essentially a newsvendor model with multiple

products, where the decision variables are the set of offered products and their corresponding

stocking quantities. Customers choose among the set of offered products according to a certain

choice model and the objective is to maximize the total expected profit. This model is a single
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period model with newsvendor features. In contrast, we take on a dynamic appointment scheduling

problem, where patients arrive randomly over time and we need to adjust the set of offer days over

time as a function of the state of the system. Furthermore, our model has to explicitly deal with

cancellations and no-shows. This dimension results in a high-dimensional state vector in a dynamic

programming formulation and we need to come up with tractable approximate policies. Such an

issue does not occur at all in a newsvendor setting.

3 Model Primitives

We consider a single care provider who schedules patient appointments over time and assume that

the following sequence of events occur on each day.1 First, we observe the state of the appointments

that were already scheduled and decide which subset of days in the future to make available for the

patients making appointment requests on the current day. Second, patients arrive with appointment

requests and choose an appointment day among the days that are made available to them. Third,

some of the patients with appointments scheduled for future days may cancel their appointments

and we observe the cancellations. Also, some of the patients with appointments scheduled on the

current day may not show up and we observe those who do. In reality, appointment requests,

cancellations and show-ups occur throughout the day with no particular time ordering among

them. Thus, it is important to note that our assumption regarding the sequence of events is simply

a modeling choice and our policies continue to work as long as the set of days made available for

appointments are chosen at the beginning of each day. The expected revenue the clinic generates

on a day is determined by the number of patients that it serves on that day. The expected cost the

clinic incurs is determined by the number of appointments scheduled for that day before no-show

realizations. This is mainly because staffing is the primary cost driver and staffing decisions have

to be made beforehand.

The number of appointment requests on each day has Poisson distribution with mean λ. Each

patient calling in for an appointment can potentially be scheduled either for the current day or

for one of the τ future days. Therefore, the scheduling horizon is T = {0, 1, . . . , τ}, where day 0

corresponds to the current day and the other days correspond to a day in the future. The decision

we make on each day is the subset of days in the scheduling horizon that we make available for

appointments. If we make the subset S ⊂ T of days available for appointments, then a patient

schedules an appointment j days into the future with probability Pj(S). We assume that the choice

probability Pj(S) is governed by the multinomial logit choice model; see McFadden (1974). Under

this choice model, each patient associates the preference weight of vj with the option of scheduling

an appointment j days into the future. Furthermore, each patient associates the nominal preference

weight of 1 with the option of not scheduling an appointment at all. In this case, if we offer the

1Some physicians work as a member of a physician team and reserves a certain number of appointment slots in
each day for urgent patients (e.g., walk-ins) who can be seen by any one of the team members, but use the rest of
their service capacity for scheduling their own patients only. In such a team practice, our focus is on managing the
capacity that is reserved for scheduled appointments only.
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subset S of days available for appointments, then the probability that an incoming patient schedules

an appointment j ∈ S days into the future is given by

Pj(S) =
vj

1 +
∑

k∈S vk
. (1)

With the remaining probability, N(S) = 1 −
∑

j∈S Pj(S) = 1/(1 +
∑

k∈S vk), a patient leaves the

system without scheduling an appointment.

If a patient called in i days ago and scheduled an appointment j days into the future, then this

patient cancels her appointment on the current day with probability r′ij , independently of the other

appointments scheduled. For example, if the current day is October 15, then r′13 is the probability

a patient who called in on October 14 and scheduled an appointment for October 17 cancels her

appointment on the current day. We let rij = 1− r′ij so that rij is the probability that we retain a

patient who called in i days ago and scheduled an appointment j days into the future. If a patient

called in i days ago and scheduled an appointment on the current day, then this patient shows up

for her appointment with probability si, conditional on the event that she has not canceled until

the current day. We assume that rij is decreasing in j for a fixed value of i so that the patients

scheduling appointments further into the future are less likely to be retained.

For each patient served on a particular day, we generate a nominal revenue of 1. We have a

regular capacity of serving C patients per day. After observing the cancellations, if the number of

appointments scheduled for the current day exceeds C, then we incur an additional staffing and

overtime cost of θ per patient above the capacity. The cost of the regular capacity of C patients is

assumed to be sunk and we do not explicitly account for this cost in our model. With this setup,

the profit per day is linear in the number of patients that show up and piecewise-linear and concave

in the number of appointments that we retain for the current day, but our results are not tied to

the structure of this cost function and it is straightforward to extend our development to cover the

case where the profit per day is a general concave function of the number of patients that show

up and the number of appointments that we retain. Using such a general cost structure, one can

easily enforce a capacity limit beyond which no patients can be scheduled by setting the cost rate

beyond this capacity limit sufficiently high. Note that we also choose not to incorporate any cost

associated with the patients’ appointment delay mainly because in our model patients choose their

appointment day based on their preferences anyway. Still, it is important to note that one can in

fact incorporate such costs into our formulation rather easily since our formulation already keeps

track of the appointment delay each patient experiences.

We can formulate the problem as a dynamic program by using the status of the appointments at

the beginning of a day as the state variable. Given that we are at the beginning of day t, we can let

Yij(t) be the number of patients that called in i days ago (on day t− i), scheduled an appointment

j days into the future (for day t − i + j) and are retained without cancellation until the current

day t. In this case, the vector Y (t) = {Yij(t) : 1 ≤ i ≤ j ≤ τ} describes the state of the scheduled

appointments at the beginning of day t. This state description has τ (τ + 1)/2 dimensions and the
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state space can be very large even if we bound the number of scheduled appointments on a day by

a finite number. In the next section, we develop a static model that makes its decisions without

considering the current state of the booked appointments. Later on, we build on the static model

to construct a dynamic model that indeed considers the state of the booked appointments.

4 Static Model

In this section, we consider a static model that makes each subset of days in the scheduling horizon

available for appointments with a fixed probability. Since the probability of offering a particular

subset of days is fixed, this model does not account for the current state of appointments when

making its decisions. We solve a mathematical program to find the best probability with which

each subset of days should be made available.

To formulate the static model, we let h(S) be the probability with which we make the subset

S ⊂ T of days available. If we make the subset S of days available with probability h(S),

then the probability that a patient schedules an appointment j days into the future is given by∑
S⊂T Pj(S)h(S). Given that a patient schedules an appointment j days into the future, we

retain this patient until the day of the appointment with probability r̄j = r0j r1j . . . rjj . Similarly,

this patient shows up for her appointment with probability s̄j = r0j r1j . . . rjj sj . Thus, noting

that the number of appointment requests on a day has Poisson distribution with parameter λ, if

we make the subset S of days available with probability h(S), then the number of patients that

schedule an appointment j days into future and that are retained until the day of the appointment

is given by a Poisson random variable with mean λ r̄j
∑

S⊂T Pj(S)h(S). Similarly, we can use a

Poisson random variable with mean λ s̄j
∑

S⊂T Pj(S)h(S) to capture the number of patients that

schedule an appointment j days into the future and that show up for their appointments. In

this case, using Pois(α) to denote a Poisson random variable with mean α, on each day, the

total number of patients whose appointments we retain until the day of the appointment is given

by Pois
(∑

j∈T
∑

S⊂T λ r̄j Pj(S)h(S)
)

and the total number of patients that show up for their

appointments is given by Pois
(∑

j∈T
∑

S⊂T λ s̄j Pj(S)h(S)
)
. To find the subset offer probabilities

that maximize the expected profit per day, we can solve the problem

max
∑
j∈T

∑
S⊂T

λ s̄j Pj(S)h(S)− θE
{[

Pois
(∑
j∈T

∑
S⊂T

λ r̄j Pj(S)h(S)
)
− C

]+}
(2)

subject to
∑
S⊂T

h(S) = 1 (3)

h(S) ≥ 0 S ⊂ T , (4)

where we use [·]+ = max{·, 0}. In the problem above, the two terms in the objective function

correspond to the expected revenue and the expected cost per day. The constraint ensures that

the total probability with which we offer a subset of days is equal to 1. Noting ∅ ⊂ T , the problem

above allows not offering any appointment slots to an arriving patient.
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4.1 Reformulation

Problem (2)-(4) has 2|T | decision variables, which can be too many in practical applications. For

example, if we have a scheduling horizon of a month, then the number of decision variables in this

problem exceeds a billion. However, it turns out that we can give an equivalent formulation for

problem (2)-(4) that has only |T |+1 decision variables, which makes this problem quite tractable. In

particular, Proposition 1 below shows that problem (2)-(4) is equivalent to the problem

max
∑
j∈T

λ s̄j xj − θE
{[

Pois
(∑
j∈T

λ r̄j xj

)
− C

]+}
(5)

subject to
∑
j∈T

xj + u = 1 (6)

xj
vj
− u ≤ 0 j ∈ T (7)

xj , u ≥ 0 j ∈ T . (8)

In the problem above, we interpret the decision variable xj as the probability that a patient

schedules an appointment j days into the future. The decision variable u corresponds to the

probability that a patient does not schedule an appointment. The objective function accounts for

the expected profit per day as a function of the scheduling probabilities. Constraint (6) captures

the fact that each patient either schedules an appointment on one of the future days or does

not. To see an interpretation of constraints (7), we note that if we offer the subset S of days,

then the probability that a patient schedules an appointment j days into the future is given by

Pj(S) = vj/(1 +
∑

k∈S vk) if j ∈ S and 0 otherwise. On the other hand, the probability that a

patient does not schedule an appointment is given by N(S) = 1/(1 +
∑

k∈S vk). Therefore, we

have Pj(S)/vj − N(S) ≤ 0. Surprisingly constraints (7) are the only place where the parameters

of the multinomial logit choice model appears in problem (5)-(8) and these constraints turn out

to be adequate to capture the choices of the patients as stipulated by the multinomial logit choice

model. In the next proposition, we show that problems (2)-(4) and (5)-(8) are equivalent to each

other. The proof uses the approach followed by Topaloglu (2013). We give the main ideas of the

proof here, but defer the details to the appendix.

Proposition 1. Problems (2)-(4) is equivalent to problem (5)-(8) in the sense that given an optimal

solution to one problem, we can generate an optimal solution to the other one.

Proof. Assume that h∗ = {h∗(S) : S ⊂ T } is an optimal solution to problem (2)-(4). Letting

x∗j =
∑

S⊂T Pj(S)h∗(S) and u∗ =
∑

S⊂T N(S)h∗(S), we show in the appendix that (x∗, u∗) with

x∗ = (x∗0, . . . , x
∗
τ ) is a feasible solution to problem (5)-(8) providing the same objective value as

the solution h∗. On the other hand, assume that (x∗, u∗) with x∗ = (x∗0, . . . , x
∗
τ ) is an optimal

solution to problem (5)-(8). We reorder and reindex the days in the scheduling horizon so that

we have x∗0/v0 ≥ x∗1/v
∗
1 ≥ . . . ≥ x∗τ/v

∗
τ . Constraints (7) in problem (5)-(8) also ensure that

u∗ ≥ x∗0/v0 ≥ x∗1/v1 ≥ . . . ≥ x∗τ/v
∗
τ . We define the subsets S0, S1, . . . , Sτ as Sj = {0, 1, . . . , j}. For

10



notational convenience, we define x∗τ+1 = 0. In this case, letting

h∗(∅) = u∗ − x∗0
v0

and h∗(Sj) =
[
1 +

∑
k∈Sj

vk

] [x∗j
vj
−
x∗j+1

vj+1

]
(9)

for all j = 0, 1, . . . , τ and letting h∗(S) = 0 for all other subsets of T , we show in the appendix that

{h∗(S) : S ⊂ T } ends up being a feasible solution to problem (2)-(4) providing the same objective

value as the solution (x∗, u∗). 2

The proof above indicates that we can obtain an optimal solution to problem (2)-(4) by solving

problem (5)-(8) and using (9). Furthermore, (9) shows that there are at most |T | + 1 subsets

for which the decision variables {h(S) : S ⊂ T } take strictly positive values in an optimal

solution. Problem (5)-(8) has a manageable number of decision variables and constraints, but its

objective function is nonlinear. Nevertheless, the nonlinear term in the objective function is of the

form F (α) = E
{

[Pois(α) − C]+
}

for α ∈ <+ and Lemma 7 in the appendix shows that F (α) is

differentiable and convex in α. Given that the objective function of problem (5)-(8) is convex and

its constraints are linear, we can use a variety of approaches to solve this problem.

One approach to solve problem (5)-(8) is to use a cutting plane method for convex optimization,

which represents the objective function of problem (5)-(8) with a number of cuts; see Ruszczynski

(2006). A more direct approach for solving this problem is to observe that the function F (·) as

defined in the previous paragraph is a scalar and convex function. So, it is simple to build an

accurate piecewise linear and convex approximation to F (·) by evaluating this function at a finite

number of grid points. We denote the approximation constructed in this fashion by F̂ (·). In this

case, to obtain an approximate solution to problem (5)-(8), we can maximize the objective function∑
j∈T λ s̄j xj−θF̂ (α) subject to the constraint that α =

∑
j∈T λ r̄j xj and constraints (6)-(8). Since

this optimization problem has a piecewise linear objective function and linear constraints, it can

be solved as a linear program. Furthermore, if we choose F̂ (·) as a lower bound or an upper

bound on F (·), then we obtain a lower or upper bound on the optimal objective value of problem

(5)-(8). When the lower and upper bounds are close to each other, we can be confident about the

quality of the solution we obtain from our approximation approach.

Another algorithmic strategy that we can use to solve problem (5)-(8) is based on dynamic

programming. For a fixed value of u, we observe that the constraints in this problem correspond

to the constraints of a knapsack problem. In particular, the items correspond to the days in the

scheduling horizon, the capacity of the knapsack is 1 − u and we can put at most vj × u units

of item j into the knapsack. So, for a fixed value of u, we can solve problem (5)-(8) by using

dynamic programming. In this dynamic program, the decision epochs correspond to days in the

scheduling horizon T . The state at decision epoch j ∈ T has two components. The first component

corresponds to the value of
∑j−1

k=0 xk, capturing the portion of the knapsack capacity consumed by

the decisions in the earlier decision epochs. The second component corresponds to the value of∑j−1
k=0 λ r̄k xk, capturing the accumulated value of the argument of the second term in the objective
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function of problem (5)-(8). Thus, for a fixed value of u, we can solve problem (5)-(8) by computing

the value functions {Θj(·, · |u) : j ∈ T } through the optimality equation

Θj(b, c |u) = max λ s̄j xj + Θj+1(b+ xj , c+ λ r̄j xj |u) (10)

subject to 0 ≤ xj/vj ≤ u, (11)

with the boundary condition that Θτ+1(b, c |u) = −θE{[Pois(c) − C]+} when b = 1 − u and

Θτ+1(b, c |u) = −∞ when b 6= 1 − u. In the dynamic program above, we accumulate the first

component of the objective function of problem (5)-(8) during the course of the decision epochs,

but the second component of the objective function through the boundary condition. Having

Θτ+1(b, c |u) = −∞ when b 6= 1− u ensures that we always consume the total capacity availability

of 1 − u in the knapsack. It is straightforward to accurately solve the dynamic program for all

u ∈ <+ by discretizing the state variable (b, c) and u over a fine grid in <3
+. Solving the dynamic

program for all u ∈ <+, maxu∈<+ Θ1(0, 0 |u) gives optimal objective value of problem (5)-(8).

4.2 Static Model under Delay-Independent Show-up Probabilities

As we describe at the end of the previous section, it is not difficult to obtain good solutions

to problem (5)-(8). Nevertheless, although we can obtain good solutions to problem (5)-(8),

the structure of the optimal subset offer probabilities obtained from problem (2)-(4) is still not

obvious. Furthermore, many of the subset offer probabilities {h(S) : S ⊂ T } may take positive

values in the optimal solution, indicating that the static policy may be highly randomized, which

may be undesirable for practical implementation. In this section, we consider the special case

where the show-up probability of an appointment, conditional on it having been retained until

the day of service, does not depend on how many days ago the patient called in. We prove two

results regarding the structure of the optimal subset availability probabilities. First, we show that

the subsets of days that we make available always consists of a certain number of consecutive

days. Second, we show that the optimal subset availability probabilities randomize between only

two subsets and these two subsets differ only in one day. Thus, in this special case, the optimal

solution turns out to have a very simple structure even though no explicit restriction on the set of

allowable policies is made. The assumption of conditional independence of no-shows on appointment

delays somewhat limits the general appeal of our formulation. However, some studies have indeed

found that once cancellations are factored in, dependence of no-shows to appointment delays either

disappears or weakens significantly. For example, Gupta and Wang (2011) analyzed data sets

from three different health organizations and found that the association between patient no-shows,

after accounting for cancellations, and appointment delays is either statistically insignificant or

statistically significant but very weak. Furthermore, if the assumption of conditional independence

of no-shows on appointment delays does not hold, then we can use the algorithm strategies described

at the end of the previous section to obtain an optimal solution to problem (5)-(8).

Throughout this section, we assume that the conditional show-up probability sj given an
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appointment delay of j days is independent of the value of j and we use s0 to denote the common

value of {sj : j ∈ T }. Thus, noting the definitions r̄j = r0j r1j . . . rjj and s̄j = r0j r1j . . . rjj sj ,

we obtain s̄j = r̄j s0. We emphasize that although the conditional show-up probabilities are

assumed to be independent of how many days ago an appointment was scheduled, the probability

of retaining an appointment rij can still be arbitrary. Define the scalar function R(·) as R(α) =

s0 α − θE
{

[Pois(α) − C]+
}

. Using the fact that s̄j = r̄j s0, we can write the objective function of

problem (5)-(8) succinctly as R
(∑

j∈T λ r̄j xj
)

and problem (5)-(8) becomes

max R
(∑
j∈T

λ r̄j xj

)
(12)

subject to
∑
j∈T

xj + u = 1 (13)

xj
vj
− u ≤ 0 j ∈ T (14)

xj , u ≥ 0 j ∈ T . (15)

In the next proposition, we show that there exists an optimal solution to the problem above where at

most one of the decision variables (x0, x1, . . . , xτ ) satisfy 0 < xj/vj < u. The other decision variables

satisfy either xj/vj = u or xj/vj = 0. This result ultimately becomes useful to characterize the

structure of the optimal subset offer probabilities. Before giving this result, we make one observation

that becomes useful in the proof. In particular, noting the assumption that rij is decreasing in j for

fixed i, the definition of r̄j implies that r̄j = r0j r1j . . . rjj ≥ r0,j+1 r1,j+1 . . . rj,j+1 rj+1,j+1 = r̄j+1,

establishing that r̄0 ≥ r̄1 ≥ . . . ≥ r̄τ .

Proposition 2. Assume that {sj : j ∈ T } share a common value. Then, there exists an optimal

solution (x∗, u∗) with x∗ = (x∗0, . . . , x
∗
τ ) to problem (12)-(15) that satisfies

u∗ =
x∗0
v0

= . . . =
x∗k−1

vk−1
≥
x∗k
vk
≥
x∗k+1

vk+1
= . . . =

x∗τ
vτ

= 0 (16)

for some k ∈ T .

Proof. We let (x∗, u∗) be an optimal solution to problem (12)-(15) and y∗ =
∑

j∈T λ r̄j x
∗
j so that

the optimal objective value of the problem is R(y∗). For a fixed value of u, consider the problem

ζ(u) = min
∑
j∈T

xj (17)

subject to
∑
j∈T

λ r̄j xj = y∗ (18)

0 ≤ xj ≤ vj u j ∈ T , (19)

whose optimal objective value is denoted by ζ(u). For the moment, assume that there exists

û satisfying ζ(û) = 1 − û. We establish the existence of such û later in the proof. We let x̂ =

(x̂0, . . . , x̂τ ) be an optimal solution to the problem above when we solve this problem with u = û. In
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this case, we have
∑

j∈T x̂j = ζ(û) = 1 − û,
∑

j∈T λ r̄j x̂j = y∗, x̂j/vj ≤ û for all j ∈ T , which

implies that (x̂, û) is a feasible solution to problem (12)-(15) providing an objective function value

of R(y∗). Thus, the solution (x̂, û) is also optimal for problem (12)-(15).

Problem (17)-(19) is a knapsack problem where the items are indexed by T , the disutility of each

item is 1 and the space requirement of item j is λ r̄j . We can put at most vj u units of item j into the

knapsack. We can solve this knapsack problem by starting from the item with the smallest disutility

to space ratio and filling the knapsack with the items in that order. Noting that r̄0 ≥ r̄1 ≥ . . . ≥ r̄τ ,

the disutility to space ratios of the items satisfy 1/(λ r̄0) ≤ 1/(λ r̄1) ≤ . . . ≤ 1/(λ r̄τ ) so that it is

optimal to fill the knapsack with the items in the order 0, 1, . . . , τ . Therefore, if we solve problem

(17)-(19) with u = û, then the optimal solution x̂ satisfies x̂0 = v0 û, x̂1 = v1 û, . . . , x̂k−1 = vk−1 û,

x̂k ∈ [0, vk û], xk+1 = 0, . . . , xτ = 0 for some k ∈ T . Therefore, the solution (x̂, û), which is optimal

to problem (12)-(15), satisfies (16) and we obtain the desired result.

It remains to show that there exists û with ζ(û) = 1 − û. Note that ζ(·) is continuous. By

the definitions of (x∗, u∗) and y∗, if we solve problem (17)-(19) with u = u∗, then x∗ is a feasible

solution providing an objective value of
∑

j∈T x
∗
j = 1−u∗, where the equality is by (13). Since the

solution x∗ may not be optimal to problem (17)-(19), we obtain ζ(u∗) ≤ 1 − u∗. Also, we clearly

have ζ(1) ≥ 0. Letting g(u) = 1− u, we obtain ζ(u∗) ≤ g(u∗) and ζ(1) ≥ g(1). Since ζ(·) and g(·)
are continuous, there exists û such that ζ(û) = g(û) = 1− û. 2

We emphasize that the critical assumption in Proposition 2 is that s̄j = r̄j s0 for all j ∈ T and

it is possible to modify this Proposition 2 to accommodate the cases where we do not necessarily

have the ordering r̄0 ≥ r̄1 ≥ . . . ≥ r̄τ . The key observation is that whatever ordering we have

among the probabilities {r̄j : j ∈ T }, the disutility to space ratios of the items in the problem

(17)-(19) satisfy the reverse ordering as long as s̄j = r̄j s0. In this case, we can modify the ordering

of the decision variables (x0, . . . , xτ ) in the chain of inequalities in (16) in such a way they follow

the ordering of {rj : j ∈ T } and the proof of Proposition 2 still goes through.

We can build on Proposition 2 to solve problem (12)-(15) through bisection search. In particular,

for fixed values of k and u, (16) shows that the decision variables x0, x1, . . . , xk−1 can be fixed at

xj = u vj for all j = 0, 1, . . . , k−1, whereas the decision variables xk+1, . . . , xτ can be fixed at 0. So,

for a fixed value of k, to find the best values of u and xk, we can solve the problem

Zk = max R
( k−1∑
j=0

λ r̄j vj u+ λ r̄k xk

)

subject to

k−1∑
j=0

vj u+ xk + u = 1

xk
vk
− u ≤ 0

xk, u ≥ 0,

where we set the optimal objective value Zk of the problem above to −∞ whenever the problem is
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infeasible. To find the best value of k, we can simply compute Zk for all k ∈ T and pick the value

that provides the largest value of k. Thus, max{Zk : k ∈ T } corresponds to the optimal objective

value of problem (12)-(15). Although the problem above, which provides Zk for a fixed value of k,

appears to involve the two decision variables xk and u, we can solve one of the decision variables

in terms of the other one by using the first constraint, in which case, the problem above becomes

a scalar optimization problem. Furthermore, noting the definition of R(·) and the discussion in

the last two paragraphs of Section 4.1, the objective function of the problem above is concave.

Therefore, we can solve the problem above by using bisection search.

The next corollary shows two intuitive properties of the optimal subset availability

probabilities. First, the optimal subset offer probabilities from problem (2)-(4) makes only subsets

of the form {0, 1, . . . , j} available for some j ∈ T . Therefore, it is optimal to make a certain number

of days into the future available without skipping any days in between. Second, the optimal subset

offer probabilities randomize at most between two possible subsets and these two subsets differ

from each other only in one day. These results indicate that the randomized nature of the static

policy is not a huge concern, as we randomize between only two subsets that are not too different

from each other. The proof of this corollary can be found in the appendix.

Corollary 3. Assume that {sj : j ∈ T } share a common value. Then, there exists an optimal

solution h∗ = {h∗(S) : S ⊂ T } to problem (2)-(4) with only two of the decision variables satisfying

h∗(S1) ≥ 0, h∗(S2) ≥ 0 for some S1, S2 ⊂ T and all of the other decision variables are equal to

0. Furthermore, the two subsets S1 and S2 are either of the form S1 = ∅ and S2 = {0}, or of the

form S1 = {0, 1, . . . , j} and S2 = {0, 1, . . . , j + 1} for some j ∈ T .

Thus, the optimal subset offer probabilities randomize between at most two subsets of days.

Each of these subsets of days contains consecutive days in them and they differ from each other

by only one day. When the show-up probabilities {sj : j ∈ T } do not share a common value, an

optimal static policy may randomize among multiple subsets that contain nonconsecutive days.

Even if that is the case however, considering scheduling policies that only offer consecutive days

might be of interest in practice given their simplicity. It turns out that it is not difficult to obtain

the static policies that are optimal under such restriction. In other words, it is not difficult to

find the optimal subset offer probabilities when we focus only on subsets that include consecutive

days. To see this, we let SC denote the set of the offer sets that only contain consecutive days

in T = {0, 1, . . . , τ} plus the empty set. We note that |SC | = (τ+1) (τ+2)
2 + 1, as there are only k

different offer sets that contain τ + 2− k consecutive days, k = 1, 2, . . . , τ . Therefore, to obtain the

desired scheduling policy with the requirement above, we can set h(S) = 0 if S /∈ SC in the problem

(2)-(4). This approach reduces the number of decision variables from exponentially increasing in

τ to quadratically. Since the objective function is jointly concave in all decision variables and the

constraints are linear, solving problem (2)-(4) is not difficult.
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4.3 Performance Guarantee

The static model in problem (2)-(4) makes each subset of days available with a fixed probability and

does not consider the current state of the scheduled appointments when making its decisions. A

natural question is what kind of performance we can expect from such a static model. In this

section, we develop a performance guarantee for our static model. In particular, we study the

policy obtained from the simple deterministic approximation

ZDET = max
∑
j∈T

λ s̄j xj − θ
[∑
j∈T

λ r̄j xj − C
]+

(20)

subject to
∑
j∈T

xj + u = 1 (21)

xj
vj
− u ≤ 0 j ∈ T (22)

xj , u ≥ 0 j ∈ T . (23)

The objective function above is the deterministic analogue of the one in problem (5)-(8), where the

Poisson random variable is replaced by its expectation. Similar to problem (5)-(8), problem (20)-

(23) characterizes a static model, but this static model is obtained under the assumption that all

random quantities take on their expected values. In this section, we show that the policy obtained

from problem (20)-(23) has a reasonable performance guarantee, even though this problem ignores

all uncertainty. Since problem (5)-(8) explicitly addresses the uncertainty, the policy obtained

from this problem is trivially guaranteed to perform better than the one obtained from problem

(20)-(23). It is common in the revenue management literature to develop performance bounds for

policies obtained from deterministic approximations; see Gallego and van Ryzin (1994), Gallego

and van Ryzin (1997), Levi and Radovanovic (2010), and Topaloglu et al. (2011). Our analysis has

a similar flavor but it nevertheless provides useful insights into identifying parameters which have

the strongest effect on the performance of the optimal static policies.

In the next lemma, we begin by showing that the optimal objective value of problem (20)-(23)

provides an upper bound on the expected profit per day generated by the optimal policy, which

can be a policy that depends on the state of the system. The proof of this result follows from a

standard argument that uses Jensen’s inequality and is given in the appendix. Throughout this

section, we use V ∗ to denote the expected profit per day generated by the optimal policy.

Lemma 4. We have ZDET ≥ V ∗.

We let Π(x) with x = (x0, . . . , xτ ) be the objective function of problem (5)-(8). If (x∗, u∗) is

an optimal solution to this problem, then the static policy that uses the subset offer probabilities

h∗ = {h∗(S) : S ⊂ T } defined as in (9) generates an expected profit of Π(x∗) per day. Since V ∗ is

the expected profit per day generated by the optimal policy, we have Π(x∗)/V ∗ ≤ 1. In the next

proposition, we give a lower bound on Π(x∗)/V ∗, which bounds the optimality gap of the policy

that we obtain by solving problem (5)-(8).
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Proposition 5. Letting (x∗, u∗) be an optimal solution to problem (5)-(8), we have

Π(x∗)

V ∗
≥ 1−

θ

√
r̄0

2π

√
λ r̄0

C

s̄0 min

{
v0

1 + v0
,
C

λ r̄0

}√
λ

. (24)

The proof of Proposition 5 appears in the appendix and is based on the observation that if

(x̂, û) is an optimal solution to problem (20)-(23), then since this solution is feasible for problem

(5)-(8), we have Π(x∗)/V ∗ ≥ Π(x̂)/V ∗. In this case, the proof of Proposition 5 shows that Π(x̂)/V ∗

is lower bounded by the expression on the right side of (24), which yields the desired result. The

performance guarantee in (24) has useful practical implications. Since λ r̄0 is an upper bound on

the expected number of appointments we retain on a particular day, if C and λ satisfy C ≥ λ r̄0,

then we essentially have a situation where the capacity exceeds the expected demand. In this case,

the quantity
√
λ r̄0/C in the numerator on the right side of (24) is upper bounded by 1 and the min

operator in the denominator evaluates to v0
1+v0

, which implies that Π(x∗)/V ∗ is lower bounded by

1− θ
√
r̄0/(2π)/(s̄0

v0
1+v0

√
λ). So, the performance guarantee improves with rate 1/

√
λ, indicating

that as long as capacity exceeds the expected demand, the performance of static policies improves

with the demand volume. In other words, we expect static policies to perform well in systems

handling large demand volumes. Similarly, if the capacity and the expected demand increase with

the same rate so that the ratio C
r̄0 λ

stays constant, then the performance of state independent

policies still improves with rate 1/
√
λ, even when C

λ r̄0
evaluates to a number less than 1. These

observations support using static models for large systems with high demand volumes.

To get a feel for the performance guarantee in (24), we consider a system with C = 12, λ = 16,

v0 = 1, r̄0 = 1, s̄0 = 0.9 and θ = 1.5. These parameters correspond to a case where if we offer only

the current day for an appointment, then a patient leaves without scheduling any appointments

with probability N({0}) = 1/(1 + v0) = 1/2. The probability that we retain a patient with a same

day appointment is 1 and the probability that this patient shows up for her appointment is 0.9.

Considering the fact that we generate a nominal revenue of 1 from each served patient, the overtime

cost of 1.5 is reasonable. The capacity and the arrival rate are reasonable for a small clinic. For

these parameters, the right side of (24) evaluates to about 62%, indicating that there exists a static

policy that generates at least 62% of the optimal expected profit per day. For a larger clinic with

C = 36 and λ = 48, the performance guarantee comes out to be about 78%.

4.4 Deterministic Scheduling Policies

As we have shown in Section 4.2, at least under certain conditions, the optimal static policy has

a simple structure and thus is easy to implement. If one is interested in using even a simpler

policy, then one possibility is to restrict attention to the class of deterministic policies only. Such a

deterministic policy would be achieved if we impose the constraints h(S) ∈ {0, 1} for all S ⊂ T , in

which case, problem (2)-(4) looks for exactly one set of days to offer to patients. It turns out that
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a transformation similar to the one in Section 4.1 still holds even when we have the constraints

h(S) ∈ {0, 1} for all S ⊂ T in problem (2)-(4). In particular, if we have the constraints h(S) ∈ {0, 1}
for all S ⊂ T in problem (2)-(4), then we can add the constraints xj/vj ∈ {0, u} for all j ∈ T in

problem (5)-(8). Under this modification to problem (5)-(8), problem (5)-(8) becomes equivalent

to problem (2)-(4) with the additional constraints that h(S) ∈ {0, 1} for all S ⊂ T . We record this

result in the next proposition. The proof follows from an argument similar to that of Proposition

1 and we defer it to the appendix.

Proposition 6. Consider problem (2)-(4) with the additional constraints h(S) ∈ {0, 1} for all

S ⊂ T and problem (5)-(8) with the additional constraints xj/vj ∈ {0, u} for all j ∈ T . These two

problems are equivalent in the sense that given an optimal solution to one problem, we can generate

a feasible solution to the other one providing the same objective value.

In short, to find one set of days to offer to customers, we can solve problem (5)-(8) with the

additional constraints xj/vj ∈ {0, u} for all j ∈ T . When we have the constraints xj/vj ∈ {0, u}
for all j ∈ T in problem (5)-(8), the algorithmic strategies that we can use to solve this problem

closely mirror those described at the end of Section 4.1. In particular, since the nonlinearity in

the objective function of problem (5)-(8) involves the scalar function F (α) = E
{

[Pois(α)−C]+
}

, it

is straightforward to construct accurate piecewise linear approximations to this scalar function. In

this case, problem (5)-(8) with the additional constraints that xj/vj ∈ {0, u} for all j ∈ T can be

formulated as a mixed integer linear program. Another option is to use the dynamic program in

(10)-(11). In particular, if we impose the constraint xj/vj ∈ {0, u} in each decision epoch, then this

dynamic program solves problem (5)-(8) for a fixed value of u and with the additional constraints

xj/vj ∈ {0, u} for all j ∈ T .

It is important to emphasize that the reformulation in Section 4.1 is still instrumental to

solving problem (2)-(4) under the additional constraints h(S) ∈ {0, 1} for all S ⊂ T . Without

this reformulation, problem (2)-(4) has 2|T | decision variables, whereas our reformulation yields a

problem with |T |+1 decision variables, which can either directly be solved as a mixed integer linear

program or through dynamic programming.

5 Dynamic Model

The solution to the static model in the previous section identifies a fixed set of probabilities with

which to offer each subset of days, independently of the currently booked appointments. In other

words, the policy from this static model does not take the state of the system into consideration.

Clearly, there is potential to improve such a policy if decisions can take into account the current

system state information. In this section, we begin by giving a Markov decision process formulation

of the appointment scheduling problem. Using this formulation, we develop a dynamic policy which

prescribes a set of scheduling decisions as a function of the current state of the system.

18



5.1 Dynamic Program

As mentioned at the end of Section 3, for 1 ≤ i ≤ j ≤ τ , we can use Yij(t) to denote the number

of patients that called in i days ago (on day t − i) and scheduled an appointment j days into

the future (for day t − i + j) given that we are at the beginning of day t. We call the vector

Y (t) = {Yij(t) : 1 ≤ i ≤ j ≤ τ} as the appointment schedule at the beginning of day t. For a given

policy π, let hπ(Y (t), S) denote the probability that the subset S of days is offered to the patients

when the system state is Y (t) under policy π. In this case, the evolution of the appointment

schedule Y π(t) under policy π is captured by

Y π
ij (t+ 1) =

{
Pois(

∑
S⊂T λ r0j Pj(S)hπ(Y π(t), S)) if 1 = i ≤ j ≤ τ

Bin(Y π
i−1,j(t), ri−1,j) if 2 ≤ i ≤ j ≤ τ ,

where we use Bin(n, p) to denote a Binomial random variable with parameters n and p. Assuming

that we are on day t, let Uπi (t) denote the number of patients who called on day t − i to make

an appointment for today and show up for their appointment. As a function of the appointment

schedule on day t, we can characterize Uπi (t) by

Uπi (t) =

{
Pois(

∑
S⊂T λ s0 P0(S)hπ(Y π(t), S)) if i = 0

Bin(Y π
ii (t), si) if 1 ≤ i ≤ τ .

Finally, we let Y π
00(t) be the number of patients who call on day t and choose to schedule their

appointments on the same day, in which case, Y π
00(t) is characterized by

Y π
00(t) = Pois

( ∑
S⊂T

λP0(S)hπ(Y π(t), S)
)
.

Define φπ(y) to be the long-run average expected reward under policy π given the initial state

y = Y π(0), which is to say that

φπ(y) = lim
k→∞

E
{ k∑
t=0

( τ∑
i=0

Uπi (t)− θ
[ τ∑
i=1

Y π
ii (t) + Y00(t)− C

]+) ∣∣∣Y π(0) = y
}

k
.

A scheduling policy π∗ is optimal if it satisfies φπ
∗
(y) = supπ φ

π(y) for all y.

We can try to bound the number of appointments on a given day by a reasonably large number to

ensure that there are a finite number of possible values for the appointment schedule Y (t). However,

even if we bound the number of appointments, the appointment schedule Y (t) is a high-dimensional

vector and the number of possible values for the appointment schedule would get extremely large

even for small values for the length of the scheduling horizon τ . This precludes us from using

conventional dynamic programming algorithms, such as value iteration or policy iteration, to

compute the optimal scheduling policy. Therefore, it is of interest to develop computationally

efficient approaches to obtain policies that consider the status of the booked appointments. We

describe one such approach in the next section.
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5.2 Policy Improvement Heuristic

In this section, we develop a dynamic policy, which makes its decisions by taking the current

appointment schedule into consideration. The idea behind our dynamic policy is to start with a

static policy that ignores the current appointment schedule and apply the single step of the policy

improvement algorithm. It is important to note that we do not simply call for applying the policy

improvement step and computing the improved policy for every possible state of the system. Rather,

we carry out policy improvement only for the states that we run into as the system evolves over

time, and furthermore as it turns out, computing the decisions made by our policy improvement

heuristic for a particular state of the system requires solving a mathematical problem similar to

the one solved for our static model.

Our policy improvement heuristic is developed by building on a static policy mainly because we

can, in this case, identify closed-form expressions for the value functions in the policy-improvement

step, as described below. Ideally, when implementing the policy improvement heuristic, one uses

the optimal static policy obtained by solving problem (2)-(4), but if there are reasonable alternative

static policies, then one can simply use them instead. Our derivation of the policy improvement

heuristic does not depend on whether or not the initially chosen static policy is obtained through

problem (2)-(4) and we keep our presentation general.

We let h(S) for S ⊆ T be the probability that the subset S of days is offered to each appointment

request under a static policy, which, as mentioned above, may or may not have been obtained

through problem (2)-(4). Given that we are at the beginning of a particular day, the current

appointment schedule is given by y = {yij : 1 ≤ i ≤ j ≤ τ} before we observe the appointment

requests on the current day. Similar to Yij(t), the component yij of the appointment schedule y

represents the number of appointments made i days ago for j days into the future. Consider a

policy π that makes the subset S of days available with probability f(S) on the current day and

switches to the static probabilities h = {h(S) : S ⊂ T } from tomorrow on.

Given that we start with the appointment schedule y, define ∆(y, f, h) to be the difference in

the long-run total expected rewards obtained by following policy π rather than the static policy

that uses the subset offer probabilities h all along. To conduct one step of the policy improvement

algorithm, we need to maximize ∆(y, f, h) with respect to f = {f(S) : S ⊂ T }. Since policy π

and the static policy that uses h make identical decisions after the current day and appointments

cannot be scheduled beyond τ days into the future, the appointment schedules under the two

policies are stochastically identical beyond the first τ + 1 days. Thus, we can write ∆(y, f, h) =

Qπ(y, f, h)−QSP (y, h), where Qπ(y, f, h) and QSP (y, h) are respectively the total expected rewards

accumulated over the next τ + 1 days under policies π and the static policy.

When determining f that maximizes ∆(y, f, h), the function QSP (y, h) is simply a

constant. Thus, our objective is equivalent to maximizing Qπ(y, f, h). We proceed to deriving

an expression for Qπ(y, f, h). For 1 ≤ i ≤ j ≤ τ , we let Vij(y) denote the number of patients
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who called for appointments i days ago and will not cancel by the morning of their appointment,

which is j − i days from today. We let Wij(y) denote the number of these patients who show up

for their appointments. Similarly, for 0 ≤ j ≤ τ , we let V̄j(f) denote the number of patients who

call to make an appointment today, schedule an appointment for day j in the scheduling horizon

and do not cancel by the morning of their appointment. We let W̄j(f) denote the number of these

patients who show up for their appointments. Finally, for 1 ≤ k ≤ j ≤ τ , we define V̂kj(h) to be

the number of patients who will call to make an appointment on day k in the scheduling horizon

and will not have canceled their appointment by the morning of their appointment, which is on day

j of the scheduling horizon. We define Ŵkj(h) to be the number of these patients who will show

up for their appointments. Under the assumption that the cancellation and no-show behavior of

the patients are independent of each other and the appointment schedule, we characterize the six

random variables defined above as Vij(y) = Bin(yij , r̃ij), Wij(y) = Bin(yij , s̃ij),

V̄j(f) = Pois
( ∑
S⊂T

λ r̄j Pj(S) f(S)
)
, W̄j(f) = Pois

( ∑
S⊂T

λ s̄j Pj(S) f(S)
)
,

V̂kj(h) = Pois
( ∑
S⊂T

λ r̄j−k Pj−k(S)h(S)
)
, Ŵkj(h) = Pois

( ∑
S⊂T

λ s̄j−k Pj−k(S)h(S)
)
,

where r̃ij = rij ri+1,j . . . rjj is the probability that a patient who scheduled her appointment i

days ago will not have canceled her appointment by the morning of the day of her appointment,

which is j − i days from today and s̃ij = sj r̃ij is the probability that a patient who scheduled her

appointment i days ago will show up for her appointment, which is j − i days from today.

Using the random variables defined above, we can capture the reward obtained by the policy

that uses the subset offer probabilities f today and switches to the static probabilities h from

tomorrow on. In particular, letting qj(y, f, h) denote the total expected reward obtained by this

policy j days from today, we have

qj(y, f, h) = E
{ τ−j∑
k=1

Wk,k+j(y) + W̄j(f) +

j∑
k=1

Ŵkj(h)

− θ
[ τ−j∑
k=1

Vk,k+j(y) + V̄j(f) +

j∑
k=1

V̂kj(h)− C
]+}

,

where we set
∑j

k=1 Ŵkj(h) = 0 and
∑j

k=1 V̂kj(h) = 0 when we have j = 0. Thus, it follows

that Qπ(y, f, h) =
∑τ

j=0 qj(y, f, h) and we can implement the policy improvement heuristic by

maximizing
∑

j∈T qj(y, f, h) subject to the constraint that
∑

S⊂T f(S) = 1. The optimal solution

f∗ = {f∗(S) : S ⊂ T } to the last problem yields the probability with which each subset of days

should be offered on the current day. We note that since qj(y, f, h) depends on the current state

y of the appointment schedule, the offer probabilities f we obtain in this fashion also depend on

the current appointment schedule. Finally, we observe that solving the last optimization problem

simplifies when we approximate the binomial random variables Vij(y) and Wij(y) for 1 ≤ i ≤ j ≤ τ
with Poisson random variables with their corresponding means. In that case, one can check that
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the last optimization problem is structurally the same as problem (2)-(4) and we can use arguments

similar to those in Section 4 to obtain the decisions made by the policy improvement heuristic.

6 Computational Results

In this section, we begin by giving the findings from our discrete choice experiment conducted to

elicit patient preferences and to obtain data for our computational work. We proceed to describe

our benchmark policies and experimental setup. We conclude with our computational results.

6.1 Discrete Choice Experiment

Our experiment took place in the Farrell Community Health Center, a large urban primary care

health center in New York City. This center serves about 26,000 patient visits per year. A self-report

survey instrument was created in both English and Spanish to collect data (see a snapshot of the

survey in the appendix). Adult patients waiting were approached and informed about this study.

After verbal consent was obtained, each patient was given a questionnaire in her native language,

which described a hypothetical health condition entailing a need for a medical appointment and

listed a randomly generated set of two possible choices of appointment days (for example, the same

day and 2 days from now) as well as the option of seeking care elsewhere. The patient was asked to

consider her current work/life schedule and mark the appointment choice she preferred. Since the

nature of the health problem is likely to influence the preference of the patient, each patient was

asked to make a choice for two different problems, one that can be characterized as “ambiguous”

and the other as “urgent.” When describing the health conditions, we used the almost exact same

wording Cheraghi-Sohi et al. (2008) used. In particular, a patient faces an ambiguous condition

when s/he has been feeling tired and irritable and has had difficulty sleeping over the past few

months, and the patient has tried several things to remedy this but is not feeling any better;

whereas urgent condition is characterized by severe chest pains when taking deep breath in.

Data were collected from December 2011 to February 2012. To reduce sampling bias, we

conducted surveys across different times of day and different days of week. Overall, 240 patients

were eligible to participate, out of which 161 of them agreed to participate, yielding a response

rate of 67%. Each patient was provided appointment slots over the next five days including the

current day, corresponding to a scheduling horizon length of τ = 5. We separated the data under

the ambiguous health condition and the urgent health condition. Excluding the participants who

provided missing data, the sample size for the ambiguous condition turned out to be 156 patients

and that for the urgent condition turned out to be 158 patients. For each health condition, we let

K be the set of patients who picked an appointment day within the options offered and K̄ be the

set of patients who picked the option of seeking care elsewhere. For each patient k ∈ K, the data

provide the set of appointment days Sk made available to this patient and the appointment day jk

chosen by this patient, whereas for each patient k ∈ K̄, the data provide the set of appointment
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Choice Set Choice Prob. under vA Choice Prob. under vU

1st choice 2nd choice 3rd choice 1st choice 2nd choice 3rd choice

{0, 2, elsewhere} 0.51 0.39 0.10 0.51 0.25 0.23
{1, 3, elsewhere} 0.45 0.45 0.10 0.59 0.10 0.30
{2, 4, elsewhere} 0.52 0.35 0.13 0.39 0.25 0.36
{3, 5, elsewhere} 0.62 0.25 0.13 0.22 0.13 0.66

Table 1: Patient choice probabilities under sample scenarios.

days Sk made available to the patient. As a function of the parameters v = (v0, v1, . . . , vτ ) of the

choice model, the likelihood function is given by

L(v) =
( ∏
k∈K

vjk

1 +
∑

j∈Sk vj

)( ∏
k∈K̄

1

1 +
∑

j∈Sk vj

)
We maximized the likelihood function above by using a nonlinear programming package to obtain

the estimator for the preference weights v.

We use vA and vU to respectively denote the preference weights estimated by using the data

obtained under the ambiguous and urgent health conditions. Our results yield the estimates

vA = (4.99, 4.66, 3.84, 4.58, 2.54, 1.83) and vU = (2.19, 1.95, 1.09, 0.33, 0.71, 0.19). These estimates

conform with intuition. The preference weights derived from the patients with an ambiguous health

condition reveal that these patients are less sensitive to appointment delays. They appear to favor

any appointment within the four day window more or less equally. Conversely, the patients with

urgent symptoms in general desire faster access. They prefer appointments on the day during

which they call or the day after much more strongly than other days. We can also see that while

the utilities for the unambiguous condition have a monotonic structure those for the ambiguous

condition do not, which might be due to the fact that in the patient population, there could be

two different attitudes towards an ambiguous health condition. While one group of patients take

it seriously and demand seeing a doctor as soon as possible, the other group could assume a more

relaxed wait-and-see attitude and prefer scheduling an appointment a few days later and go see a

doctor then if their condition is still present.

Also, we observe that the magnitudes of the preference weights are smaller when patients face

an urgent health condition compared to when patients face an ambiguous health condition. Noting

that the preference weight of seeking care elsewhere is normalized to one, this observation suggests

that patients facing an urgent health condition have a higher tendency to seek care elsewhere (e.g.,

emergency rooms). These can also be observed in Table 1, which lists patient choice probabilities

for a given set of options and under each one of the two health conditions.

6.2 Description of the Policies

We compare the performances of our static and dynamic policies through a series of computational

experiments and test them against other benchmark policies. We work with a total of five
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policies. Two of them are policies developed based on our formulation and analysis in this paper. The

other three are either meant to capture or inspired by what some clinics already do in practice. So,

they can serve as benchmark policies for the policies that we propose.

Static Policy (SP): This policy is obtained by solving the static optimization problem described

in Section 4. Specifically, SP solves problem (5)-(8) and transforms the optimal solution to this

problem to an optimal solution to problem (2)-(4) by using (9). Using h∗ to denote an optimal

solution to problem (2)-(4) obtained in this fashion, SP offers the subset S of days with probability

h∗(S).

Dynamic Policy (DP): This policy is obtained as described in Section 5. Letting h∗ be the

subset offer probabilities obtained by SP, given that the appointment schedule on the current day

is given by x, DP maximizes
∑

j∈T qj(x, f, h
∗) subject to the constraint that

∑
S⊂T f(S) = 1. In

this case, using f∗ to denote the optimal solution to this problem, on the current day, we offer the

subset S of days with probability f∗(S). We note that DP recomputes the subset offer probabilities

at the beginning of each day by using the current appointment schedule, but the value of h∗ stays

constant throughout.

Controlled Open Access Policy (CO): This is actually a capacity controlled implementation

of open access. CO makes only the current day available for appointments, but to balance the

demand with the available capacity, it also allows the possibility of offering no appointment days to

an arriving patient. To achieve this, we solve problem (2)-(4) only by considering the sets S = {0}
and S = ∅, in which case, problem (2)-(4) becomes a convex optimization problem with two decision

variables h({0}) and h(∅). Letting (h∗({0}), h∗(∅)) be the optimal solution we obtain, CO offers

the current day for appointments with probability h∗({0}) and does not offer any appointment days

with probability h(∅).

All or Nothing Policy (AN): This policy either makes all days in the scheduling horizon available

for appointments or does not offer an appointment day at all. The probabilities of offering these

two options is obtained by using a similar approach to CO. In particular, we solve problem (2)-(4)

only by considering the sets S = {0, 1, . . . , τ} and S = ∅.

Next-n Policy: This policy is a smarter, dynamic alternative to CO and AN, which both describe

static policies that do not take system state into account. For each day in the scheduling horizon,

let Q be the set of days, ordered chronologically, for which the number of scheduled appointments

is below the regular capacity C. Under the Next-n policy, we open the first min{n, |Q|} days

for patients to choose from at the beginning of the day. Note that Q depends on the current

system state and so is the offer set. This policy essentially tries to schedule appointments as early

as possible while making sure that the regular capacity is not exceeded. Our interactions with

primary care practices suggest that this policy is reasonably close to how some of the clinics which

actively work for high capacity utilization schedule appointments.
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There is one issue that needs to be clarified regarding the implementation of the Next-n

policy. Clearly, one needs to pick a value for n, the number of days that will be offered to the

patients. However, our computational experiments quickly revealed that there is no one fixed value

of n that works uniformly well in all the problem parameter settings. What works well in one

particular scenario may perform badly in others. This poses a challenge for clinics since this would

require some sort of optimization to determine the “optimal” value of n. It also means that a fair

comparison of this policy with the other policies is somewhat challenging. The reason is that if one

were to set n to a fixed value, say 3, and test this policy across all scenarios, that would clearly

put this policy in a disadvantaged position in some of these scenarios. To avoid this problem, for

each scenario, we chose n “optimally” by simulating the appointment system under each possible

value of n and picking the one under which the expected profit is the largest. In the following, we

name this policy Next-n∗ policy to make it clear that the choice of n is not arbitrary. However,

it should be noted that by making this assumption we grant a significant advantage to this policy

as it assumes a sophisticated clinic, which is capable of making this determination in practice.

Nevertheless, with this approach, we at least know that the performance of Next-n∗ provides an

upper bound on what a clinic can achieve with a Next-n type policy.

6.3 Experimental Setup

In all of our computational experiments, we set the daily arrival rate λ = 16. We consider three

capacity levels C = 0.9λ, 1.2λ and 1.5λ, representing tight, medium and ample capacity situations,

respectively. These specific capacity levels were chosen so that we cover the same range of capacity-

demand ratios considered in Green et al. (2008). We assume that the probability of retaining an

appointment r̄j = 1− 0.04 j if the appointment delay is j days, and set sj = 1 so that all patients

who have not canceled by the day of their appointments show up.

Recalling that the revenue of serving a patient is normalized to one, we vary the overtime cost

θ over three different values, 1.25, 1.5 and 1.75. We use two different values for the length of the

scheduling horizon τ . In one set of test problems, we set τ = 5. For these test problems, we

work with two different preference weights, vA and vU , which are estimated under the ambiguous

and urgent health conditions in Section 6.1. In another set of test problems, we set τ = 15. For

these test problems, we use two different sets of preference weights that we generate ourselves. The

first one is vI = (1, 1, . . . , 1), corresponding to the case where a patient is indifferent over the

days offered to her. The second set of preference weights is vD = {1.5, 1.4, . . . , 0.1}, capturing the

situation where patients prefer later appointments less. Thus, our experimental setup varies the

capacity of the clinic C over {0.9λ, 1.2λ, 1.5λ} , the overtime cost θ over {1.25, 1.5, 1.75} and the

preference weights v over {vA, vU , vI , vD}, which amounts to a total of 36 test problems.

We use a simulation study to test the performances of the five policies described in the previous

section. On each day, we sample the number of appointment requests that arrive, and determine

the offer set under the policy in consideration. The patient making the appointment request

25



chooses among the offered days according to the multinomial logit model or leaves without booking

an appointment. Once we collect the booked appointments on the current day and update the

appointment schedule, we sample cancellations and no-shows. Based on the no-shows, we account

for the revenue and the overtime cost on the current day, after which, we move on to the next day.

We simulate each one of the five policies for 135 days and for 100 replications. The first 45 days of

each replication is used as a warm up period, during which we do not collect any cost information.

6.4 Computational Results

Our computational results are given in Tables 2 and 3. Table 2 is for the test problems with τ = 5,

having the preference weights vA and vU . Table 3 is for the test problems with τ = 15, having the

preference weights vI and vD. The first three columns in each table indicate the values for v, C,

and θ, characterizing each scenario. The next five columns show the expected net reward per day

obtained under the five policies considered. Along with the expected net reward for Next-n∗, we

report the best value of n that we find for this policy. As DP is usually the best performing policy,

we also give the percent gap between the expected daily net reward under DP and that under the

remaining four policies in the last four columns. DP performances marked with × and ∗ indicate

scenarios where DP performance is statistically better than SP and Next-n∗, respectively at 0.05

level of significance. For a majority of test problems, DP is significantly better than AN or CO. So,

we do not statistically compare the performance of AN or CO with that of DP.

From the two tables, we observe that the performances of AN and CO are very much scenario

dependent. Each has its own set of scenarios where they perform reasonably well, but they can

perform quite poorly in some cases. The performance gap with DP can exceed 34% for AN and

15% for CO. AN and CO can be seen as policies at the two ends of the policy spectrum with AN

offering all days (or none) and CO offering only the current day (or none). They are also both

static policies. Thus, their uneven and sometimes inferior performance can be attributed to the

fact that they are not responsive to changes in the appointment schedule and they each focus on

only one of the two dimensions of the problem, with AN focusing on being more accommodating

to appointment requests by making a large window of days available and thereby avoiding losing

patient demand, whereas CO focusing on preventing no-shows and late cancellations and as a result

improving operational efficiency.

The performance of SP is either superior or equivalent to both AN and CO across all scenarios

and the performance gap with DP never exceeds 6%. Thus, even if dynamic policies are not

considered, clinics can gain quite a bit by choosing the offer sets carefully based on the available

capacity with respect to demand and patient preferences. However, we also observe that there are

still significant benefits to be gained by making decisions dynamically. As shown in the two tables,

in 18 out of the 36 scenarios, DP performs statistically better than SP. As indicated above, the

improvements can reach up to 6%. More importantly, the performance improvement from DP is

largest when the capacity is tight with respect to the overall patient demand, as we can observe in
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Scenario Parameters Expected Net Reward Per Day % Gap with DP
v C θ DP SP AN CO Next-n∗ SP AN CO Next-n∗

vA 0.9λ 1.25 ×∗ 12.52 12.06 11.65 11.97 12.39 (5) 3.67 6.95 4.39 1.04
vA 0.9λ 1.5 ×∗ 12.32 11.74 11.41 11.61 12.16 (5) 4.71 7.39 5.76 1.65
vA 0.9λ 1.75 ×∗ 12.11 11.39 11.18 11.28 11.91 (6) 5.95 7.68 6.85 1.65

vA 1.2λ 1.25 ×13.67 13.57 12.72 13.34 13.57 (3) 0.73 6.95 2.41 0.73
vA 1.2λ 1.5 ×13.61 13.50 12.65 13.24 13.50 (3) 0.81 7.05 2.72 0.81
vA 1.2λ 1.75 ×13.57 13.45 12.61 13.22 13.43 (4) 0.88 7.07 2.58 1.03

vA 1.5λ 1.25 13.77 13.79 12.81 13.47 13.76 (3) -0.15 6.97 2.18 0.073
vA 1.5λ 1.5 13.73 13.72 12.77 13.44 13.75 (3) 0.073 7.00 2.11 -0.15
vA 1.5λ 1.75 13.72 13.70 12.75 13.45 13.73 (3) 0.15 7.07 1.97 -0.073

Average 1.87 7.13 3.44 0.71

vU 0.9λ 1.25 ×∗11.80 11.52 10.20 11.50 11.64 (6) 2.37 13.56 2.54 1.36
vU 0.9λ 1.5 ×∗11.70 11.32 10.14 11.36 11.47 (5) 3.24 13.33 2.91 1.97
vU 0.9λ 1.75 ×∗11.55 11.10 10.05 11.12 11.25 (6) 3.90 12.99 3.72 2.60

vU 1.2λ 1.25 12.44 12.43 10.49 12.41 12.43 (6) 0.080 15.68 0.24 0.080
vU 1.2λ 1.5 12.44 12.47 10.52 12.44 12.48 (6) -0.24 15.43 0 -0.32
vU 1.2λ 1.75 12.34 12.33 10.44 12.44 12.37 (5) 0.080 15.40 0 0.08

vU 1.5λ 1.25 12.52 12.52 10.53 12.52 12.51 (5) 0 15.89 0 0.08
vU 1.5λ 1.5 12.57 12.57 10.56 12.56 12.58 (5) 0 15.99 0.080 -0.08
vU 1.5λ 1.75 12.45 12.48 10.47 12.41 12.47 (5) -0.24 15.90 0.32 -0.16

Average 1.02 14.91 1.09 0.5

Table 2: Performances of the four policies on the test problems with v = vA or v = vU . DP
performances marked with × and ∗ indicate scenarios where DP performance is statistically better
than SP and Next-n∗, respectively at 0.05 level of significance. In the Next-n∗ column, the number
in parenthesis indicates the value of n for which the Next-n policy has the best performance.

scenarios with C = 0.9λ.

The most serious competitor to DP is the Next-n∗ policy with a performance that is close to

that of DP across all scenarios. In 9 out of the 36 scenarios tested, DP still performs statistically

better than Next-n∗ at 0.05 level of significance and in the remaining 27 scenarios, the performances

of the two policies are statistically indistinguishable. Furthermore, most of the 9 scenarios where

DP is statistically superior are the scenarios where the capacity is tight with respect to the patient

demand. These are the scenarios where DP beats SP with the largest margins. This means that

DP has the potential to make a difference for clinics with heavy loads, which is important since

capacity management for clinics experiencing low patient demand is typically less of a challenge.

Second, as the two tables indicate, the value of n∗ changes from scenario to scenario, ranging from

2 to 7. Thus, the performance of Next-n∗ essentially provides an upper bound on what clinics can

possibly achieve with a simple Next-n type policy that does not necessarily use the best value of n.

In addition, our computational experiments indicated that if n for the Next-n policy is not chosen

optimally, then the performance of Next-n can suffer significantly. This means that, perhaps not

surprisingly, there is not a fixed value of n for which Next−n performs universally well. Clinics

need to make a numerical search to determine the right choice for n. On the other hand, the

implementation of DP is more complex than that of Next-n as DP requires solving an optimization

problem in an online fashion. Nevertheless, this is not a serious issue as we have found out that
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Scenario Parameters Expected Net Reward Per Day % Gap with DP
v C θ DP SP AN CO Next-n∗ SP AN CO Next-n∗

vI 0.9λ 1.25 ×11.29 11.04 7.62 9.91 11.31 (6) 2.21 32.51 12.22 -0.18
vI 0.9λ 1.5 ×11.24 10.96 7.59 9.84 11.22 (7) 2.49 32.47 12.46 0.18
vI 0.9λ 1.75 ×11.22 10.8 7.65 9.83 11.17 (7) 3.47 31.82 12.39 0.45

vI 1.2λ 1.25 11.66 11.68 7.66 10.15 11.72 (6) -0.17 34.31 12.95 -0.51
vI 1.2λ 1.5 11.71 11.71 7.65 10.14 11.74 (6) 0 34.67 13.41 -0.26
vI 1.2λ 1.75 11.72 11.76 7.7 10.23 11.77 (6) -0.34 34.3 12.71 -0.43

vI 1.5λ 1.25 11.72 11.75 7.63 10.16 11.75 (6) -0.26 34.90 13.31 -0.26
vI 1.5λ 1.5 11.77 11.77 7.68 10.14 11.73 (6) 0 34.75 13.85 0.34
vI 1.5λ 1.75 11.81 11.79 7.69 10.2 11.83 (6) 0.17 34.89 13.64 -0.17

Average 0.87 33.84 12.99 -0.093

vD 0.9λ 1.25 ×12.66 12.29 12.27 11.37 12.59 (5) 2.92 3.08 10.19 0.55
vD 0.9λ 1.5 ×12.32 11.83 11.81 11.13 12.30 (5) 3.98 4.14 9.66 0.16
vD 0.9λ 1.75 ×∗12.14 11.42 11.15 11.03 11.95 (5) 5.93 8.15 9.14 1.57

vD 1.2λ 1.25 ×14.35 14.25 14.12 12.24 14.24 (2) 0.70 1.60 14.70 0.77
vD 1.2λ 1.5 ×∗14.25 14.11 13.98 12.13 14.11 (2) 0.98 1.89 14.88 0.98
vD 1.2λ 1.75 ×∗14.29 14.10 13.99 12.17 14.10 (2) 1.33 2.10 14.84 1.33

vD 1.5λ 1.25 14.54 14.55 14.39 12.26 14.56 (2) -0.069 1.11 15.68 -0.14
vD 1.5λ 1.5 14.45 14.46 14.29 12.2 14.44 (2) -0.069 1.11 15.57 0.069
vD 1.5λ 1.75 14.53 14.54 14.39 12.31 14.54 (2) -0.069 0.96 15.28 -0.069

Average 1.73 2.67 13.33 0.58

Table 3: Performances of the five policies on the test problems with v = vI or v = vD. DP
performances marked with × and ∗ indicate scenarios where DP performance is statistically better
than SP and Next-n∗, respectively at 0.05 level of significance. In the Next-n∗ column, the number
in parenthesis indicates the value of n for which the Next-n policy has the best performance.

for the test problems we considered, the decision made by DP can be computed in less than 0.01

seconds on a standard desktop computer.

7 Conclusion

This paper develops new methods, which can be used in making appointment scheduling decisions

while taking into account patients’ no-show and cancellation behavior and their preferences for

different appointment days. Even though management of healthcare capacity has always been an

important problem, a number of societal and technological developments over the last decade as well

as more recent changes in the U.S. healthcare system through the Patient Protection and Affordable

Care Act, have made the decision problem considered here particularly timely. First, in the U.S.,

due to the Affordable Care Act, it is largely expected that physicians will see significant increase

in their patient demand. This, combined with the fact that longer appointment delays lead to

higher no-show and cancellation rates, implies that the management of the valuable physician time

through appointment scheduling will be increasingly important. Second, somewhat paradoxically,

physicians may have increasingly more difficulty in keeping their own patients since thanks to web

sites like Zocdoc and other online appointment scheduling platforms, patients will find it easier to

make alternative arrangements when their own physician is not available. In other words, even
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as the patient demand increases, the competition among the providers will intensify. Therefore,

providers will need to pay attention to their patients’ preferences regarding when they would like

to be seen and somehow balance that with their operational concerns. Third, it will also be

reasonable to expect that with time more and more appointments will be scheduled through online

scheduling platforms, which not only will make it much easier to collect data to estimate various

model parameters and learn individual patient characteristics such as their no-show behavior, but

will also provide a more natural environment for application of the type of methods we propose in

this paper.

Despite the fact that appointment scheduling has been widely studied in operations research

literature, with a few exceptions, patient preferences have been assumed away. This paper is

directed to fill this gap. Specifically, the models we develop incorporate patient no-shows and

cancellations that are dependent on the appointment delays, embed patient preferences among

different appointment days, and take the current appointment schedule into consideration when

making decisions. Arguably, one of the main reasons patient preferences have been largely ignored

is the analytical and computational difficulty (which is partially a consequence of the fact that

models that incorporate preferences involve a large number of decision variables) to the extent that

solving the problems for realistic instances could be practically not possible. Clearly, the problem

becomes even bigger in the dynamic scheduling case. One of the important contributions of this

paper is to propose a formulation along with a set of analytical results which help bypass the

computational challenges such preference models typically present.

Our computational study not only demonstrates that the policies we propose perform well

but also provides a number of useful practical insights. We find that choosing the offer sets in

consideration of patient preferences help quite a bit in some cases significantly even when decisions

are not made dynamically. But the improvements are even higher when the updated appointment

schedule is also taken into account. Thus, clinics are likely to see clear benefits when making

decisions based on both. In addition, we find that the next-n policy, a scheduling policy of a simple

form that allows patients to choose appointment slots in the next n days with regular capacity left,

may perform quite well if n is chosen appropriately.

One limitation of our formulation is that it does not explicitly consider the dynamics of

appointment slots within a particular day. The simultaneous consideration of appointment day and

time of appointment within the day is clearly an important problem but it is also a very difficult

problem, which is possibly the reason why not many have studied it even under the assumption

that patients do not have any preferences. Despite the fact that this paper also shies away from

this complexity, it brings us one step closer to coming up with a proper way of approaching it.

In fact, our formulation can easily be extended in a way that would allow patient preferences to

depend on time of the day and appointments to be scheduled not on a day only but at a specific

time on a day, and the same analysis would go through as long as one is willing to assume that

the cost on a given day only depends on the total number of appointments (see our discussion in
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the appendix). Admittedly, however, this last assumption can be problematic because simply

knowing the total number of appointments on a given day may not be sufficient to come up

with a reasonable estimate on the cost in many cases. Nevertheless, this approach appears to

have significant potential in “solving” the simultaneous optimization problem and to that end two

directions seem worthwhile to explore: are there any “good” within-day scheduling policies under

which the total number of appointments is mostly sufficient to estimate the expected daily cost?

If the total number of appointments is not sufficient to reliably estimate the expected cost, what

minimal set of information is needed to make the estimation? More research on these two questions

will help flesh out the feasibility of extending the framework developed in this paper to develop

policies that also take into account within-day dynamics of the appointment scheduling problem.
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A Appendix: Model Extensions

In this section, we describe a number of extensions of our approach that can be used to formulate

certain dimensions of the appointment scheduling problem at a more detailed level.

A.1 Generalization of the Multinomial Logit Choice Model

Multinomial logit model assumes that the preference weight associated with one alternative does

not depend on the offer set. However, in the appointment scheduling context, it is possible that

patients place a higher value on the choice of seeking care elsewhere when too few appointment

choices are offered. To capture this dependence, we can use a general multinomial logit model

introduced by Gallego et al. (2011). In this extended choice model, each day in the scheduling

horizon has two parameters, denoted by vj and wj . If we offer the subset S of days, then a patient

chooses day j in the scheduling horizon with probability Pj(S) = vj/(1 +
∑

k 6∈S wk +
∑

k∈S vk),

where the quantity
∑

k 6∈S wk captures the increase in the preference weight of not booking an

appointment as a function of the days that are not offered. All of our results in the paper continue

to hold under this more general form of the multinomial logit model.

A.2 Capturing Heterogeneity in Patient Choice Behavior

Our approach implicitly assumes that the choice behavior represented by the multinomial logit

model captures the overall patient population preferences. This approach is reasonable either when

the patient population is homogeneous in its preference profile, or if we do not have access to

additional information that can classify patients in terms of their preferences at time of making

scheduling decisions. When additional information is available, subset offer decisions may depend

on such information. For example, considering our computational study, if patients having urgent

and ambiguous conditions arrive simultaneously into the system and we have information about the

condition of the patient before offering the available appointment days, then we can define two sets

of decision variables hU = {hU (S) : S ⊂ T } and hA = {hA{S) : S ⊂ T } to respectively capture the

probability that each subset of days is offered to a patient with urgent and ambiguous conditions. If

we make the subset offer decisions with information about the patient condition, then we can use

an approach similar to the one in this paper and transform a static model with exponentially many

subset offer probabilities into an equivalent static model whose decision variables grows only linearly

in the length of the scheduling horizon. Furthermore, building on this static model, we can also

formulate a dynamic model by using one step of the policy improvement algorithm.

A.3 Capturing Day-of-the-Week Effect on Preferences

In our static model, we assume that the demand is stationary and the preference of a patient for

different appointment days depends on how many days into the future the appointment is made,
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rather than the particular day of the week of the appointment. This assumption allowed us to

focus on the expected profit per day in problem (2)-(4). In practice, however, the patient demand

may be nonstationary, depending on the day of the week. Furthermore, the preference of a patient

for different days of the week may be as pronounced as the preference for different appointment

delays. It is possible to generalize our model so that both of these effects are captured.

For instance, assume that nonstationarities follow a weekly pattern and the scheduling horizon

τ is a multiple of a week. In this case, we can work with the extended set of decision variables by

letting ht(S) be the probability with which we offer the subset S of days given that we are on day t

of the week. Using these decision variables, we can construct a model analogous to problem (2)-(4),

but we account for the total expected profit per week, rather than expected profit per day. As an

example, consider a clinic that is open 7 days a week and is using an appointment window of 14

days. Without loss of generality, we consider the week consisting of days 15 to 21, so the earliest

day when patients can be schedule into this week is day 1. Adapting the notation used earlier to

the non-stationary setting, we let λt denote the mean demand for day t.

Let Tt = {t, t + 1, . . . , t + 14} represent the set of days in which patients arriving on day t

can be scheduled. The decision variable in this model is ht(S), which represents the probability

of offering the subset of days S ⊂ Tt on day t. Note that the offering set probability distribution

for future days are nonstationary as well and depends on the day of the week. To be concise,

we write the set {j − 7 : j ∈ S} as S − 7, i.e., the set S − 7 is obtained by subtracting every

element in S by 7 days. Then, ht(S) = ht−7(S − 7). Let Pt(S) be the probability that an arriving

patient will choose day t when offered set S. Then, for a patient who arrives on day t − j, the

probability that she will choose day t is given by
∑

S⊂Tt−j Pt(S)ht−j(S). Thus the number of

patients who schedule an appointment to day t and are retained until the morning of day t is

given by a Poisson random variable with mean
∑14

j=0 λt−j r̄j
∑

S⊂Tt−j Pt(S)ht−j(S). Similarly, the

number of patients who actually show up on day t is also a Poisson random variable with mean∑14
j=0 λt−j s̄j

∑
S⊂Tt−j Pt(S)ht−j(S). Then, we can formulate a static model as

max
21∑
t=15

14∑
j=0

λt−j s̄j
∑

S⊂Tt−j

Pt(S)ht−j(S)

− θ
21∑
t=15

E
{[

Pois
( 14∑
j=0

λt−j r̄j
∑

S⊂Tt−j

Pt(S)ht−j(S)
)
− C

]+}
subject to

∑
S⊂Tt

ht(S) = 1 ∀ t ∈ {1, 2, . . . , 21}

ht(S) = ht−7(S − 7) ∀ t ∈ {8, 9, . . . , 21}, ∀S ⊂ Tt
ht(S) ≥ 0, ∀ t ∈ {1, 2, . . . , 21}, ∀S ⊂ Tt.

The first constraint ensures that the probability we offer a set of days in any given day is one,

whereas the second constraint captures the weekly pattern of decision variables. For this extended

version of problem (2)-(4), we can still come up with a transformation similar to the one in Section
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4.1 that reduces the number of decision variables from exponential in the length of the scheduling

horizon to only linear.

Finally, another simplifying assumption our model makes is that while patients have preferences

for which day of the week they would like to be seen they do not have any preferences for the specific

appointment time of the day. It is important to note that the same way we formulate preferences

on different days of the week (as shown above), we can also incorporate preferences for different

times of the day, as long as we make the assumption that the expected cost the clinic incurs on a

given day only depends on the total number of patients scheduled for that day, but not the specific

times of the appointments.

B Appendix: Omitted Results

In this section, we give the proofs of the results that are omitted in the paper.

B.1 Proof of Proposition 1

We complete the proof of Proposition 1 in two parts. First, assume that h∗ = {h∗(S) : S ⊂ T } is an

optimal solution to problem (2)-(4). Letting x∗j =
∑

S⊂T Pj(S)h∗(S) and u∗ =
∑

S⊂T N(S)h∗(S),

we need to show that (x∗, u∗) is a feasible solution to problem (5)-(8) providing the same objective

value as the solution h∗. We have∑
j∈T

x∗j + u∗ =
∑
S⊂T

h∗(S)[
∑
j∈T

Pj(S) +N(S)] =
∑
S⊂T

h∗(S) = 1,

where the second equality follows by the definition of the multinomial logit model and the third

equality follows since h∗ is feasible to problem (2)-(4). Thus, the solution (x∗, u∗) satisfies the first

constraint in problem (5)-(8). On the other hand, using 1(·) to denote the indicator function, we

have x∗j/vj =
∑

S⊂T [1(j ∈ S)h∗(S)/(1 +
∑

k∈S vk)] by the definition of Pj(S) in the multinomial

logit model. Noting that u =
∑

S⊂T [h∗(S)/(1 +
∑

k∈S vk)], it follows that x∗j/vj ≤ u, indicating

that the solution (x∗, u∗) satisfies the second set of constraints in problem (5)-(8). Since x∗j =∑
S⊂T Pj(S)h∗(S), comparing the objective functions of problems (2)-(4) and (5)-(8) shows that

the solutions h∗ and (x∗, u∗) provide the same objective values for their problems.

Second, assume that (x∗, u∗) is a feasible solution to problem (5)-(8). We construct the solution

h∗ as in (9). To see that the solutions (x∗, u∗) and h∗ provide the same objective values for their

respective problems, we observe that

∑
S⊂T

Pj(S)h∗(S) =
τ∑
i=0

Pj(Si)h
∗(Si) =

τ∑
i=j

Pj(Si)h
∗(Si) =

τ∑
i=j

vj

[x∗i
vi
−
x∗i+1

vi+1

]
= x∗j ,

where the first equality is by the fact that h∗(S) takes positive values only for the sets S0, . . . , Sτ

and ∅, the second equality is by the fact that j ∈ Si only when j ≤ i and the third equality follows
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by the definition of h∗(Si) and noting that x∗τ+1 = 0. Using the equality above and comparing the

objective functions of problems (2)-(4) and (5)-(8) show that the solutions h∗ and (x∗, u∗) provide

the same objective values for their problems. To see that the solution h∗ is feasible to problem

(2)-(4), we let Vi = 1 +
∑

k∈Si vk for notational brevity and write
∑

S⊂T h
∗(S) as

u∗ − x∗0
v0

+

τ∑
j=0

Vj

[x∗j
vj
−
x∗j+1

vj+1

]
= u∗ + (V0 − 1)

x∗0
v0

+ (V1 − V0)
x∗1
v1

+ . . .+ (Vτ − Vτ−1)
x∗τ
vτ

= 1,

where the first equality follows by rearranging the terms and using the convention that x∗τ+1 = 0

and the second equality is by noting that Vi − Vi−1 = vi and using the fact that (x∗, u∗) is feasible

to problem (5)-(8) so that
∑τ

j=0 x
∗
j + u∗ = 1. 2

B.2 Lemma 7

The following lemma is used in Section 4.

Lemma 7. Letting F (α) = E
{

[Pois(α)− C]+
}

, F (·) is differentiable and convex.

Proof. The proof uses elementary properties of the Poisson distribution. By using the probability

mass function of the Poisson distribution, we have

F (α) =
∞∑

i=C+1

e−α αi

i!
(i− C) =

∞∑
i=C+1

e−α αi

(i− 1)!
−

∞∑
i=C+1

e−α αi

i!
C

= α

∞∑
i=C

e−α αi

i!
− C

∞∑
i=C+1

e−α αi

i!
= αP{Pois(α) ≥ C} − C P{Pois(α) ≥ C + 1}. (25)

Thus, the differentiability of F (·) follows by the differentiability of the cumulative distribution

function of the Poisson distribution with respect to its mean. For the convexity of F (·), we have

dP{Pois(α) ≥ C}
dα

= −dP{Pois(α) ≤ C − 1}
dα

= −
C−1∑
i=0

d
(
e−α αi

i!

)
dα

=
C−1∑
i=0

e−α αi

i!
−
C−1∑
i=1

e−α αi−1

(i− 1)!
= P{Pois(α) = C − 1}.

In this case, if we differentiate both sides of (25) with respect to α and use the last chain of

equalities, then we obtain

dF (α)

dα
= P{Pois(α) ≥ C}+ αP{Pois(α) = C − 1} − C P{Pois(α) = C}

= P{Pois(α) ≥ C}+ α
e−α αC−1

(C − 1)!
− C e−α αC

C!
= P{Pois(α) ≥ C}.

To see that F (·) is convex, we use the last two chains of equalities to observe that the second

derivative of F (α) with respect to α is P
{
Pois(α) = C − 1

}
, which is positive. 2
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B.3 Proof of Corollary 3

By Proposition 2, there exists an optimal solution x∗ to problem (5)-(8) that satisfies (16). We

define the subsets S0, S1, . . . , Sτ as in the proof of Proposition 1 and construct an optimal solution

h∗ to problem (2)-(4) by using x∗ as in (9). In this case, since x∗ satisfies (16) for some k ∈ T , only

two of the decision variables {h(S) : S ⊂ T } can take on nonzero values and these two decision

variables are h∗(Sk−1) and h∗(Sk). Thus, the desired result follows by observing that Sk is a subset

of the form {0, 1, . . . , k}. 2

B.4 Proof of Lemma 4

We let π∗(S) be the steady state probability with which we offer the subset S of days under the

optimal, possibly state-dependent, policy. So, if we consider a particular day in steady state, then

the number of patients that are scheduled for this day j days in advance is given by a Poisson random

variable with mean
∑

S⊂T λPj(S)π∗(S). Therefore, if we use the random variable A∗j to denote

the number of patients that we schedule for a particular day j days in advance in steady state, then

A∗j has mean
∑

S⊂T λPj(S)π∗(S). We note that A∗1, A
∗
2, . . . , A

∗
τ are not necessarily independent of

each other, since the decisions under the optimal state-dependent policy on different days can be

dependent. Similarly, in steady state, we let S∗j be the number of patients that we schedule for a

particular day j days in advance and that show up under the optimal state-dependent policy. Finally,

we let R∗j be the number of patients that we schedule for a particular day j days in advance and that

we retain until the morning of the appointment under the optimal state dependent policy. Noting

that the show-up and cancellation decisions of the patients are independent of how many patients

we schedule for a particular day, we have E{S∗j } = s̄j E{A∗j} and E{R∗j} = r̄j E{A∗j}. In this case,

the average profit per day generated by the optimal state-dependent policy satisfies

V ∗ = E
{∑
j∈T

S∗j

}
− θE

{[∑
j∈T

R∗j − C
]+}

≤
∑
j∈T

E{S∗j } − θ
[∑
j∈T

E{R∗j} − C
]+

=
∑
j∈T

∑
S⊂T

λ s̄j Pj(S)π∗(S)− θ
[∑
j∈T

∑
S⊂T

λ r̄j Pj(S)π∗(S)− C
]+
≤ ZDET .

In the chain of inequalities above, the first inequality is by the Jensen’s inequality. The second

equality is by E{S∗j } = s̄j E{A∗j} and E{R∗j} = r̄j E{A∗j}. To see the second inequality, we note

that {π∗(S) : S ⊂ T } is a feasible but not necessarily an optimal solution to the problem

max
∑
j∈T

∑
S⊂T

λ s̄j Pj(S)w(S)− θ
[∑
j∈T

∑
S⊂T

λ r̄j Pj(S)w(S)− C
]+

subject to
∑
S⊂T

w(S) = 1

w(S) ≥ 0 S ⊂ T

and the optimal objective values of the problem above and problem (20)-(23) are equal to each

other, which can be verified by using the argument in the proof of Proposition 1. 2
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B.5 Proof of Proposition 5

Letting (x̂, û) be an optimal solution to problem (20)-(23), we have Π(x∗) ≥ Π(x̂). Since we

can always offer the empty set with probability one, the optimal objective value of problem

(5)-(8) is nonnegative and we obtain Π(x∗)/V ∗ = [Π(x∗)]+/V ∗ ≥ [Π(x̂)]+/V ∗. Using Lemma

4, we continue this chain of inequalities as [Π(x̂)]+/V ∗ ≥ [Π(x̂)]+/ZDET ≥ Π(x̂)/ZDET =

1 − (ZDET −Π(x̂))/ZDET . So, it is enough to show that the second term on the right side of

(24) upper bounds (ZDET − Π(x̂))/ZDET . For a Poisson random variable with mean α, we claim

that

E{[Pois(α)− C]+} ≤ [α− C]+ + α/
√

2π C. (26)

This claim will be proved at the end. With this claim and letting β =
∑T

j=1 λ s̄j x̂j and α =∑T
j=1 λ r̄j x̂j for notational brevity, we obtain

ZDET −Π(x̂)

ZDET
=

[β − θ [α− C]+]− [β − θE{[Pois(α)− C]+}]
ZDET

≤

θ α√
2π C
ZDET

≤

θ λ r̄0√
2π C
ZDET

, (27)

where the second inequality is by noting that
∑

j∈T x̂j ≤ 1, r̄0 ≥ r̄1 ≥ . . . ≥ r̄τ so that α ≤ λ r̄0.

We proceed to constructing a lower bound on ZDET . The solution (x̃, ũ) we obtain by setting

x̃0 = v0
1+v0

, ũ = 1
1+v0

and all other decision variables to zero is feasible to problem (20)-(23). Thus, if

λ r̄0
v0

1+v0
≤ C, then we can lower bound ZDET as ZDET ≥ λ s̄0 x̃0−θ [λ r̄0 x̃0−C]+ = λ s̄0

v0
1+v0

. On

the other hand, if λ r̄0
v0

1+v0
> C, then the solution (x̃, ũ) we obtain by setting x̃0 = C

λ r̄0
, ũ = 1− C

λ r̄0

and all other decision variables to zero is feasible to problem (20)-(23). Thus, if λ r̄0
v0

1+v0
> C,

then we can lower bound ZDET as ZDET ≥ λ s̄0 x̃0 − θ [λ r̄0 x̃0 − C]+ = s̄0
C
r̄0

. Collecting the two

cases together, we lower bound ZDET by s̄0 min
{
λ v0

1+v0
, Cr̄0

}
. Continuing the chain of inequalities

in (27) by using the lower bound on ZDET , we obtain

θ λ r̄0√
2π C
ZDET

≤

θ λ r̄0√
2π C

s̄0 min

{
λ

v0

1 + v0
,
C

r̄0

} .
Arranging the terms in the last expression above yields the desired result.

Finally, we prove the claim (26) made above. For k ≥ C+1, we observe that [k−C]+−[α−C]+ ≤
k − α. In particular, for k ≥ α, this inequality follows by the Lipschitz continuity of the function

[·−C]+. For k < α, we have C+ 1 ≤ k < α and it follows [k−C]+− [α−C]+ = k−α, establishing

the desired inequality. In this case, the result in the lemma follows by noting that

E{[Pois(α)− C]+} =

∞∑
k=C+1

[k − C]+
e−ααk

k!
≤ [α− C]+ +

∞∑
k=C+1

[
[k − C]+ − [α− C]+

] e−ααk
k!

≤ [α− C]+ +

∞∑
k=C+1

(k − α)
e−ααk

k!
= [α− C]+ +

e−ααC

C!
α ≤ [α− C]+ +

e−CCC

C!
α,
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where the first inequality follows by adding and subtracting [α − C]+ to the expression on the

left side of this inequality, the second inequality follows by the inequality derived at the beginning

of the proof, the last equality is by arranging the terms in the summation on the left side of

this inequality and the third inequality is by noting that the function f(α) = e−ααC attains its

maximum at α = C. In this case, the result follows by noting that C! ≥
√

2π C(C/e)C by Stirling’s

approximation and using this bound on the right side of the chain of inequalities above. 2

B.6 Proof of Proposition 6

The proof follows from an argument similar to the one in the proof of Proposition 1. Assume that

h∗ = {h∗(S) : S ⊂ T } is an optimal solution to problem (2)-(4) with the additional constraints

ht(S) ∈ {0, 1} for all S ⊂ T . Letting x∗j =
∑

S⊂T Pj(S)h∗(S) and u∗ =
∑

S⊂T N(S)h∗(S), we can

follow the same argument in Section B.1 to show that (x∗, u∗) with x∗ = (x∗0, . . . , x
∗
τ ) is a feasible

solution to problem (5)-(8) with the additional constraints xj/vj ∈ {0, u} for all j ∈ T . Furthermore,

the objective values provided by the two solutions for their respective problems are identical. On

the other hand, assume that (x∗, u∗) with x∗ = (x∗0, . . . , x
∗
τ ) is an optimal solution to problem

(5)-(8) with the additional constraints xj/vj ∈ {0, u} for all j ∈ T . We reorder and reindex the

days in the scheduling horizon so that we have u∗ = x∗0/v0 = x∗1/v
∗
1 = . . . = x∗j−1/v

∗
j−1 ≥ x∗j/xj =

x∗j+1/vj+1 = . . . = x∗τ/v
∗
τ = 0. We define the subsets S0, S1, . . . , Sτ as Sj = {0, 1, . . . , j}. For

notational convenience, we define x∗τ+1 = 0. In this case, letting

h∗(∅) = u∗ − x∗0
v0

and h∗(Sj) =
[
1 +

∑
k∈Sj

vk

] [x∗j
vj
−
x∗j+1

vj+1

]
for all j = 0, 1, . . . , τ and letting h∗(S) = 0 for all other subsets of T , we can follow the same

argument in Section B.1 to show that {h∗(S) : S ⊂ T } is a feasible solution to problem (2)-(4)

with the additional constraints ht(S) ∈ {0, 1} for all S ⊂ T . Furthermore, we can check that the

two solutions provide the same objective value for their respective problems. 2

B.7 Sample Survey Questions

7



Figure 1: Sample choice question under ambiguous health condition.

Figure 2: Sample choice question under urgent health condition.
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