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Abstract: Surface water quality management is an important facet of the effort to meet increasing
demand for water. For that purpose, water quality must be monitored and assessed via the use
of innovative techniques, such as water quality indices (WQIs), spectral reflectance indices (SRIs),
and multivariate modeling. Throughout the Rosetta and Damietta branches of the Nile River, water
samples were collected, and WQIs were assessed at 51 different distinct locations. The drinking water
quality index (DWQI), metal index (MI), pollution index (PI), turbidity (Turb.) and total suspended
solids (TSS) were assessed to estimate water quality status. Twenty-three physicochemical parameters
were examined using standard analytical procedures. The average values of ions and metals exhibited
the following sequences: Ca2+ > Na2+ > Mg2+ > K+, HCO3

2− > Cl− > SO4
2− > NO3

− > CO3
− and

Al > Fe > Mn > Ba > Ni > Zn > Mo > Cr > Cr, respectively. Furthermore, under the stress of evapora-
tion and the reverse ion exchange process, the main hydrochemical facies were Ca-HCO3 and mixed
Ca-Mg-Cl-SO4. The DWQI values of the two Nile branches revealed that 53% of samples varied from
excellent to good water, 43% of samples varied from poor to very poor water, and 4% of samples were
unsuitable for drinking. In addition, the results showed that the new SRIs extracted from VIS and
NIR region exhibited strong relationships with DWQI and MI and moderate to strong relationships
with Turb. and TSS for each branch of the Nile River and their combination. The values of the R2

relationships between the new SRIs and WQIs varied from 0.65 to 0.82, 0.64 to 0.83, 0.41 to 0.60 and
0.35 to 0.79 for DWQI, MI, Turb. and TSS, respectively. The PLSR model produced a more accurate
assessment of DWQI and MI based on values of R2 and slope than other indices. Furthermore,
the partial least squares regression model (PLSR) generated accurate predictions for DWQI and MI
of the Rosetta branch in the Val. datasets with an R2 of 0.82 and 0.79, respectively, and for DWQI
and MI of the Damietta branch with an R2 of 0.93 and 0.78, respectively. Therefore, the combination
of WQIs, SRIs, PLSR and GIS approaches are effective and give us a clear picture for assessing the
suitability of surface water for drinking and its controlling factors.

Keywords: Nile River; water quality indices; spectral reflectance indices; PLSR model; metal index;
total suspended solids; Egypt

1. Introduction

The water supply is considered a fundamental requirement for human activity and
socioeconomic utility, and is indispensable for human wellbeing. Rivers are the most often
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used sources of surface water due to their abundance and accessibility, which have led
to rapid human population growth and progress near watercourses [1–3]. Consequently,
rivers particularly in developing nations have suffered from significant environmental
pressures associated with contamination from intensive agricultural pesticide runoff and
effluent from manufacturing processes, sewage, and other urban waste sources [4–6].

As the essential freshwater source in Egypt, the Nile River receives large amounts of
residential and agricultural waste, manufacturing pollutants, and municipal discharges, all
of which degrade the river’s water quality [7–11]. The metal sector contributes about 50% of
the total in waste outflows, which, together with industrial effluents as well as agricultural
runoff and municipal sewage, constitute serious hazards to the aquatic system in the Nile
River [12,13]. Therefore, the contamination of the Nile River has been regarded as one of
Egypt’s most critical water-related issues, particularly since the recent construction of the
Ethiopia Dam, which led to significant environmental and human health problems [14,15].
Therefore, water quality monitoring and water resource management have been accepted
as a national duty for achieving sustainability in Egypt.

Water quality is evaluated using physical and chemical properties that indicate water
characteristics and variables that impact on water quality [16]. Hence, physicochemical pa-
rameters based on hydrochemical metrics provide an initial understanding of water facies,
numerous geochemical mechanisms, and water categorization [17–19]. Moreover, water
quality indices (WQIs) are among the better approaches to explain water quality [20,21],
as they convert original data from many water quality metrics into a single number to
understand water quality as a whole at different monitoring points at a given time [22–25]
and assist strategic planning linked to water quality management programs through nu-
merical index values [26–28]. Therefore, the indices used in this study, namely the drinking
water quality index (DWQI), metal index (MI), and pollution index (PI), were determined
to assess water quality.

In the last decades, multivariate statistical approaches such as cluster analysis (CA)
and principal component analysis (PCA) have been used extensively to arrange and clarify
information and describe the quality of the water [29–34]. They are commonly utilized
in water quality monitoring and evaluation [35–38]. The multivariate approach can assist
in classifying the investigated characteristics into distinct categories depending on the
influence from predicted sources and can offer insights about their genesis according to the
variability of the investigated data [39]. Thus, the CA and PCA are efficient approaches for
discovering common trends and anomalies of dispersion, reducing the initial dimension
of datasets, and improving understanding of the geogenic and environmental origins of
soluble ions and metals in water [40,41].

Estimates of DWQI, MI, Turb., and TSS have relied on point sampling and laboratory
tests. This method is accurate, but it is slow, costly, harmful, and geographically limited,
making it inefficient for monitoring these indices. It also cannot be utilized to help decision-
makers with a complete assessment of critical indices related to water quality [42–45].
To help overcome this problem, WQIs can be monitored by remote sensing technology.
With the rapid improvements in remote sensing techniques for collecting data, different
UAV, satellite, or proximate hyperspectral tools have been proved to be economical and
usable on a broad scale for integrative evaluation of many water quality indicators [46,47].
Compared to satellite images, proximate hyperspectral sensing could be a beneficial tool
for overcoming the limitations imposed by external interference factors in monitoring and
assessing quality. Because the optical sensors are close to the target, the system can collect
high-resolution spectrum information and assure spectral inversion accuracy. This system’s
information benefits from a large volume of data, huge bands, and high quantitative
inversion flexibility [48]. The concept underlying these techniques is that the numerous
sensors in these instruments can determine changes in the water surface’s optical properties
at various bands. The changes in the physiochemical, biological, and hydrological aspects
of the water are intricately related to the water surface’s optical properties. As a result,
the spectra emitted by the water’s surface could be used directly or indirectly to estimate
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WQIs, such as Turb., TSS, total phosphorus, chlorophyll, irrigation water quality index,
and dissolved organic carbon [49–57]. Previous studies have discovered that there were
close relationships between certain WQIs and water surface spectral reflectance in certain
wavebands, particularly in the visible and near-infrared ranges. For example, Gitelson
et al. [46] found that the spectrum range in the 700–900 nm for remote sensing is the
best range for estimating TSS concentrations. Spectral reflectance at 806 nm is strongly
linked with the TSS of water (R2 = 0.89), according to Vincikova et al. [52]. Additionally,
Elhag et al. [57] found that water Turb. measurements revealed a strong relationship with
calculated normalized differences in the Turb. index, with an R2 of 0.94. Although several
studies focused on WQIs, there is limited evidence available to evaluate the SRI approaches
to assess WQIs such as DWQI and MI. Therefore, this study also focused on evaluating the
possibility of using published and new two-band spectral indices to estimate DWQI, MI,
Turb., and TSS of surface water.

Because spectral measurements create a large amount of data, using a suitable statis-
tical model to analyze spectral reflectance data remains a critical step in identifying the
best association between spectral data and various water quality indicators. In addition to
deriving algorithms created utilizing specific bands or band ratios, multivariate models
based on numerous spectral bands or SRIs were shown to be an effective technique to
estimate the different water quality indicators [58,59]. Since the PLSR can combine several
types of spectral reflectance data as input variables, it was used to predict water quality
indicators as output variables [58,59]. PLSR has been presented as a method for resolving
strong multi-collinear and noisy factors in spectrum regions and assessing water quality in-
dicators effectively [60]. In this way, PLSR may provide valuable information that supports
the efficacy of spectral un-mixing techniques.

There are insufficient data to evaluate the benefits of using SRI-based PLSR models
for predicting both the DWQI and MI of the Nile River’s water surface. Therefore, the
goals of this work were to (1) explore surface water facies and numerous geochemical
processes using physicochemical properties; (2) determine the geochemical regulating
processes impacting water chemistry using imitative approaches; (3) assess the suitability
of water samples for drinking using the DWQI; (4) assess the susceptibility of fresh water
to pollution using MI and PI; (5) evaluate the performance of published and new SRIs to
assess the four WQIs, namely DWQI, MI, Turb., and TSS, of Nile River surface water; and
(6) evaluate the efficacy of PLSR models as quick approaches for predicting the four WQIs
of the Nile River.

2. Materials and Methods
2.1. Study Area

The Nile River is regarded as one of the world’s longest rivers, with a total length
of around 6700 km, including about 1352 km within Egypt. The Nile River flows 940 km
upstream of the Aswan High Dam before splitting into two branches including the Rosetta
and Damietta branches (Figure 1), which encompass around 12,357 km2 [14]. The Rosetta
branch is approximately 225 km long, with a width of about 180 m, and has a depth ranging
from 2 to 4 m; it begins in EL-Kanater El-Khayria in the south and ends at Rashid City in
the north, whereas the fresh water of the Rosetta branch terminates at the Edfina Barrage
30 km upstream from the sea, which discharges excess water to the Mediterranean Sea via
the Rosetta Estuary [61]. In addition, the Damietta branch is approximately 242 km long,
with an average width of 200 m and an average depth of 12 m. The study region extends
approximately 237.0 km from the delta barrage to the Rosetta and Damietta outflow [62].
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Turb. in water, which was stated in nephelometric turbidity units (NTU). Different quality 
assurance approaches were used throughout the water sample analysis. After the experi-
mental data were double-checked in the lab, charge balance errors (CBE) were established, 
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Figure 1. The location map of the collected water samples and surface water network along Rosetta
and Damietta branches.

2.2. Sampling and Analyses

During the year 2021, 51 surface water samples were collected along the Rosetta and
Damietta branches during a surveying trip in the research region to collect data representing
the overall actual conditions for determination of water quality for consumption and
utilization. The locations of the obtained samples were determined in UTM positions using
a portable Magellan GPS 315 (Figure 1). Two sets of collected water samples were stored in
500 mL plastic bottles and purified using 0.45 m Whatman filter paper. For metal analysis,
samples were adjusted to pH = 2 using conc. HNO3 before being examined. The samples
were kept at 4 ◦C once they were brought to the laboratories for chemical characterization.
Using established analytical procedures [63], 23 distinct physicochemical parameters were
measured. Temperature, pH, EC, and TDS were detected in situ using a calibrated handheld
conductivity multi-parameter sensor (Hanna HI 9033). The titrimetric technique was used
to determine Ca2+ and Mg2+, Cl−, HCO3

−, and CO3
2− concentrations. In addition, a flame

photometer (ELEX 6361, Eppendorf AG, Hamburg, Germany) was used to measure the K+

and Na+ concentrations. The concentrations of SO4
2− and NO3

− were determined using a
spectrophotometer instrument with a visible ultraviolet spectrum (DR/2040—Loveland,
CO, USA). The total suspended solids (TSS) were measured in mg/L by using a glass
filter paper filtration technique. A turbidimeter measured the level of Turb. in water,
which was stated in nephelometric turbidity units (NTU). Different quality assurance
approaches were used throughout the water sample analysis. After the experimental data
were double-checked in the lab, charge balance errors (CBE) were established, and samples
were verified in triplicate, with the average value provided. An inductively coupled plasma
mass spectrometer (ICP-MS, Thermo Fisher Scientific Inc., Mundelein, IL, USA) was used
and standard analytical protocols [63] were performed to examine metals (Al, Ba, Cr, Cu,
Fe, Mn, Mo, Ni, and Zn).
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2.3. Indexing Approach

Different approaches, which were governed by three factors including parameter
selection, quality function calculation (sub-index), and accumulation of sub-indices, were
applied using arithmetic equations and compared to evaluate the suitability of collected
water samples along the Nile River for drinking [64–67]. The suitability of surface water
for drinking and its sensitivity to pollution were investigated using the cited WQIs such as,
DWQI, MI, and PI, which were calculated using physical and chemical properties.

2.3.1. Drinking Water Quality Index (DWQI)

For potable water quality assessment, the findings on 23 physicochemical parameters
of collected samples were considered. The physical and chemical parameters were weighted
based on their significance to the total quality of water. The DWQI reflects the total
water quality of water variables based on a combination of water characteristics and their
utilization in the ecosystem [68], as indicated in Equation (1):

DWQI = ∑n
i=1 QiWi (1)

According to the WHO [69], the estimated value of Qi is influenced by the concentra-
tion of each water component (Ci) and their guideline (Si) for drinking water, as indicated
in Equation (2):

Qi =
Ci
Si
× 100 (2)

Wi =
wi

∑ wi
(3)

where Wi is the relative weight and wi is the weight unit of each water component.
Equation (4) is applied to determine wi for each component in accordance with the

specified criteria for drinking water [69].

wi = K/Si (4)

K is the constant of proportionality, which can be computed using Equation (5):

K =
1

∑ Si
(5)

To calculate DWQI, a weight for each surface water parameter (wi) was assigned for
Turb., pH, TDS, EC, TH, K+, Na+, Mg2−, Ca2+, Cl−, SO4

2−, HCO3
2−, CO3

−, NO3
−, Al,

Ba, Cr, Cu, Fe, Mn, Mo, Ni, and Zn, and the quality rating range (Qi) and relative weight
(Wi) were estimated. The computed values of the standards, unit weights (wi) and relative
weights (Wi) for the surface water parameters are showed in Table 1.

Table 1. Calculation of the DWQI based on the arithmetic weight method for physicochemical
parameters.

Physicochemical
Parameters

Measured
Sample

WHO (2017)
Si

Unit Weight
wi

Sub Index
Qi

Qi ×Wi

pH 8.0 8.5 0.00105 66.0000 0.0692
Turb. 3.22 5 0.00178 64.4840 0.1149
TDS 261 500 0.00002 52.2000 0.0009
EC 408 1500 0.00001 27.1875 0.0002
TH 107.56 500 0.00002 21.5120 0.0004
K+ 10.61 12 0.00074 88.4365 0.0656

Na+ 29.39 200 0.00004 14.6941 0.0007
Mg2− 11.60 50 0.00018 23.2000 0.0041
Ca2+ 24.00 75 0.00012 32.0000 0.0038
Cl− 53.90 250 0.00004 21.5600 0.0008

SO4
2− 11.00 250 0.00004 4.4000 0.0002
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Table 1. Cont.

Physicochemical
Parameters

Measured
Sample

WHO (2017)
Si

Unit Weight
wi

Sub Index
Qi

Qi ×Wi

HCO3
2− 115.20 120 0.00007 96.0000 0.0071

CO3
− 0.00 350 0.00003 0.0000 0.0000

NO3
− 4.08 50 0.00018 8.1600 0.0015

Al 0.2616 0.1 0.08907 261.6000 23.3012
Ba 0.0439 0.3 0.02969 14.6333 0.4345
Cr 0.0056 0.05 0.17814 11.2000 1.9952
Cu 0.0066 2 0.00445 0.3300 0.0015
Fe 0.3596 0.3 0.02969 119.8667 3.5589
Mn 0.0547 0.1 0.08907 54.7000 4.8722
Mo 0.0003 0.07 0.12725 0.4286 0.0545
Ni 0.0096 0.02 0.44536 48.0000 21.3772
Zn 0.0159 3 0.00297 0.5300 0.0016

∑ (wi) = 1 ∑n
i=1 Qi ×Wi

Physicochemical parameters are expressed in mg/L excluding temperature (T ◦C), pH, Turb. (NTU), and EC
(µs/cm).

2.3.2. Pollution Indices (PIs)

The pollution indices, such as MI and PI, were calculated for the concentrations of
metals including Al, Ba, Cr, Cu, Fe, Mn, Mo, Ni, and Zn using the formulae presented in
Table 1.

Metal Index (MI)

According to Equation (6), the metal index (MI) was used to analyze the probable
impact of metals on public health, which helps in swiftly estimating the overall quality of
water [70].

MI =
n

∑
i=1

Hc

Hmax
(6)

where Hc is a concentration of each metal in the collected water sample, Hmax is the max.
limit concentration for each metal, and the subscript i is the i-th sample [71].

Pollution Index (PI)

The PI values were used to evaluate the influence of metal pollution on surface
water [72]. According to Equation (7), the PI is categorized into five groups (Table 2), which
reflect the distinct pollution influence from each metal on water quality.

PI =

√
[(Ci

Si
)2

max + (Ci
Si
)2

min]

2
(7)

where Ci represents the content of each metal in the collected sample and Si represents the
standard limit of each metal in potable water [72,73].

Table 2. Levels of pollution according to PI values [72].

Class PI Value Effect

1 <1 No effect
2 1–2 Slightly affected
3 2–3 Moderately affected
4 3–5 Strongly affected
5 >5 Seriously affected
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2.4. Proximate Hyperspectral Measurements

The acquisition device was a handheld spectrometer (band range of 302–1148 nm;
tec5 AG, Oberursel, Germany). It was used to acquire spectral reflectance measurements
of surface water samples. The device is made up of two primary parts, one of which is
attached to a diffuser and detects solar radiation, while the other component measures
water samples’ spectral reflectance. Water samples were put in 25 cm diameter black
cylindrical containers with a 10 cm depth, and the spectrometer optic was placed vertically
around 25 cm at a nadir position over the water surface of the samples with a scanning
area of 0.05 m2. The water samples’ spectral reflectance was corrected using a calibration
factor derived from a white reference standard to adjust the spectrometer data. The spectral
reflectance of each surface water sample was measured four times for a total of 20 scans.
The mean of four measurements was used to compute the measured spectrum for a surface
water sample. Spectra of water samples were obtained around midday time to limit
volatility to a minimum and to decrease the influence of fluctuations in sun zenith angle.
Finally, noise was removed from both ends of the electromagnetic spectrum by smoothing
the spectral reflectance.

2.5. Selected Spectral Reflectance Indices (SRIs) in This Study

Ten published and ten newly derived SRIs were selected as listed in Table 3. To
determine the most effective two–band combination to assess the optimum spectral index
for identifying DWQI, MI, Turb., and TSS, the correlation matrix was used to find probable
combinations of two bands ranging from 302 nm to 1148 nm, which were established
using the spectral pooled data of two Nile River branches for each measured parameter
(n = 51). Sequential linear regression between spectral index and WQIs was used to create
correlogram maps of the 2-D coefficient of determination (R2). The SRIs with the greatest
R2 were chosen. The lattice package in R statistics ver. 3.0.2 was used to create several 2-D
correlogram maps (R Foundation for Statistical Computing, 2013).

Table 3. Description of different SRIs examined in this investigation.

SRIs Formula References

Published SRIs
Ratio between blue and red Blue/Red [74]

Ratio between green and red Green/Red [75]
Ratio between NIR and red NIR/Red [76]

Normalized difference index (NDI704,698) (R704 − R698)/(R704 + R698) [77]
Ratio spectral index

RSI717,630 R717/R630 [78]
RSI620,608 R620/R608 [79]
RSI670,470 R670/R470 [79]
RSI806,670 R806/R670 [80]
RSI850,550 R850/R550 [80]
RSI700,670 R705/R675 [81]

Newly SRIs
RSI584,628 R584/R628 This work
RSI530,680 R530/R680
RSI640,590 R640/R590
RSI760,560 R760/R560
RSI720,580 R720/R580
RSI776,490 R776/R490
RSI686,570 R686/R570
RSI780,514 R780/R514
RSI730,540 R730/R540
RSI590,540 R590/R640
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2.6. Partial Least Squares Regression (PLSR)

In chemometrics, the PLSR is a method for analyzing multivariate data [82]. It is
a good strategy for data processing when there are more input parameters than output
parameters and considerable collinearity and noise in the input variables’ data. The PLSR
models were created utilizing SRIs of surface water samples from two Nile River branches
as input variables and the measured indices (DWQI, MI, Turb. and TSS) as single response
variables (Figure 2). To link the selected SRIs as the input variables to the output variables
of four WQIs, PLSR was used in conjunction with cross-validation using the leave-one-out
method (LOOCV). The best ONLFs, those that presented the highest R2 and lowest RMSE,
were selected to correctly represent the calibration data without over- or under-fitting.
According to the software program’s recommendations, the datasets were subjected to
random 10-fold cross-validation to increase the results’ robustness (Unscrambler X software
Version 10.2). The pooled data of two the Nile River branches were included in the PLSR
models for the calibration dataset. Following that, the calibration equations for various
models were used to predict DWQI, MI, Turb., and TSS for each branch.
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Figure 2. Flowchart diagram of the methodology for estimating water quality indices (WQIs) using
PLSR model.

2.7. Data Analysis

Multivariate statistical analyses were performed on the physical and chemical data
utilizing SPSS software version 22 (SPSS Inc., Chicago, IL, USA) to generate summary
statistics. Piper trilinear diagram [83], Gibbs diagram [84], Chadha diagram [85], and
hydrochemical facies evolution diagram (HFE) [86] were applied using Geochemist’s
Workbench Student Edition 12.0 software to determine surface water types, geochemical
processes, geochemical influencing factors, and the categorization of surface water samples
and their controlling mechanisms. Multivariate modeling techniques such as CA and PCA
are commonly utilized for assessing water quality. Therefore, by minimizing the chemical
analysis data into common patterns, the CA was used to identify the physicochemical
characteristics based on their similarities [87]. The PCA was used to study the association
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between the physicochemical properties that were responsible for changes in water quality
by converting the initial variables into a new set that reflected the effect of significant
elements on water quality. PAST program (version 3.25) was used to interpret the chemical
analysis data on the physicochemical concentrations for CA and PCA. Finally, the spatial
distribution maps for the WQI values at 51 locations along the Nile River were created
using GIS software version 10.

3. Results and Discussion
3.1. Physical and Chemical Parameters

The physicochemical characteristics of Nile River water have been widely investigated
as helpful criteria for understanding the state of water geochemistry and related regulatory
processes that play critical roles in the evolution of water quality. Table 4 and Figure 3 give
statistical summaries of the physicochemical properties of the investigated surface water
points (min., max., and mean).

Table 4. Statistical analysis of the physical and chemical parameters of surface water samples from
the Nile River.

Physicochemical
Parameters

Rosetta Branch, Nile River
(n = 21)

Damietta Branch, Nile River
(n = 30)

Data across Two Branches
(n = 51)

Min. Max. Mean Min. Max. Mean Min. Max. Mean

T ◦C 27.0 33.7 30.0 27.1 28.1 27.4 27.0 33.7 28.4
pH 7.40 8.10 7.80 7.40 8.40 7.89 7.40 8.40 7.85

Turb. 0.69 7.62 3.26 0.69 7.44 2.76 0.69 7.62 2.97
TSS 9.20 45.20 21.17 8.69 41.2 17.41 8.69 45.2 18.96
EC 341.00 544.00 404.00 328.00 703.00 385.40 328.00 703.00 393.06

TDS 218.00 348.00 258.52 210.00 450.00 246.63 210.00 450.00 251.53
K+ 3.11 16.81 9.01 5.21 14.41 8.15 3.11 16.81 8.50

Na+ 20.70 38.91 28.91 16.29 46.05 22.36 16.29 46.05 25.06
Mg2− 8.20 19.00 13.17 3.40 22.80 12.15 3.40 22.80 12.57
Ca2+ 16.00 36.00 23.24 22.72 44.00 28.06 16.00 44.00 26.07
Cl− 35.50 88.70 54.13 23.00 61.00 40.10 23.00 88.70 45.88

SO4
2− 11.00 22.00 14.90 12.00 33.00 16.80 11.00 33.00 16.02

HCO3
2− 88.40 134.00 108.88 60.80 208.60 104.17 60.80 208.60 106.11

CO3
− N.D. N.D. N.D. 5.00 19.00 8.87 N.D. 19.00 5.22

NO3
− 3.68 12.53 6.11 2.25 8.51 5.48 2.25 12.53 5.74

Al 0.0161 1.7248 0.4070 0.1825 1.8854 0.6096 0.0161 1.8854 0.5262
Ba 0.0439 0.0675 0.0519 0.0341 0.0713 0.0402 0.0341 0.0713 0.0451
Cr 0.0056 0.0141 0.0093 0.0001 0.0037 0.0013 0.0001 0.0141 0.0046
Cu 0.0061 0.0260 0.0094 0.0001 0.0058 0.0013 0.0001 0.0260 0.0046
Fe 0.0873 2.2767 0.5954 0.0003 2.4102 0.3194 0.0003 2.4102 0.4330
Mn 0.0368 0.1537 0.0738 0.00806 0.1035 0.0284 0.0080 0.1537 0.0471
Mo 0.0003 0.0041 0.00211 0.0055 0.0325 0.0142 0.0003 0.0325 0.0092
Ni 0.0080 0.0175 0.0128 0.0140 0.0357 0.0222 0.0080 0.0357 0.0183
Zn 0.0145 0.0394 0.0218 0.0008 0.0329 0.0120 0.0008 0.0394 0.0161

Physical and chemical parameters are expressed in mg/L excluding temperature (T ◦C), pH, Turb. (NTU), and EC
(µs/cm).

The obtained analytical values for the physical and chemical properties of surface
water samples across the Nile River branches showed that temperature ranged from 27.0 ◦C
to 33.7 ◦C with a mean value of 28.4 ◦C. Temperature influences the frequency of chemical
processes and interaction between contaminants and aquatic inhabitants. The pH ranged
from 7.40 to 8.40, with a mean of 7.85, indicating that the water samples were virtually
normal to sub-alkaline in character [88]. Several water quality indicators, including Turb.,
and TSS, are critical in expressing surface water quality. Therefore, these measures are the
primary indicator metrics for assessing surface water quality and its degradation as a result
of polluting activities. Turbidity, a measure of the purity of water, varied from 0.23 NTU
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to 10.62 NTU with a mean of 3.33 NTU along the Nile River. In addition, the TSS values
varied from 8.39 mg/L to 45.20 mg/L with a mean of 19.26 mg/L. Turbidity and TSS levels
increased at several points along the watercourse as a result of the excessive drainage of
various swept-out effluents into the Nile River. The occurrence of suspended particles
including silt, clay, organic compounds, and plankton and other microorganisms generates
Turb. in water [89,90]. Most of the urban activities that occur along the river contribute
to increased Turb. The EC readings ranged from 328.0 to 703.0 µs/cm, with an average
value of 393.06 µs/cm. In addition, the TDS levels varied from 210.0 mg/L to 450.0 mg/L,
with a mean value of 251.53 mg/L, which reflected fresh water type. The ionic content
of K+, Na2+, Mg2+, Ca2+, Cl−, SO4

2−, HCO3
2−, CO3

− and NO3
− showed mean values

of 8.50, 25.06, 12.57, 26.07, 45.88, 16.02, 106.11, 5.22 and 5.74 mg/L, respectively (Table 5).
Therefore, the average values of ions showed sequences of Ca2+ > Na2+ > Mg2+ > K+ and
HCO3

2− > Cl− > SO4
2− > NO3

− > CO3
−, respectively. These results revealed that Ca2+

was the dominant cation and HCO3
2- was the dominant anion in the collected surface

water samples.
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The mean contents of Al, Ba, Cr, Cu, Fe, Mn, Mo, Ni, and Zn were 0.52, 0.045, 0.0046,
0.0046, 0.433, 0.047, 0.0092, 0.0183, and 0.0161 mg/L, respectively, and showed a sequence
of Al > Fe > Mn > Ba > Ni > Zn > Mo > Cr > Cr (Table 4). To our understanding, metals
in water derived from a variety of sources, such as rock–water interaction, weathering
process, and human activities. The concentration of metals in the collected samples varied
significantly throughout the river, which showed high levels of Al and Fe content above
the specified acceptable limits for potable consumption [69].
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Table 5. Classification of the different water quality indices (WQIs).

WQIs Range Water Category
Number of Samples (%)

Rosetta Branch
(n = 21)

Damietta Branch
(n = 30)

Across Two
Branches (n = 51)

Min. Max. Mean SD

DWQI

35.22 239.68 100.32 45.37 <50 Excellent 6 (28.0%) 0 (0.0%) 6 (12%)
50–100 Good 9 (43%) 12 (41%) 21 (41%)

100–150 Poor 5 (24.0%) 13 (43.0%) 18 (35%)
150–200 Very poor 0 (0.0%) 4 (13.0%) 4 (8%)

>200 Unsuitable 1 (5.0%) 1 (3.0%) 2 (4%)

MI

1.81 29.00 8.48 5.67 <0.3 Very pure 0 (0.0%) 0 (0.0%) 0 (0.0%)
0.3–1.0 Pure 0 (0.0%) 0 (0.0%) 0 (0.0%)
1.0–2.0 Slightly affected 0 (0.0%) 0 (0.0%) 0 (0.0%)
2.0–3.0 Moderately affected 3 (14%) 0 (0.0%) 3 (6%)
3.0–6.0 Strongly affected 9 (43%) 9 (30%) 18 (35%)

>6.0 Seriously affected 9 (43%) 21 (70%) 30 (59%)

Min.: Minimum, Max.: Maximum, SD: Standard deviation.

3.2. Geochemical Facies and Controlling Mechanisms

To better understand the geochemical mechanisms that govern water quality, hydro-
chemical data were analyzed through imitative approaches. Piper’s trilinear diagram was
used to determine the prevalent cations and anions in meq/L of the investigated samples in
order to define the geochemical facies and surface water types in the Nile River (Figure 4a).
The chemical characteristics of the analyzed surface water samples showed Ca-HCO3 and
mixed Ca-Mg-Cl-SO4 water types, which reflected meteoric water and initial stages of
evolution [91]. Chadah’s categorization was also conducted to identify hydrochemical
pathways and surface water types (Figure 4b). The surface water samples were dispersed in
fields 1 and 3, which demonstrated recent recharge water associated with cation exchange
processes in the surface water system, particularly in the downstream of the Nile River,
that reflected an increase in Ca2+ concentration, thus indicating meteoric water type.
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The relations between TDS vs. (Na + K)/(Na + K + Ca) and Cl/(Cl + HCO3) were ap-
plied using Gibb’s diagram to identify the geochemical regulating mechanisms influencing
water quality. The surface water points were distributed in the evaporation field (Figure 5a),
which was a significant process governing surface water quality. The hydrochemical facies
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evolution diagram (HFE) plot results revealed high contents of calcium and bicarbonate in
surface water samples (Figure 5b).
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3.3. Water Quality Indices (WQIs)

The statistical descriptions of several WQIs and the categorization of water quality
based on WQI references are presented in Table 5.

3.3.1. Drinking Water Quality Index (DWQI)

The DWQI model was applied to assess surface water quality and measure the ac-
ceptability of surface water for drinking, which was categorized depending on the purity
level of measured physicochemical parameters according to Equation (1). The computed
value of DWQI in the investigated samples ranged from 35.22 to 239.68, with an average
of around 100.32. According to the DWQI categorization, about 53% of the surface water
varied from excellent to good water for drinking purposes, while about 43% varied from
poor to very poor water, and 4% of samples represented water unsuitable for drinking.
According to the DWQI spatial distribution map, the degradation in water quality may be
linked to a poor drainage system, discharges from huge tracts in agricultural regions, and
industrial wastewater effluent along the Nile River (Figure 6a).

3.3.2. Pollution Indices (PIs)

The PIs are regarded as an effective method to assess the appropriateness of water
for drinking purposes with respect to metals [65]. The MI results for the collected water
sampling points varied from 1.81 to 29.00, with a mean value of 8.48, which revealed that
59% of samples were seriously affected by metals, about 35% of samples were strongly
affected, and only 6% of samples were moderately affected. According to the spatial
variation map of MI values, surface water samples from the Damietta branch were more
affected by metals than those from the Rosetta branch, especially in the dissected points
with drainage (Figure 6b). According to the MI findings, water from the majority of sample
collection points along the Nile River was not suitable for potable use and should be
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treated before drinking, particularly along the Damietta branch, as a result of poor drainage
systems and human activities [13,92].
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According to the categorization of PI levels, the PI values indicated that the water
collection points were not affected by Ba, Cr, Cu, Mn, Mo, Ni and Zn (PI > 1.0), but
moderately affected by Fe (PI = 4.01) and strongly affected by Al (PI = 9.43), as presented in
Table 6.

Table 6. Evaluation of surface water quality based on the effects of metals across the Nile River.

Metals
PI

Class EffectRosetta
Branch

Damietta
Branch

Across Two
Branches

Al 8.624375702 9.4710604 9.43 V Seriously affected
Ba 0.134199892 0.1317247 0.13 I No effect
Cr 0.151713546 0.0370135 0.14 I No effect
Cu 0.006676498 0.0014502 0.01 I No effect
Fe 3.797288572 4.0166667 4.02 IV Moderately affected
Mn 0.790220381 0.5190703 0.77 I No effect
Mo 0.029364007 0.2354436 0.23 I No effect
Ni 0.481047035 0.9606389 0.92 I No effect
Zn 0.006997242 0.005485 0.01 I No effect

The high Fe loading may be related to soil–water interactions, whereas the high Al
loading could be linked to industrial activity and poor sanitation infrastructure. Spatial
distribution maps of PI values revealed the deterioration of surface water quality for
drinking near areas of intensive human activities along the Rosetta and Damietta branches,
which were influenced by metals, according to the integration between DWQI and MI.
Therefore, surface water quality in the examined region is deteriorating as a result of rising
levels of swept-out pollutants discharged into the Nile River from various drainage sources.

3.4. Multivariate Statistical Analysis for Physicochemical Parameters

By combining the independent dataset into a collection of variables, CA and PCA
were applied to discover the sources of variations in water quality (Figure 6).
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3.4.1. Cluster Analysis (CA)

The CA findings for the physicochemical parameters indicated three types of clustering
(Figure 7a). For example, TDS was in a single cluster (Cluster 1), while HCO3

2 and Cl−

were in another cluster (Cluster II), and K+, Ca2+, Mg2+, Na+, SO4
2−HCO3

2−, CO3
2− and

NO3
− were in different cluster (Cluster III). Based on the CA of major ions, surface water

samples from the examined areas were classified by Ca2+ and Na+ as the dominant cations,
while HCO3

2− and SO4
2− were the dominant anions (Figure 7a). Moreover, the high Ca2+\

content suggested water in the initial stage of evolution, which indicated the release of Ca2+

by weathering of carbonate minerals, while the high HCO3
2− and Cl− contents reflected

meteoric water type. The CA results are in agreement with the results provided by the Piper
diagram, which reflected the effects of carbonate weathering and reverse ion exchange
processes that were also reported in the Gibbs and Chadha diagrams.
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The CA results for trace elements and metals indicated two types of clustering
(Figure 7b), with Al and Fe included in the same cluster (Cluster I), and Ba, Cr, Cu, Mn,
Mo, Ni and Zn in another cluster (Cluster II). Accordingly, the high contents of Al and Fe
reflected water–soil interaction and human activities.

3.4.2. Principal Component Analysis (PCA)

PCA findings for the physicochemical properties of the main ions in the obtained
surface water samples are shown in Figure 8a. According to positive loading combinations,
all cations and anions were grouped together. Large positive loadings of TDS, Ca2+, K+,
SO4

2−, HCO3
2−, and CO3

2− prevailed over PC1 in explaining 40.761% of total variance,
while, PC1 explained 17.847% of total variance, in which loadings of Na+, Mg2+, Cl−, and
NO3

− prevailed (Figure 8a). The existence of nine important basic principal components in
the PCA analyses revealed the effect of significant ions on water quality in the investigated
regions. Therefore, PC1 presented maximum loadings of Ca2+ and HCO3

2−, while PC2
presented maximum loadings of Na+ and Cl−. These findings could be attributing to
carbonate weathering, evaporation and reverse ion exchange processes.
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The PCA was performed for metals in the collected surface water samples and ex-
plained 53.826% (PC1) and 20.375% (PC2) of the total variation between metals (Figure 8b).
Therefore, PC1 presented high loadings of Al, Fe, Ba, Cr, Cu, Mn, and Zn, while PC2
presented high loadings of Mo, and Ni as a result of the effect of metals on surface water
quality (Figure 8b). The PCA analysis of surface water samples for major ions and metals
revealed lithogenic sources and human activities, respectively. As a consequence, due
to the high loadings of Al, Fe, Ba, Cr, Cu, Mn, and Zn, these findings may be related to
soil–water interaction and industrial and other anthropogenic practices [87,93,94]. There
was high agreement between PCA and MI, indicating that most of the surface water points
in the research region had bad water attributable to metal pollution. Therefore, the PCA
and PI results reflected the lithogenic and economic sources of pollution that have emerged
in recent years along the Rosetta and Damietta branches.

3.5. Performance of Different SRIs in the Assessment of Water Quality Indicators

Several studies have explored the effectiveness of space-based optical remote sensing
devices for water quality assessment. While the majority only looked at physiochemical
and biological water quality metrics such as Turb., chlorophyll-a and TSS and dissolved
organic matter concentrations [49,52,55,95–98], they provided little information about using
proximate hyperspectral sensing to estimate the DWQI and MI of surface water. The newly
derived SRIs were developed using 2-D correlogram maps constructed from spectral
reflectance of two Nile River branches. The values of the coefficient of determination (R2)
for the associations between records of DWQI, MI, Turb., and TSS and SRIs produced
from all conceivable combinations of binary dual wavelengths in the whole spectral range
(302–1148 nm) were displayed on these maps (Figure 9). The greatest R2 hotspot area
revealed the best relationships between SRIs and water quality indices. The selected SRIs in
Table 3 were established using spectral data of water quality indicators in the VIS at several
bands (VIS range: 470, 490, 514,540, 530, 560, 570, 580, 584, 590, 608, 620, 628, 640, 670, 686,
and 698 nm) and in the NIR range (700, 704, 717, 720, 730, 760, 776,780, and 850 nm).
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Figure 9. Correlation matrices show R2 values for the spectra’s potential dull wavelength combina-
tions in the spectrum from 302 to 1148 nm with drinking water quality index (DWQI), metal index
(MI), turbidity (Turb.) and total suspended solids (TSS). R2 values were calculated across all pooled
data (n = 51).

This finding emphasizes the relevance of the VIS and NIR spectrum wavelength ranges
in evaluating WQIs of the Nile River. In line with expectations, the qualities of the emissions
reflected from the water components in distinct bands of the light spectrum were affected
by differences in the physical and chemical constituents of water utilized to analyze and
manage the quality of surface water. Several studies discovered that the VIS, red-edge, and
NIR regions of the light spectrum have greater correlations with distinct physicochemical
water components in different water bodies than other spectral regions, implying that these
spectral regions might be utilized to measure water quality characteristics [47,57,78,99–103].

Table 7 shows the relationships of DWQI, MI, Turb., and TSS with the SRIs of the water
samples from Nile River branches. In general, all published and newly derived indices
showed the same pattern of relationships with all WQIs for each Nile River branch and
their combinations. All indices exhibited significant relationships with these indices. The
newly derived SRIs presented higher R2 with DWQI, MI, Turb., and TSS compared with
published indices. The new SRIs extracted from the VIS and NIR regions exhibited strong
relationships with DWQI and MI and moderate to strong relationships with Turb. and TSS
for each branch of the Nile River and their combination. The R2 for relationships between
the newly derived SRIs and WQIs varied from 0.65 to 0.82 for DWQI, from 0.64 to 0.83 for
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MI, from 0.41 to 0.60 for Turb., and from 0.35 to 0.79 for TSS. The R2 for relationships
between the published SRIs and QWIs varied from 0.41 to 0.80 for DWQI, from 0.41 to
0.85 for MI, from 0.19 to 0.74 for Turb., and from 0.29 to 0.79 for TSS. With data from the
samples collected along the two branches combined, the SRI extracted from red, red-edge
and green regions showed the highest R2 for WQIs. For example, the published index
of green/red presented the highest values of R2 = 0.70, 54, and 0.54 for DWQI, Turb.,
and TSS, respectively, as well as RSI670,470 presented R2 = 0.73 for MI. The new index of
RSI584,628 presented the highest values of R2 = 0.72, 0.57, and 0.57 for DWQI, Turb., and
TSS, respectively, as well as RSI730,540 presented R2 = 0.73 for MI. Other studies such as
Seyhan et al. [100] found that in the range of 400–900 nm, the spectral signatures were
favorable for water quality assessment. Additionally, Elhag et al. [57] found that water Turb.
measurements revealed a strong relationship with the calculated normalized difference in
the Turb. index, with an R2 of 0.94. In addition, Wang et al. [99] found that DWQI could be
easily assessed at 700–720 nm and 1070 nm of the peak. They also discovered that spectral
curves for various water samples revealed numerous prominent, deep absorption regions
at 700, 750, 950, and 980 nm and weak absorption regions at 452, 703, and 850 nm.

Table 7. R2 for the linear association between SRIs and drinking water quality index (DWQI), metal
index (MI), turbidity (Turb.) and total suspended solids (TSS). Estimates were calculated for Rosetta
branch (n = 21), Damietta branch (n = 30) and across all data (n = 51).

Rosetta Branch Damietta Branch Rosetta and Damietta Branches

DWQI MI Turb. TSS DWQI MI Turb. TSS DWQI MI Turb. TSS

Blue/Red 0.63 0.66 0.59 0.64 0.68 0.51 0.44 0.43 0.58 0.57 0.48 0.46
Green/Red 0.76 0.79 0.64 0.72 0.77 0.64 0.54 0.56 0.70 0.70 0.54 0.54
NIR/Red 0.41 0.41 0.19 0.29 0.79 0.74 0.70 0.79 0.53 0.55 0.37 0.40
NDI704,698 0.60 0.61 0.36 0.49 0.75 0.70 0.58 0.68 0.58 0.65 0.46 0.52
RSI717,630 0.67 0.70 0.45 0.54 0.74 0.73 0.60 0.71 0.64 0.71 0.49 0.53
RSI620,608 0.80 0.81 0.74 0.75 0.64 0.62 0.46 0.50 0.69 0.70 0.53 0.51
RSI670,470 0.76 0.79 0.62 0.66 0.76 0.70 0.54 0.59 0.69 0.73 0.54 0.53
RSI806,670 0.48 0.49 0.24 0.35 0.74 0.76 0.64 0.76 0.53 0.61 0.40 0.46
RSI850,550 0.61 0.62 0.35 0.45 0.80 0.85 0.70 0.83 0.64 0.72 0.48 0.52
RSI700,670 0.54 0.57 0.37 0.44 0.60 0.53 0.41 0.50 0.48 0.54 0.39 0.43
RSI584,628 0.79 0.82 0.66 0.73 0.77 0.70 0.58 0.61 0.72 0.75 0.57 0.57
RSI530,680 0.77 0.79 0.65 0.73 0.76 0.64 0.53 0.56 0.71 0.71 0.54 0.54
RSI640,590 0.77 0.79 0.60 0.68 0.79 0.73 0.60 0.65 0.71 0.75 0.56 0.57
RSI760,560 0.65 0.67 0.40 0.50 0.79 0.83 0.67 0.79 0.66 0.74 0.49 0.54
RSI720,580 0.72 0.75 0.50 0.59 0.79 0.79 0.63 0.73 0.69 0.76 0.53 0.56
RSI776,490 0.73 0.75 0.50 0.57 0.81 0.82 0.63 0.74 0.69 0.78 0.53 0.56
RSI686,570 0.79 0.82 0.61 0.68 0.74 0.73 0.57 0.65 0.72 0.77 0.54 0.55
RSI780,514 0.71 0.73 0.47 0.56 0.81 0.82 0.64 0.75 0.69 0.77 0.53 0.56
RSI730,540 0.73 0.75 0.50 0.59 0.82 0.81 0.64 0.74 0.71 0.78 0.53 0.56
RSI590,540 0.76 0.79 0.61 0.69 0.79 0.70 0.59 0.63 0.71 0.74 0.56 0.56

All R2 values in Table 7 are significant.

3.6. Prediction of Different WQIs Using PLSR Models

Despite the fact that SRIs are a simple method of WQI evaluation that may be used to
construct ground-based lightweight spectral instruments for estimating and regulating wa-
ter quality on a broad scale in a timely and economical manner, each SRI is only concerned
with two or three band combinations. This makes developing effective SRIs difficult for
estimating WQIs under a variety of potentially confusing variables, such as considerable
variations in water component quantities, as well as their impact on the saturation level
of the water quality measurements under investigation. For that reason, in this study,
the PLSR model was applied to estimate water quality indicators including several SRIs as
input variables.
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Table 8 summarizes the determination coefficient (R2) values and the RMSE of the
PLSR models’ calibration (Cal.) and validation (Val.) datasets to predict DWQI, MI, Turb.
and TSS based on SRIs in Table 4. The performance of the PLSR calibration models in
predicting the four surface indicators was based on pooled data across the two branches of
the Nile River (n = 51). Following that, the calibration equations of the models were applied
to predict DWQI, MI, Turb. and TSS of the Rosetta branch (n = 21) and Damietta branch
(n = 30). In both models of the Cal. and Val. datasets, the PLSR model produced a more
accurate assessment of DWQI and MI based on values of R2 (Table 8) and slope (Figure 10)
than of other factors such as Turb. and TSS. In Val. datasets, the PLSR model generated
strong estimates for the DWQI and MI with R2 of 0.82 and 0.79 and RMSE of 20.82 and 2.77,
respectively, for the Rosetta branch and with R2 of 0.93 and 0.78 and RMSE of 11.67 and
2.22, respectively, for the Damietta branch. However the PLSR model provided moderate
estimation performance for Turb. and TSS in the Val. datasets, with R2 of 0.55 and 0.62 and
RMSE of 1.18 and 6.60, respectively, for the Rosetta branch and with R2 of 0.62 and 0.70
and RMSE of 0.89 and 4.04, respectively, for the Damietta branch. The results showed that
the PLSR based on several SRIs could be used to predict WQIs better than using two bands.
Wang et al. [77] discovered that detecting TSS in moderately clear water using a single band
or two waveband combinations is difficult. However, in turbid water bodies, a combination
of three wavebands proved successful in estimating Chl-a levels [69,70]. Wang et al. [63]
discovered that PLSR models with a large number of wavebands were more precise in
predicting inland water quality indicators than models with only one or two wavebands.
Once again, PLSR models built on different SRIs can be utilized as a unified approach for
remote measurement of WQIs in water quality evaluations.

Table 8. Calibration and validation models between the observed and predicted values (R2 and
RMSE) based on PLSR. These models were calibrated using a dataset for two Nile River branches.
Following that, the calibration equations for various models were used to predict drinking water
quality index (DWQI), metal index (MI), turbidity (Turb.) and total suspended solids (TSS) for
each branch.

Parameters
Calibration Dataset from Two River Branches Validation Dataset for

Rosetta Branch
Validation Dataset for

Damietta Branch

ONLFs Equation R2 RMSE R2 RMSE R2 RMSE

DWQI 6 y = 0.8459x + 14.707 0.85 *** 16.32 0.82 *** 20.82 0.93 *** 11.67
MI 1 y = 0.7726x + 1.7905 0.77 *** 2.47 0.78 *** 2.77 0.78 *** 2.22

Turb. 1 y = 0.5484x + 1.3048 0.55 *** 1.03 0.55 *** 1.18 0.62 *** 0.89
TSS 1 y = 0.5661x + 8.0024 0.57 *** 5.31 0.62 *** 6.60 0.70 *** 4.04

*** indicate significant at the 0.001 probability level. ONLFs is the number of latent factors.
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Figure 10. Association between observed and predicted validation models for drinking water quality
index (DWQI), metal index (MI), turbidity (Turb.) and total suspended solids (TSS) for each river
branch using the PLSR based on selected SRIs. Statistical analysis including R2, p-value and RMSE is
shown in Table 8.

4. Conclusions

This research proposed comprehensive methodologies supported by SRIs, CA, PCA,
and PLSR for assessing, in terms of physicochemical properties, the acceptability of surface
water quality for drinking. Under the stresses of evaporation and the reverse ion exchange
processes, surface water samples in the examined region were classified as Ca-HCO3 and
mixed Ca-Mg-Cl-SO4 water types, which were seriously affected by Al and moderately
affected by Fe due to soil–water interactions and industrial activities. According to the
WQI results, the degradation in water quality may be linked to poor drainage systems,
discharges from huge tracts of agricultural regions, industrial wastewater emissions, and a
poor sanitation infrastructure along the Nile River. With combined data from two surface
water branches, the SRI extracted from red, red-edge and green regions showed the highest
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R2 with four indices. For example, the published index of green/red presented the highest
R2 = 0.70, 54, 0.54 for DWQI, Turb. and TSS, respectively, as well as RSI670,470 presented
R2 = 0.73 for MI. The newly derived index of RSI584,628 presented the highest R2 = 0.72,
0.57and 0.57 for DWQI, Turb. and TSS, respectively, as well as RSI730,540 presented
R2 = 0.73 for MI. PLSR models based on several SRIs could enhance the estimation of
numerous WQIs and could be employed as a unified approach for remote component
concentration measurements in water quality assessments. Therefore, the integration of
WQIs, SRIs, multivariate modeling, and GIS techniques is beneficial and can provide us
with a comprehensive image of surface water suitability for drinking and its governing
mechanisms.
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