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Appreciating interconnectivity between habitats is key to blue carbon management 

 

We welcome the recent synthesis by Howard et al. (2017), which drew attention to the role of 

marine systems and natural carbon sequestration in the oceans as a fundamental aspect of 

climate-change mitigation. The importance of long-term carbon storage in marine habitats (ie 

“blue carbon”) is rapidly gaining recognition (Figure 1a) and is increasingly a focus of 

national and international attempts to mitigate rising atmospheric emissions of carbon 

dioxide. However, effectively managing blue carbon requires an appreciation of the inherent 

connectivity between marine populations and habitats. More so than their terrestrial 

counterparts, marine ecosystems are “open”, with high rates of transfer of energy, matter, 

genetic material, and species across regional seascapes (Kinlan and Gaines 2003). We 

suggest that policy frameworks, and the science underpinning them, should focus not only on 

carbon sink habitats but also on carbon source habitats, which play critical roles in marine 

carbon cycling and natural carbon sequestration in the oceans. Howard et al. (2017) 

concluded that certain habitats and taxa (eg kelp forests, large vertebrates) are “unimportant” 

in natural carbon sequestration, which we argue is an oversimplification that fails to account 

for not only the magnitude of carbon transfer between living components of the cycle but also 

the interconnectedness of the highly dynamic and open marine environment. Crucially, 

developing carbon budgets for habitats in isolation – without considering their connectivity 

and functioning as carbon “fixers”, “donors”, and “recipients” – is neither representative of 

marine ecosystems, nor a useful approach for prioritizing management. Here, we highlight 

the importance of carbon transfer between habitats, which is not currently recognized within 

policy frameworks, through two pertinent and widespread processes. 

First, marine macroalgae generally exhibit very high rates of growth and primary 

productivity and are likely to play key roles in carbon cycling as fixers and donors. Kelp 

forests are particularly critical, given that they represent some of the most productive habitats 

on Earth and are geographically widespread across temperate regions in both hemispheres 

(Mann 1973; Teagle et al. 2017). As noted by Howard et al. (2017), kelp forests support high 

standing stocks of carbon (Smale et al. 2016; Figure 1b), but as the turnover of material is 

generally rapid they do not store carbon in situ at timescales relevant for sequestration (note: 

some kelp species persist for >15 years [Kain 1979], not the ~1 year stated by Howard et al. 

[2017]). Furthermore, the vast majority (>80%) of kelp-derived organic matter is typically 

exported from the kelp forest, rather than being consumed or remineralized within the source 

habitat (Krumhansl and Scheibling 2012). Kelp-derived matter may be transported many 

kilometers from its source (Vetter and Dayton 1998; Vanderklift and Wernberg 2008; 

Krause-Jensen and Duarte 2016) and eventually accumulate in blue carbon habitats with the 

capacity to bury organic matter, such as seagrass meadows and deep-sea sediments (Hill et al. 

2015; Krause-Jensen and Duarte 2016; Figure 1c). Allochthonous carbon (that is, organic 

matter which originated some distance from its current position) derived from kelp 

populations may be trapped, buried, and stored belowground, thereby substantially 

contributing to the amount of carbon fixed and stored in situ. Recent evidence suggests that 

macroalgae may be important carbon donors due to their high rates of biomass accumulation 

and export, extensive geographical distributions, and the chemical and physical properties of 

macroalgal detritus (Hill et al. 2015). Although more research is needed to quantify burial 

rates and residence times, kelp and other macroalgae play key roles in carbon sequestration 

(Krause-Jensen and Duarte 2016) and should be considered in the management and 

conservation of blue carbon ecosystem services. 

Second, marine vertebrates play a major role in the removal of carbon from surface 

waters and its transfer to and sequestration in the deep ocean. Although some marine 

vertebrate biomass is recycled and respired over short timescales (Howard et al. 2017), once 



exported to the deep ocean it remains sequestered for 1000-year timescales. Mesopelagic fish 

respire ~10% of global surface primary production at depth by feeding in shallow waters and 

migrating to deep water, accounting for ~15% of total carbon export (reviewed by Drazen 

and Sutton 2017). Deep-sea demersal fish also sequester carbon by consuming vertically 

migrating plankton. On the UK–Irish continental margin alone, this mechanism prevents an 

estimated 3.5–6.2 × 10
5
 metric tons of carbon per year (t C yr

–1
) from recycling back into the 

atmosphere (Trueman et al. 2014). Passive export occurs through the sinking of dead 

carcasses: whale detritus (Figure 1d) exports 2.7 × 10
5
 t C yr

–1
 globally (Pershing et al. 

2010), and cumulative vertebrate carcass export accounts for 4–11% of particulate carbon 

flux to the deep sea (Higgs et al. 2014). The deposition of carcasses into deep-sea habitats 

markedly increases the organic carbon content of surrounding sediments and therefore 

represents a fundamental process for local carbon sequestration. This “biological pump” of 

carbon from surface waters to the deep ocean is currently operating at reduced efficiency 

because of anthropogenic changes to the size structure of marine vertebrate populations. 

Policies aimed at rebuilding stocks of marine vertebrates can therefore have a positive impact 

on carbon sequestration at a global scale and should be valued accordingly (eg Martin et al. 

2016). 

We commend Howard et al. (2017) for promoting the conservation of marine carbon 

stores as a promising aspect of climate-change mitigation. We also appreciate that their 

review focused on carbon sink habitats, which fall within existing management and policy 

frameworks. We suggest, however, that scientists, managers, and policy makers should 

consider carbon source habitats as well as sinks in future assessments of the importance of 

marine systems in natural carbon sequestration. By managing and protecting effective and 

widespread carbon donors, such as kelp forests and large vertebrates, the magnitude of 

carbon capture and transfer, as well as the efficiency of assimilation into storage habitats, will 

be maintained or even enhanced. For example, carbon crediting schemes currently exclude 

allochthonous carbon from their evaluations, despite emerging evidence of the importance of 

externally sourced organic matter for natural carbon sequestration. As the wider 

understanding of coastal carbon cycling advances, policy frameworks such as the United 

Nations Framework Convention on Climate Change (UNFCCC) should evolve to incorporate 

processes that promote natural carbon sequestration by, for instance, acknowledging the role 

of carbon donors in crediting and management. More broadly, evaluating the role of marine 

systems in climate-change mitigation can be meaningful and effective only through a wider 

appreciation of the interconnectivity and interactions between marine habitats and taxa, rather 

than by adopting a simpler approach of carbon budgeting habitats in isolation in order to 

prioritize their management. 
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Figure 1. (a) The number of scientific articles focusing on blue carbon has greatly increased 

in recent years (publications per year with blue carbon in the title and pertaining to inshore 

carbon cycles; Google Scholar search conducted on 24 Feb 2016). (b) Kelp forests are very 

productive and represent extensive coastal vegetated habitats. (c) The majority of kelp-

derived matter is exported and may accumulate within blue carbon recipient habitats such as 

seagrass meadows. (d) Sinking vertebrate carcasses represent an important flow of 

particulate carbon to deep-sea sedimentary habitats. 

  



 


