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ABSTRACT

This paper answers criticisms [4] recently leveled
at the Quota Method for Congressional apportionment, and
reconsiders the relative merits of various axioms and
methods.
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APPORTIONMENT SCHEMES AND THE QUOTA METHOD

M.L. Balinski and H.P. Young

1. BACKGROUND: HOUSE-MONOTONICITY AND QUOTA

The apportionment problem is the problem of determining how

to divide the number of representatives in a legislature propor

tionally among given constituencies. In the united States the

problem is rooted in the Constitution, which requires a distribu

tion of Representatives among the various States "aacording to

theip respeative numbeps." The issue is to find an opepational

method for interpreting this mandate, and to identify the essen

tial properties that any fair and reasonable method ought to have.

In a recent paper [4] various properties and methods have been

suggested as desirable; the purpose of this paper is to examine

these proposals in the light:of the problem they purport to address.

Formally, the apportionment problem may be stated as follows.

Let p = (P1,P2""'Ps) be the populations of s states, where each

Pi > 0 is integer, and let h ~ 0 be the number of seats in the

house to be distributed. The problem is to find, for any p and

all house sizes h ~ 0, an apportionment for h: an s-tuple of non

negative integers a = (a
1

, ... ,a
s

) whose sum is h. A solution of

the apportionment problem is a function ! which to every p and h

associates a unique apportionment for h, a
i

= fi(~,h) ~ 0 where

t a. = h. A specific apportionment method may give several differ
1 1

ent solutions, for "ties" may occur when using it-- for example

when two states have identical populations and must share an odd

number of seats. It is useful, for this reason, to define an

appoptionment method ~ as a non-empty set of solutions. Two dif

ferent apportionment solutions ! and ~ of a method ~ may be iden

tical up to some house h and then branch, depending on how a par

ticular tie is resolved. The restriction of f to the domain
- h

a solution up to h, f , and f

The principles that should apply to apportionment have been

intensely debated ever since the Constitutional Convention in 1787.
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From these debates two basic themes emerge. The first, funda

mental to the approaches of Hamilton, Webster, and later con

tributors is that the ideal or exact number of seats that any

state i should receive is p.h/2p. = q., called the exact quota
1 . J 1

of state i, and in any case noJstate should receive less than

its lower quota, LqiJ, or more than its upper quota, fqil . Any

method whose solutions have this property is said to satisfy

quota.

One such method, first proposed by Alexander Hamilton, and

used from 1850 through 1900 is the following: first give to each

state i its lower quota and then distribute the remaining seats,

one each, to the states with the largest fractional remainders.

A fundamental difficulty with this method -- which begat the second

basic theme for debate -- came to light in 1881 when Alabama would

have lost seats by this method as the house increased from 299

to 300. This behavior is not only shocking to common sense and

any reasonable notion of fair division, but has proved to be to

tally unacceptable politically-- as members of Congress immedia

tely perceived. As Representative John C. Bell put it, "This

atrocity which [mathematicians] have elected to call a 'paradox'

... this freak presents a mathematical impossibility." (Stated

.in debate, 8 January 1901.) For this reason the Hamilton Method

was abandoned in 1911, and the basic principle was recognized that

an apportionment method must be house-monotone; that is, if the

total number of seats to be apportioned increases, then ceteris

paribus no state should receive fewer seats than it did before.

Yet in [4] it is said that, "there is no real reason for

requiring apportionment to be house-monotone. The objective

should be to minimize inequity.

2. MINIMIZING "INEQUITY" AND CONSISTENCY

Intuitively, "minimizing inequity" is what the apportionment

problem is all about. The real problem is to determine what "in

equity" means. To say it is desirable to "minimize the length

of the inequity vector in Euclidean s-space" begs the question.

Indeed, as pointed out in [4]," All measures ... of inequity

are to some extent arbitrary."
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Motivated by the need for house-monotone methods E.V. Huntington

began in 1921 [8] the investigation of several measures of inequity

based on pairwise comparisons of states' relative representation.

Given populations p and an apportionment a for h, p./a. and a./
- - 1 1 1

Pi represent, respectively, the average distriot size and the

"share of a representative" of state i. If p./a. > p./a. then state
1 1 J J

j is better off than state i. Let T(i,j) = T(j,i} > 0 be a measure

of inequity between states i and j. An apportionment ~ is in

equilibrium if no transfer of one seat f r o ~ a better off state

j to a less well off state i reduces the value of T(i,j).

Certain T's admit no equilibrium apportionments, but Huntington

showed ([7] [8]) that others do and that five different apportion

ment methods devolve from these. For example, T(i,j) =Ip./a. -
1 1

p./a.lyields Harmonic Mean (HM) apportionments whereas T(i,j) =
) J -

la./p. - a·/p·lgives Webster (W) apportionments. Huntington argued
J J 1 1 ~

that the most natural choice was the "relative differenoe" T(i,j) =

Ip·/a. - p./a·l/min(p./a. ,p./a.} and showed this
1 1 J J ·11 J J

choice leads to the Method of Equal Proportions ( ~ P ) . He was per-

suasive: the u.s. Congress adopted ~ P as the law beginning in 1941.

Nevertheless this choice of measure of inequity remained arbitrary.

Huntington unified his five methods -- many of which were

anticipated by others in one guise or other -- through a computa

tional approach. We generalize it. Let r(p,a) be any real-valued

function of two variables called a rank-index. Then an apportion

ment method M is obtained by taking all apportionment solutions ~

defined recursively as follows: (i) fi(e,O) = 0, 1. ~ i ~ s; (ii)

if a i = fi(p,h) and k is some one state for which r ( P k , a k ) ~ r ( P i , a i )

for 1 < i _< s, then f
k

(p,h+1) = a
k

+ 1 and f. (p,h+1) = a. for i.l.k.= _ 1 _ 1 T

These we call Huntington Methods. For example, ~ M has the rank

index r(p,a) = p/{2a{a+1)/(2a+1)}, W has r(p,a) = p/(a+ U, and EP

has r(p,a) = p/{a(a+1)}!.

Clearly all Huntington methods are house-monotone. But they

also satisfy a condition which epitomizes the very idea of "method":

namely, the decision as to which state of any pair most deserves

the extra seat as the house size is increased by 1 depends only

upon the populations and seats already allocated to those s t ~ t e s
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singly, and

allocated.

f allocating

with p votes

state a* + 1 seats and to the bar-state a seats in a house h + 1.

Then the star state is said to have weak priority at that point

and this is written (p*,a*) ~ M (p,a). A natural criterion for any

method is that the relative claims for an extra seat between two

states should depend only on their respective populations and appbr

tionments. Specifically, if for some o t h e ~ problem with populations

~ ' there are states having p* and p which are allocated, by a solu

tion of li, a* and a seats respectively, and (p,a) ~ M ( p * , a * ) then

then the states are said to be tied, and this is written

(p*,a*) -M (p,a). A method is said to be consistent if it treats

tied states equally, that is, if (p*,a*) -M (p,a) implies fh has

both an extension giving the star state a* + 1 seats at h + 1, and
an extension giving the bar state a + 1 seats at h + 1. Any
two states will naturally compare their resultant numbers of seats:

a change in priorities could not but be viewed as conflicting with

conunon sense.

Theorem 1 [2]. An apportionment method M is house-monotone

and consistent if and only if it is a Huntington method.

3. QUOTAS AND PSEUDO-QUOTAS

It is a major defect of Huntington methods that none of them

satisfies quota ([3]) ,p.712).

However, one may arrive at certain of Huntington's methods by

the device of defining "pseudo-quotas" (see [3] ,p.709). In [4],

the "radically different resolution of the Alabama paradox ...

apportionment by a-quota ll ([4], last paragraph, p.684) is one

such instance. The approach is to define p./a = q. (a) as the
1 1

a-quota of state i, with a a maximum (not minimum as said in

[4]) allowable average population per district of any state.

Letting a i (a) = rqi (an, a a is sought for which IS a. (a) = h
1 1

(the size of the house). We omit the improbable case of a tie.
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Then, ai{a) ~ Pi/a or a ~ Pi/ai. The house-monotone method

which results is known as Smallest Divisors (SO), was known to

Huntington in his. 1928 paper [7], and was described in precise

ly this way on p. 709 of [3].

The idea of redefining quota in a manner similar to that of

the a-quota is one which is solidly planted in American history.

Jefferson advanced it in 1792 (see [3], p.703).

"EP should not be considered

satisfy 'quota' -- a short-coming

Presumably this means that an

explain EY. This is true. An

EP apportionment for house size h is found by choosing a a such
- 1
that if a. (a) = Up~/a2 +!}2 + U then IS a. (a) =h (see [3] ,p.709).

1 1 1 1

This hardly seems to commend Ey -- or any method based on some

pseudo-quota notion -- as a natural method to adopt.

Can satisfying quota be reconciled with monotonicity and

consistency? Indeed it can. If consistency is weakened to apply

only when upper quota is not violated, then there exists a unique

method, the Quota Method (Q), which satisfies the three properties

[1], [3]. It is said that "9 uses a muchimore arbitrary and extreme

measure of inequity than E1.P" ([4], p. 685). But the fact is that

9 is not based on any measure of inequity. The description of 9
"that the augmented representatives shall be as nearly as possible

proportional to the populations" [3], p.685) is false.* In fact

the former defines the Huntington method ~ first proposed by

Jefferson (see [3], p.703), also much used in Europe but known as

the method of dlHondt, and cited by Birkhoff as GO (Greatest Di

visors) which he claims is superior to Q.

Q is defined recursively as follows: (i) f. (p,O) = 0, 1 ~ i1 _

~ Si (ii) if a i = fi{E,h), E{h+1) is the set of states which can

recei ve an extra seat without violating upper quota at h + 1, and

k £ E (h+1) is some one state satisfying Pk/ (a
k

+ 1) ~ Pi/ (a
i

+ 1)

for all i £ E (h+1), then f
k

(p,h+1) = a
k

+ 1 and f. (p,h+1) = a. for
- 1 - 1

i =!= k.

*Birkhoff's example is incorrect. If P1 = 23,500,000 and
P2 = 1,500,000 then 9 first gives State 2 a second seat when

State 1 has 31 seats (not 35).
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4. "BINARY FAIRNESS"

In [4] a new apportionment principle called "binary fairness"

is advanced. This a p p a r ~ n t l y reasonable condition states that if

q. and q. are the exact quotas of states i and j, and if a i and
1 J

a. are their apportioned numbers of seats, then it should not be
J

possible to transfer a representative from a state i to a state j

and reduce Ia
i

- qi I + Ia
j

- qj I. It is, of course, true that

Hamilton's method satisfies this condition. But also, we perceive

the truth of

Theorem 2. An apportionment solution'satisfies the binary

fairness property if and only if it is a Hamilton method solution.

CorolLary. There exists no house-monotone method satisfying

binary fairness.

This is immediate, since any solution satisfying binary fair

ness is a Hamilton method solution and no Hamilton method solution

is monotone. It can only be 'concluded that binary fairness is in

appropriate to the problem of apportionment.

5. WELL-ROUNDZNG AND THE WEBSTER METHOD

In [4] Birkhoff introduces a condition he calls "binary con

sistency," and proceeds to attack the quota method 9 as the only

method--of the five proposed by Huntington, the Hamilton method

and Q--which "fails to have [it]." Here we express this condition

in a slightly more natural form and show that it, in fact, uniquely

characterizes the Webster method in the class of Huntington methods.

Let a be an apportionment and ~ the exact quotas. If

a
i

> qi + 1/2 we say that state its apportionment a
i

is over-rounded,

while if a. < q. - 1/2 that state jls apportionment is under-rounded.
J J

If there exists no pair of states i and j, with a. over-rounded
1

and a
j

under-rounded, then ~ is said to be reLativeLy welL-rounded.

This is equivalent to satisfying "binary consistency."

Theorem 3. The Webster method W is the unique method that is

house-monotone, consistent, and relatively well-rounded.

Proof. ~ ' 1 e use the facts (see, e.g., [2]) that:

apportionment a is characterized by

(i) a Webster
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i

a. +
1
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for a. > 1;
1

and

(ii) Webster apportionments may be found recursively by

(a) ~ (e,O) = 0

(2)

(b) if a = f(p,h) and k is some one state for which- -
Pk/(ak+1/2) = m~x Pi/(a

i
+1/2) . then f k ( ~ , h + 1 ) = a

k
+1,

f.(p,h+1) = a. for i = k.1 _ 1

First, that the Webster method is consistent and house mono

tone is clear by (2). Suppose it is not relatively well-rounded.

Then there exists an apportionment a for h, with states i and j

satisfying a. > q. + 1/2 and a. < q. - 1/2. Therefore,
1 1 J J

a i - 1/2 > qi = Pih/EkPk and a j + 1/2 < qi = Pjh/EkPk , implying

violating (1). Thus, W satisfies the three conditions.

Conversely, suppose that ~ is consistent, house-monotone and

relatively well-rounded, but is not a set of Webster apportionments.

Then there must exist populations p, q having M-apportionments a,

b which are Webster apportionments, but

(3) (p,a) ~ M (q,b) whereas p/(a+1/2) < q/(b+1/2)

equivalently, q(a+1/2) > p(b+1/2). By consistency this implies

that the two-state problem (p,q) has an M apportionment (a+1,b).

But, then, the exact quota of the p-state at h = a + b + 1 is

p(a+b+1) =
p + q

p(a+1/2+b+1/2) < p(a+1/2) + qla+1/2) = (a+1) _ 1/2
P + q P + q

showing that this state is over-rounded. The corresponding exact

quota of the q-state is
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q(a+b+1) = q(a+1/2+b+1/2) > p(b+1/2) + q(b+1/2) = b + 1/2
p, + q P + q P + q

showing that this state is under-rounded. Therefore, the appor

tionment (a+1,b) is not relatively well-rounded, a contradiction.

This completes the proof.

It should be remembered, however, that in spite of having

this property, the Webster method does not satisfy quota.

6. "BIAS"

The axiomatic approach to apportionment proceeds by making

a choice concerning the principles which any fair apportionment

should satisfy, and then identifying that method (or methods)

that satisfy the principles. The advantage of beginning with

agreed-upon fairness principles is that subsequent squabbles

over particular numbers resulting from these principles are

avoided.

Nevertheless given any method it is an almost irresistable

temptation to analyze particular numerical solutions by adding

and substracting different combinations of the numbers to show

that the method is in some peculiar sense unfair to certain

groups of states. Thus one may question whether a particular

solution gives more than a just share to the IIlarger" states

versus the "smaller" states (or the II middle" states) or to the

North versus the South, or to the states with large fractions

versus those with small fractions, and so forth. These investi

gations may generally be called ones of "bias ll and they purport

to establish empirically that certain "new" principles are vio

lated; principles which by the very nature of the case are dif

ferent from those already agreed upon as defining the method.

For the notion of bias to even make sense, a normative principle

must be postulated; one may then ask what methods (if any) satis

fy this principle instead of other principles.

It is stated [4] that SD is lI un fair to populous states for

a simple reason: every nonpopulous state 'entitled' to 1.1 re

presentatives must be given two representatives ... II This can
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only mean that if the exact quota of a "nonpopulous state" is at

least 1.1 then Sp assures this state two representatives. This

is false, as the following example shows.

State populations 4533

Exact quotas 1. 51

SD solution (a =4533) 1

4686

1.56

2

5049

1.68

2

6183

2.06

2

9549

3.18

3

Totals

30,QCX)

10

10

But, in any case, no normative principle is advanced to support

the claim that the numerical example shows bias.

In [4] an argument is given "to show that Q is biased"

against nonpopulous states. The argument consists of comparing

the Hand Q solutions for four 50-state examples, and selecting
- -

from the 50 states in each case a subset of "nonpopulous" states

which Q rounds down and H roupds up, and a subset of "populous"- - .
states for which the contrary occurs ([4], Tables 2-5).* It is

then observed that Q allots less than H to the nonpopulous states

chosen, and more than H to the populous states chosen. It would

be as pertinent to remark that virtually any apportionment solu

tion gives some states less than their exact quotas and others

more, and that the two sets will in general be different for dif

ferent methods.

It is true of course that Q has a tendency of rounding up

the exact quotas of large states more often than those of small

states. This is unavoidable -- being a necessary consequence of

the fairness principles uniquely satisfied by the Quota Method.

If H is taken as a norm for comparison, Q is then "biased"

in that it does not necessarily round up the exact quotas of

those states having the largest fractional remainders. This is

the procedure which constitutes H, so Q can hardly but be "biased"
- -

according to this measure. But H violates the essential house-

monotonicity axiom so cannot be taken as a reasonable norm for

comparison. Birkhoff goes on to propose " ~ as a good aompromise

between Q and ... E P ~ whiah goes so far in the opposite direation

* \
The sets of "nonpopulous" or "populous" states are different

and conveniently chosen in each case.
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that it violates 'quota'" ([4], p.685). Thus, according to the

argument of [4], EP is also biased, but preferred to 9.

Setting aside the pejorative notion of "bias," there is a

precise sense in which one can talk about one method "favoring"

large (or small) states in comparison with another method. This

notion is defined in a precise manner and Theorem 1 ([3], p.708)

compares the five Huntington methods with respect to "favoring"

large over small states. But no Huntington method satisfies

quota so those comparisons, while interesting, shed little or no

light on the supposed "bias" of Q.

7. THE ROLE OF AXIOMS AND QUOTA METHOD

The lessons of history clearly point to the necessity of

arriving at a fundamental understanding of the properties of methods.

Put in other terms, political apportionment must be based on prin

ciples of fair division rather than on ad hoc choices of measures

of inequity. Thus axiomatics ;finds a political role!

In [4] Birkhoff attacks Q for a variety of reasons. First,

Q is faulted because it fails to satisfy the "binary fairness"

property, -although it is ignored that this property uniquely deter

Mines the Hamilton method (which is not house-monotone). Second,

Q is noted to violate "binary consistency", althoughit is not

observed that this property uniquely determines the Webster method

(H) in the class of Huntington methods (moreover W is not recommended- -
by Birkhoff). Third, a description of an admittedly arbitrary

measure of inequality supposedly "used" by Q is attacked, but this

measure is not used by 9 (it characterizes Jefferson's method J, or

GD, one of three methods recommended by Birkhoff). Fourth, house

monotonicity is discarded as having "no real reason," while mini

mizing any inequity Measure is deemed preferable.

This confused state of affairs can only be cleared up through

a careful construction of fundamental axioms which satisfy pre

cedents explicitly or implicitly determined by the u.S. Constitu

tion, its framers and interpreters, and by the members of Congress.

Further, in the words of Zecharia Chaffee, Jr., "the preservation

of a respect for the law will in the long run be best obtained by

the adoption of a plan which is least likely to produce a sense

of unfairness in those who are forced to obey legislation" ([6],

pp. 104 3- 104 4) .
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