
                          Zhuo, L., Han, D., Dai, Q., Islam, T., & Srivastava, P. K. (2015).
Appraisal of NLDAS-2 Multi-Model Simulated Soil Moistures for
Hydrological Modelling. Water Resources Management, 29(10), 3503-
3517. https://doi.org/10.1007/s11269-015-1011-1

Peer reviewed version

Link to published version (if available):
10.1007/s11269-015-1011-1

Link to publication record in Explore Bristol Research
PDF-document

The final publication is available at Springer via http://dx.doi.org/10.1007/s11269-015-1011-1

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1007/s11269-015-1011-1
https://doi.org/10.1007/s11269-015-1011-1
https://research-information.bris.ac.uk/en/publications/c82e426f-9b05-4232-8e27-dffb3f909c07
https://research-information.bris.ac.uk/en/publications/c82e426f-9b05-4232-8e27-dffb3f909c07


Appraisal of NLDAS-2 multi-model simulated soil moistures for 

hydrological modelling 

Lu Zhuo1*, Dawei Han1, Qiang Dai1, Tanvir Islam2, 3, Prashant K. Srivastava4, 5 

1WEMRC, Department of Civil Engineering, University of Bristol, Bristol, UK 

2NOAA/NESDIS Center for Satellite Applications and Research, College Park, MD, USA  

3Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado, USA  

4NASA Goddard Space Flight Center, Greenbelt, MD, USA 

5Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA 

*Correspondence: lz7913@bristol.ac.uk or salasalazhuo@hotmail.com 

 

Abstract  

Soil moisture is a key variable in hydrological modelling, which could be estimated by land 

surface modelling. However the previous studies have focused on evaluating these soil moisture 

estimates by using point-based measurements, and there is a lack of attention for their appraisal 

over basin scales particularly for hydrological applications. In this study, we carry out for the 

first time, a detailed evaluation of five sources of soil moisture products (NLDAS-2 multi-model 

simulated soil moistures: Noah, VIC, Mosaic and SAC; and a ground observation), against a 

widely used hydrological model Xinanjiang (XAJ) as a benchmark at a U.S. basin. Generally 

speaking, all products have good agreements with the hydrological soil moisture simulation, with 

superior performance obtained from the SAC model and the VIC model. Furthermore, the results 

indicate that the in-situ measurements in deeper soil layer are still usable for hydrological 

applications. Nevertheless further improvement is still required on the definition of land surface 
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model layer thicknesses and the related data fusion with the remotely sensed soil moisture. The 

potential usage of the NLDAS-2 soil moisture datasets in real-time flood forecasting is discussed. 

Keywords Hydrological modelling, Land surface modelling, Xinanjiang, Soil Moisture Deficit, 

NLDAS-2, evaluation 

1. Introduction 

Soil moisture has been identified as one of the Essential Climate Variables (ECV) in the Global 

Climate Observing System (GCOS) (esa 2010). The existence of soil moisture at the land surface 

and atmosphere interface has a strong influence on the water and energy balance at this particular 

interface (Kerr et al. 2001), because dry soil emits little or no water vapor to the atmosphere. It 

has been recognized as a key variable in a wide range of studies (Ganji 2010; Mendicino and 

Versace 2007; Nandintsetseg and Shinoda 2011; Norbiato et al. 2008; Seneviratne et al. 2010; 

She et al. 2014; Srivastava et al. 2013b), including meteorology, climate change, hydrology, 

agriculture and drought monitoring Moreover initial soil moisture conditions are among the most 

important hydrological properties affecting flood triggering (Mishra et al. 2004). Therefore, it is 

vital to accurately monitor and estimate spatial and temporal variations of soil moisture.  

Ground measurements, remote sensing and land surface models are the main sources that could 

provide soil moisture information. Point-scale measurement techniques are currently limited to 

discrete measurements at particular locations, making them less representative for spatial 

distribution because soil moisture is highly variable both spatially and temporally (Engman and 

Gurney 1991; Tombul 2007; Walker et al. 2004) and are therefore inadequate for basin level 

studies (Srivastava et al. 2013a; Srivastava et al. 2013c). Soil moisture retrieved from remote 

sensing techniques provide a feasible capability to monitor soil moisture over a range of spatial 



and temporal scales (Jackson and Schmugge 1989; Kerr et al. 2001) and in particular have 

engendered much enthusiasm and interest with their promise of global data coverage and long-

term soil moisture monitoring (Ochsner et al. 2013). However soil moisture retrieved by 

satellites can be interfered by poor weather conditions (e.g. rainfall and clouds) and dense 

vegetation coverage; moreover they produce data with coarse spatial resolution and shallow 

sensing depth, which significantly restrict them for many applications (Wagner et al. 2007).   

Soil moisture simulated by Land surface models (LSMs) often serves as alternatives (Robock et 

al. 2000). The role of soil moisture by LSMs in regional weather prediction, as well as in global 

climate change investigation has been widely recognized and demonstrated in many studies 

(Chen et al. 2010; Koster et al. 2011; Patil et al. 2011; Sahoo et al. 2008; Xia et al. 2014). 

However most previous studies have focused on either improving or evaluating the LSM’s 

performance (Cai et al. 2014; Koren et al. 2014; Rosero et al. 2009; Yang et al. 2011), and its 

soil moisture evaluation using point-based measurements.  As a result, there is a lack of attention 

for their appraisal over basin scales particularly for hydrological applications.  

The real-time multi-model generated soil moisture from the North American Land Data 

Assimilation System phase 2 (NLDAS-2) simulations (Xia et al. 2012a; Xia et al. 2012b), have 

high temporal and spatial resolution, however they have not been evaluated for hydrological 

applications, especially at a basin scale. In this study, we carry out for the first time, detailed 

comparisons and assessments of five sources of soil moisture products (soil moisture simulated 

from the four NLDAS-2 LSMs, Noah, VIC, Mosaic and SAC, as well as in-situ soil moisture 

observations), against a widely used hydrological model Xinanjiang (XAJ) as a target. In 

hydrology, Soil Moisture Deficit (SMD) or depletion is an important soil moisture indicator, 

which demonstrates the amount of water (in mm) to be added to a soil profile to bring it to field 



capacity (Andersson and Harding 1991). It has been shown that the three-layer XAJ model is 

very useful in modelling SMD from the meteorological data (Ren-Jun 1992; Zhao et al. 1995). 

The results of this work are very relevant to the hydrological community, because the NLDAS-2 

soil moisture datasets have a huge potential to be applied for hydrological purposes, especially 

for real-time flood forecasting.  

2. Basin and data 

2.1 Study area and datasets 

The French Broad basin (2448 km2) is selected as the study area, which is located in the western 

North Carolina of the U.S. (35.609oN, 82.579oW), influenced primarily by the humid subtropical 

climate (Peel et al. 2007). The major land use of this basin is mixed forest (Bartholomé and 

Belward 2005) on red clay soils (Webb et al. 2000). The average altitude of the basin is 819 m 

AMSL. The basin generally does not have significant human impacts (Duan et al. 2006), and the 

layout of the basin is shown in Fig. 1 along with the location of its flow gauge and soil station.  

The NLDAS-2 (Mitchell et al. 2004) precipitation and potential evapotranspiration at 0.125o 

spatial resolution and daily temporal resolution (converted from hourly resolution) are used to 

drive the XAJ model. The potential evapotranspiration is derived from the NARR (North 

American Regional Reanalysis). The precipitation data are derived from the temporal 

disaggregation of the gauged daily precipitation data from NCEP/CPC (National Centers for 

Environmental Prediction/Climate Prediction Center) with an orographic adjustment based on 

the monthly climatological precipitation of the Parameter-elevation Regressions on Independent 

Slopes Model (PRISM) (Daly et al. 1994). The four LSMs soil moisture outputs forced by the 

same NLDAS-2 meteorological forcings are downloaded from the NLDAS-2 website (Cai et al. 



2014) during the  period from Jan 2010 to Dec 2012; and have been converted from hourly to 

daily basis. Moreover as shown in Fig. 1, there are a total of 27 NLDAS-2 grids that cover the 

entire basin. Since XAJ is a lumped hydrological model, each of the NLDAS-2 products (i.e. 

precipitation, potential evapotranspiration and the soil moistures) has to be converted into one 

basin-scale dataset firstly by using the Thiessen Polygon method. The USGS daily flow data for 

the same monitoring period from January 2010 to December 2012 are used for XAJ model’s 

calibration and validation. In-situ soil moisture datasets at the Asheville 13 S station is collected 

from the U.S. Climate Reference Network (USCRN) website for the same time period (Bell et al. 

2013; Diamond et al. 2013). The station measures conventional meteorological variables such as 

air temperature, wind speed, solar radiation, relative humidity and precipitation. The in-situ 

observations were measured with triplicate coaxial impedance dielectric sensors calibrated with 

gravimetric observations. The volumetric soil moisture observations are given at the depths 5, 10, 

20, 50, 100 cm on hourly basis, which have been converted to a daily interval for the comparison. 

The flowchart together with the description on the process used in this study is presented in Fig. 

2. 

2.2 NLDAS-2 LSMs soil moisture simulations 

The overall modelling strategy of NLDAS-2 is to generate surface meteorological and 

hydrological products using observed gauge precipitation and bias-corrected reanalysis forcing to 

drive the four NLDAS-2 LSMs in an offline mode (Xia et al. 2014).. More details regarding the 

setup, parameters and forcing data can be found in Mitchell et al. (2004), Xia et al. (2012a) and 

Xia et al. (2012b). The spatial resolution of the simulated soil moisture is 0.125o and its temporal 

resolution is one hour. Moreover the datasets cover from 1 January 1979 to present (Xia et al. 

2014). 



Four LSMs were selected in NLDAS-2 (Noah, Mosaic, VIC and SAC). These four models apply 

different mechanisms in land surface modelling, giving cross-section of different comparison 

aspects, including small scale versus large scale, coupled versus uncoupled, distributed versus 

lumped and etc. The Noah LSM is a land model of the NCEP (National Centers for 

Environmental Modelling Prediction) operational regional and global weather and climate 

models (Betts et al. 1997; Chen et al. 1996; Chen et al. 1997; Ek et al. 2003). The Mosaic model 

is a land model for the NASA global climate model (Koster and Suarez 1996; Koster and Suarez 

1994), which has been replaced by the Catchment land surface model for the recent upgrade of 

NASA’s GOES-5 system. The VIC model is built as a macroscale semi-distributed model, which 

solves full water and energy balances (Liang et al. 1994).  The SAC model is designed as a semi-

distributed hydrological model (Koren et al. 1999) based on a lumped conceptual hydrological 

model (Burnash et al. 1973); and it has been used widely for small-basin flood forecasting. The 

first two models emerged within the surface vegetation-atmosphere transfer (SVAT) scheme for 

coupled atmospheric modelling with a focus on the energy and water flux exchange between the 

atmosphere and the land, with little calibration. Whereas, the last two models were originally 

designed within the hydrology community as uncoupled hydrological models with a focus on 

flood simulation and considerable calibration (Xia et al. 2014). Through developments, Mosaic, 

Noah and VIC have been widely applied as both coupled and uncoupled for all spatial scales. As 

a result, all three models are considered as both SVATs and semi-distributed hydrological 

models (Mitchell et al. 2004). 

2.3 Translation of observed and simulated soil moisture data to common soil layers 

It is impossible for a direct comparison between all sources of soil moisture because they all 

have different soil depths. The Noah model includes four soil layers, with 0-10 cm, 10-40 cm, 



40-100 cm and 100-200 cm respectively. Whereas Mosaic model is designed with three soil 

layers: 0-10 cm, 10-60 cm and 60-200 cm. Moreover there are three soil layers used in VIC 

model, with a 10 cm top layer and spatially varying thicknesses for the other two layers. On the 

other hand, the SAC model is a storage-type model, which is conceptually different from the 

other three models. It has a two-layer structure, and each layer consists of tension and free water 

storage. The free water storage of the lower layer is further divided into two sub-storages that 

control supplemental (fast) and primary (slow) ground water flows. As a result, the SAC model 

has no specified soil layers. In order to solve the inconsistency problem of soil layers, the 

methods described in Xia et al. (2014) are applied in this study, where the distribution of Noah’s 

soil layers is used as a benchmark due to its uniform soil layers and maximum number of soil 

layers across all models. The Mosaic soil data and in-situ observations are transferred to the 

Noah soil layers by a simple linear interpolation approach. Furthermore the VIC soil moisture 

data are converted to the Noah soil layers by computing the weighted average of soil moisture in 

each VIC layer that intersected with the Noah layers. Moreover when the bottom VIC layer is 

shallower than the lowest Noah layer, then the VIC soil moisture value is assumed to be the same 

down to the depth of the lowest Noah layer. For SAC, a post-processed soil moisture product 

with the same soil layer as Noah can be downloaded from the NOAA/NCEP/EMC website 

(ftp://nomad6.ncep.noaa.gov/pub/raid2/wd20yx/nldas/Postprocessed_SAC/ ).  

2.4 The XAJ hydrological model  

There are numerous hydrological models available globally and in this study, a widely used 

model XAJ is adopted; and a very informative and readable account is given by Zhao (1980). 

The model has been widely applied to various basins around the world (Chen et al. 2013; Shi et 

al. 2011; Zhao 1992; Zhao et al. 1995). The XAJ model is a relatively simple conceptual lumped 
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rainfall-runoff model; its main hypothesis is the runoff generation on repletion of storage, which 

means that runoff is not generated until the soil water content of aeration zone reaches the field 

capacity. The structure of XAJ model includes an evapotranspiration unit, a runoff production 

unit and a runoff concentration unit. The model includes three soil layers (upper, lower and deep) 

which represent the three soil moisture storage components. The runoff component is also known 

as a water balance model which simulates lumped values of runoff with given rainfall and 

potential evapotranspiration datasets. The simulated effective rainfall (runoff) is then routed as 

flow through a routing model to the basin outlet, among which the Muskingum routing method is 

applied in this study. The model formulations are well suited for automatic parameter estimations. 

The three-layer SMDs are calculated to determine the effect of drying and wetting on the basin 

soil water storage.  

3. Results and discussion 

3.1 XAJ simulation for SMD estimation 

For calibration of the XAJ model, two years of data (January 1, 2010-December 31, 2011) are 

used, while the remaining one year (January 1, 2012-December 31, 2012) data are used for 

validation purpose. The calibration procedure focuses especially on the modelling of actual 

evapotranspiration and the distribution of total runoff (e.g. surface runoff, interflow and 

groundwater) in the XAJ model; as well as a good agreement between the estimated and 

observed flow. The performance of the model is determined by the Nash-Sutcliffe Efficiency 

(NSE) (Nash and Sutcliffe 1970) as an objective function, because it is the most common and 

important performance measure used in hydrology. The observed and simulated flow time series 

are compared over the complete monitoring period. As a result, the overall performance indicates 



a NSE value of 0.86 for the calibration and 0.83 during the validation. The time series between 

rainfall and flow during the calibration and validation periods are shown in Fig. 3. The modelling 

outcome demonstrates that the XAJ model tends to match the measured flow rather well while 

there is only a slight underestimation during the calibration. On the other hand, at some parts of 

the validation the flow simulation deviates slightly from the observed flow, especially at the low-

flow parts of the hydrograph. Nevertheless, both NSE values are sufficiently high for an 

acceptable hydrological model.  

3.2 NLDAS-2 LSMs simulated soil moisture 

It is extremely difficult to compare model generated soil moisture with ground observations 

because there are no direct measurements of the area averaged soil moisture. Nevertheless, an 

attempt has been made to compare the NLDAS-2 multi-model simulated soil moisture products 

with the observations. In order to reduce the spatial difference as small as possible, we only use 

the NLDAS-2 grid cell that is closest to the Asheville 13 S station in this section. Pearson 

product moment correlation coefficient (rpearson) is used for the comparison. The three-year daily 

soil moisture variations from the four LSMs and the observations for four individual soil layers 

are shown in Fig. 4. The results reveal a generally clear seasonal fluctuation at all the soil layers 

during the monitoring period. However, it is obvious that VIC and Noah models present less 

seasonal variation when compared with the measured soil moisture and the other two models for 

the top layer. One possible reason could be explained by the fraction of bare soil within a grid 

cell in Xia et al. (2014). Furthermore, all those models tend to overestimate soil moisture for the 

top soil layer (except for SAC) and underestimate soil moisture for the bottom two layers. In 

particular, the SAC model significantly underestimates soil moisture between 10 cm and 100 cm. 

Similarly, the VIC generated soil moisture in the bottom layer is excessively dryer than the other 



three models. One possibility is that the lowest soil layer in VIC is around 1.5 m and soil 

moisture values are extrapolated to 2 m through post-processing, which could produce some 

errors. Generally speaking, all the models indicate high correlation for all the four soil layers 

(>0.64), except for VIC in the top 10 cm where less seasonal variation is observed (0.40). 

Overall, Mosaic and SAC show higher correlations in the top two layers, whereas Noah and VIC 

exhibit better similarities to the observations in the bottom two layers. 

3.3 Evaluation of five soil moisture products against XAJ simulated three-layer SMDs 

Firstly, it is necessary to carry out an overall assessment by comparing with the summation of 

the three-layer XAJ SMDs. For this purpose, all five sources of soil moisture products are 

transformed to four soil layers (0-50 cm, 0-100 cm, 0-150 cm, 0-200 cm) by applying a simple 

linear interpolation approach. As illustrated in Fig. 5, all those soil moisture products seem to 

follow the summation of SMDs quite well. So when soil dries in the summer, SMD rises 

significantly; whereas when soil gets wetter during rainy seasons, SMD tends to be around zero. 

Specifically, all soil moisture products are able to capture individual rainfall events rather 

reactively. However the SAC model shows slow recovery for both wetting and drying processes, 

indicating stronger variation persistence than other models, such as the unreasonable significant 

increase of soil moisture during October 2011. The reason may be due to the improper maximum 

water capacity parameter set in the SAC model (Xia et al. 2014). As a result, this leads to 

relatively weaker correlations compared with the other soil moisture products, as revealed in 

Table 1. Moreover, rpearson become stronger for all soil moisture products when soil layer 

becomes thicker. To further check the linear and nonlinear relationships, the spearman rank 

correlation coefficients (rspearman) (Chen et al. 2013) are also generated, which yield nearly 

similar trends and values, revealing that there are no strong nonlinearity. The best performances 



are all observed in the 0-200 cm layer, with the Mosaic model at -0.95, followed by VIC (-0.89), 

observations and Noah (-0.84), and SAC (-0.79).  

Following the aforementioned assessment, a more comprehensive evaluation is implemented. 

This evaluation is based on the correlations between five sources of soil moistures at four 

individual layers (0-10 cm, 10-40 cm, 40-100 cm, 100-200 cm) and the XAJ three-layer SMDs. 

As shown in Table 2, for the XAJ SMD in the upper layer (layer one), there are good agreements 

with all the soil moisture products in 0-10 cm, except for the VIC model. The VIC simulated soil 

moisture in the top layer gives only -0.38 rpearson, hence it has little usage for hydrological 

modelling. Moreover the VIC simulated soil moisture and the in-situ observations are not 

logically linked with the XAJ model by layer order, e.g. their layer two is matched with XAJ 

layer one with higher correlations; whereas other products follow the corresponding orders more 

clearly. For XAJ layer one, the best correlation is gained from the SAC model in 0-10 cm (rpearson 

= -0.77). For XAJ SMD in the lower layer (layer two), there exist much stronger relationships 

with all the soil moisture products in layer four (100-200 cm). The highest correlation is obtained 

in the VIC bottom layer (rpearson = -0.90).  Moreover it is a surprise that the point based 

observation in 100-200 cm also attains a high correlation at rpearson = -0.86 with the XAJ layer 

two SMD. One possible reason is that soil moisture fluctuations become more stable in the 

deeper soil layers than in the shallower soil layers, hence even a point based measurement is able 

to capture the deep soil moisture variations for the entire basin. Surprisingly, all soil moisture 

products show very poor relationships with the XAJ SMD at deep layer (layer three). The highest 

correlation is obtained only at rpearson = -0.49 for Mosaic model in 100-200 cm and the result 

from Spearman correlation (rspearman = -0.34) is equally poor, suggesting that the overall 

correlations for the XAJ deep layer are weak. The reason for the poor results is that the XAJ 



model runs with real soil depth which can be much deeper than 2 m in this region. In another 

word, the lowest soil depth in all the soil moisture products would be too shallow for 

hydrological applications at certain basins. This is a common weakness. Since water balance 

below 2 m has been neglected in both land surface modelling and in-situ measurements, it is 

difficult nowadays to monitor the soil moisture status in a deeper level. Nevertheless it is 

strongly suggested that the layers of LSMs should be dependent on the saturation of soil at a 

region and should be tailored for different user communities. 

4. Conclusion and discussion 

Soil moisture is a key variable in hydrological modelling, especially for real-time flood 

forecasting. This is because in real-time modelling, SMD can drift away due to the error 

accumulations (especially after a long period of low flows (Ottlé and Vidal-Madjar 1994)). 

Accurate soil moisture datasets generated by LSMs have the potential to avoid such time drifts. 

In order to realize so, the primary step is to assess the accuracy of the soil moisture products, by 

using the long-term historical hydrological modelled soil moisture outputs. If there is sufficient 

amount of useful soil moisture information to the hydrological modelling; it is then possible to 

utilize such information in real-time flood forecasting by data assimilation (e.g. Kalman filter, 

3DVAR and 4DVAR Kalman filters) or model state updating methodologies. It has been 

recognized that the NLDAS-2 data is very useful for numerical weather prediction models; 

however no particular attention is given for their application in hydrological models. Therefore 

in this study we carry out for the first time a comprehensive hydrological evaluation of five soil 

moisture products (i.e. the NLDAS-2 multi-model simulated soil moistures: Noah, VIC, Mosaic 

and SAC; and a ground observation), against a widely used hydrological model (XAJ) as a 

benchmark, to assess their potential usage in the operational hydrology. 



Overall, all products have good agreements with the hydrological soil moisture simulation, with 

superior performance obtained from the SAC model and the VIC model. However it has been 

found that a direct replacement of the XAJ SMDs with these soil moisture products derived 

SMDs (or a simple regression of those products with XAJ SMD), can result in a rather poor 

performance in the flow modelling. The explanation is as follows. The operational hydrological 

model such as XAJ tends to do well in real time flood forecasting if the antecedent soil moisture 

is accurately represented in the model prior to an incoming flood causing storm. However, it has 

been found that in practice, it is common to observe that overestimation or underestimation of 

flood peaks occurs often. A main reason for this is because the accumulated errors from the 

evapotranspiration estimation cause the time drift in the model’s soil moisture state variable so 

that it is no longer an accurate reflection of the true soil moisture condition. Such an issue is 

more evident after a long dry period in summer. The intended use of those alternative soil 

products is to help duty hydrologists detect and correct the drift (the alternative soil moisture 

data may not suffer from the same error). This is not an easy task because more detailed research 

is needed to find out the prevailing conditions for those drifts to occur and their characteristics so 

that appropriate corrections could be implemented using alternative soil moisture products. 

In addition the NLDAS-2 forcings are still new, and further studies are clearly necessary to 

evaluate them at a wider range of basins covering more climate types and land cover/land uses. 

Furthermore more studies are also needed to consider information from other data sources to 

improve the soil moisture accuracy. Another complementary data source is the remote sensing 

soil moisture products by microwave and visible light/ infrared bands, which have been 

extensively used over the last two decades. Therefore, the data fusion between model based soil 



moisture and remote sensing based soil moisture may provide the optimal soil moisture 

estimation for hydrological purpose.  
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Fig. 1. Location of the French Broad catchment with the flow gauge, NLDAS-2 grids locations, 

and the in-situ soil moisture measurement station over the river network map. 



 

Fig. 2. Flowchart depicting the methodology used in this study. In step 1: NLDAS-2 precipitation and 

potential evapotranspiration datasets are used to drive the XAJ model, and the performance of the model is 

determined by the NSE coefficient as its objective function. Both calibration and validation NSEs have to be 

sufficiently high for an acceptable hydrological model (i.e. above 0.80). Once the condition is met, the three-

layer SMDs are then generated. In step 2: soil moisture datasets are collected and translated into a common 

soil-layer system, by using the distribution of the Noah’s soil layers as a benchmark. The time series of each 
soil moisture datasets are generated accordingly. In step 3, the five sources of soil moisture products are 

evaluated hydrologically by statistical indicators.  



 

Fig. 3. Daily rainfall and flow time series during calibration and validation with the 

hydrograph generated from XAJ for: (a) two year calibration, NSE = 0.86; (b) one year 

validation, NSE = 0.83. 



 

 

Fig. 4. Daily volumetric (m3/m3) soil moisture variations at individual soil layers: 0-10 cm, 10-40 cm, 

40-100 cm, 100-200 cm; for in-situ measurements, NLDAS-2 driven Mosaic, Noah, SAC and VIC 

simulated soil moisture values. The correlation coefficients (rpearson) between the measured and the 

simulated soil moisture variations are calculated: for Mosaic are as 0.82, 0.81, 0.74 and 0.73 for the 

four soil layers accordingly; for Noah are 0.65, 0.69, 0.81 and 0.87 accordingly; for SAC are 0.85, 

0.78, 0.66 and 0.72 accordingly; and for VIC are 0.40, 0.64, 0.76 and 0.90 accordingly.  

 



 

Fig. 5. Time series for volumetric (m3/m3) soil moisture contents (observations, Mosaic, 

Noah, SAC and VIC) at four soil layers: 0-50 cm, 0-100 cm, 0-150 cm, 0-200 cm, with the 

summation of three-layer XAJ soil moisture deficits (SMDs; mm).  

 



Table 1. Daily soil moisture correlations between observed, LSMs simulated soil moistures 

(m3/m3) and the summation of XAJ generated soil moisture deficits SMDs (mm) for the 

period January 1, 2010 to December 31, 2012. 

Soil layers (cm) OBS Mosaic Noah SAC VIC 

rpearson      

0-50 -0.79 -0.87 -0.69 -0.78 -0.70 

0-100 -0.80 -0.91 -0.75 -0.79 -0.86 

0-150 -0.82 -0.94 -0.83 -0.79 -0.88 

0-200 -0.84 -0.95 -0.84 -0.79 -0.89 

      

rspearman      

0-50 -0.77 -0.86 -0.67 -0.76 -0.68 

0-100 -0.78 -0.89 -0.73 -0.78 -0.85 

0-150 -0.81 -0.92 -0.83 -0.78 -0.87 

0-200 -0.83 -0.93 -0.85 -0.78 -0.87 



Table 2. Daily soil moisture correlations between the five soil moisture products 

(observations, Mosaic, Noah, SAC and VIC) at four individual soil layers (0-10 cm, 10-40 

cm, 40-100 cm, 100-200 cm) and the XAJ simulated three-layer SMDs (upper, lower and 

deep layers) for the period January 1, 2010 to December 31, 2012. U is the upper XAJ soil 

layer, L is the lower XAJ soil layer and D is the deep XAJ soil layer. 

 

 

 

 

Soil 

layers 

(cm) 

OBS   Mosaic   Noah   SAC   VIC 

  U L D 
 

U L D 
 

U L D 
 

U L D 
 

U L D 

rpearson                    
0-10 -0.61 -0.79 -0.16 

 
-0.65 -0.73 -0.25 

 
-0.67 -0.47 -0.13 

 
-0.77 -0.57 0.03 

 
-0.38 -0.08 -0.06 

10-40 -0.64 -0.76 -0.15 
 

-0.65 -0.76 -0.26 
 

-0.61 -0.54 -0.16 
 

-0.55 -0.82 -0.08 
 

-0.60 -0.40 -0.21 

40-100 -0.60 -0.75 -0.17 
 

-0.51 -0.82 -0.38 
 

-0.52 -0.61 -0.12 
 

-0.34 -0.86 -0.13 
 

-0.52 -0.89 -0.16 

100-200 -0.47 -0.86 -0.27 
 

-0.29 -0.82 -0.49 
 

-0.38 -0.85 -0.12 
 

-0.33 -0.86 -0.13 
 

-0.50 -0.90 -0.19 

                    rspearman                    
0-10 -0.63 -0.77 0.03 

 
-0.68 -0.73 -0.12 

 
-0.78 -0.46 0.08 

 
-0.81 -0.56 0.18 

 
-0.42 -0.07 -0.09 

10-40 -0.66 -0.77 0.03 
 

-0.66 -0.75 -0.12 
 

-0.68 -0.53 -0.03 
 

-0.57 -0.81 0.06 
 

-0.65 -0.33 -0.04 

40-100 -0.58 -0.80 0.00 
 

-0.52 -0.83 -0.22 
 

-0.52 -0.63 -0.05 
 

-0.35 -0.85 -0.03 
 

-0.52 -0.88 -0.09 

100-200 -0.44 -0.85 -0.13 
 

-0.27 -0.85 -0.34 
 

-0.38 -0.86 -0.07 
 

-0.35 -0.85 -0.03 
 

-0.50 -0.89 -0.10 


