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Abstract— Motion and path-planning algorithms often use
complex cost functions for both global navigation and local
smoothing of trajectories. Obtaining good results typically
requires carefully hand-engineering the trade-offs between
different terms in the cost function. In practice, it is often much
easier to demonstrate a few good trajectories. In this paper, we
describe an efficient algorithm which—when given access to a
few trajectory demonstrations—can automatically infer good
trade-offs between the different costs. In our experiments, we
apply our algorithm to the problem of navigating a robotic car
in a parking lot.

I. INTRODUCTION

Path-planning algorithms often use complex cost functions

(or potentials) for global navigation and local smoothing of

trajectories [2], [8], [11], [9], [5], [3]. In practice, when

designing a cost function for motion planning, we often

have a large number of desiderata that contribute to possibly

conflicting terms in the potential. For example, we might care

about path smoothness, proximity to obstacles, maximum

curvature, lane-keeping, etc. Moreover, we might not know

the exact desired functional form for each of the desiderata,

and hence include several potential-field terms corresponding

to each of the desiderata. To completely specify the potential

function for our robot motion-planning problem, we need to

quantify exactly how we want to balance all these terms. In

practice, this can be highly non-trivial, and it often requires a

significant amount of hand-engineering to obtain the desired

motion-planning results. At the same time, it is often easy to

demonstrate a few good driving trajectories. Such examples

inherently contain information about the desired trade-off.

In this paper we describe how the apprenticeship-learning

techniques presented in [1] allow us to learn the trade-

off between the different potential terms from trajectory

demonstrations—thus alleviating the need for extensive

hand-engineering. We also describe how prior information

about the weighting of the potential-field terms can be

incorporated into the learning algorithm.

In our experiments, we consider the problem of navigating

a robotic car in a parking lot. Our path-planning algorithm

is based on the algorithm used by the Stanford racing

team in the DARPA Urban Challenge [7]. For the purposes

of this work, we have extended the existing algorithm by

introducing several new cost potentials, which allow us to

model a wide range of natural driving styles. The planned
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trajectories greatly depend on the choice of the trade-off

between the various potential-function terms. We test our

algorithm by observing a human drive the car in a parking

lot between various starting points and destinations. We then

evaluate how accurately our algorithm plans a previously

unseen trajectory relative to the trajectory followed by the

human driver for the same task.

The remainder of this paper is organized as follows:

Section II covers preliminaries and notation; Section III

describes our algorithm; Section IV describes the parking lot

navigation problem setup and the path-planning algorithm;

Section V describes our experimental results; Section VI con-

cludes with a discussion of our contribution and limitations

and an outlook towards future work.

II. PRELIMINARIES AND NOTATION

A. Path-Planning as Optimization

We let S denote the state space of the robot. A trajectory

or path s corresponds to a sequence of states. We formulate

the path-planning problem as the problem of minimizing a

potential over the path. We denote the potential-field terms

by {φk(·)}p
k=1. We let w ∈ R

p denote the vector of weights

associated with these potential-field terms. The total potential

field Φ(s) for a path s is then given by

Φ(s) =
∑p

k=1 wkφk(s).

Given a start state s0 and a goal state sG, the motion planning

problem is given by:

mins∈S Φ(s). (1)

Here S denotes the set of allowable state sequences. To be

an allowable state sequence, the path s needs to start at the

start state s0 and finish at the goal state sG. There might also

be other requirements such as, e.g., sequential states can be

at most a certain distance apart.

In practice, many of the potential-field terms can be

decomposed as a sum of potential-field terms, each of which

only depends on the state at a single time t. However, such a

decomposition is not required for the algorithm we present,

and it will not hold for most of the potential terms we use

for path planning.

We denote a potential-field motion planning problem by

the tuple M = (S, s0, sG, {φk(·)}p
k=1, w), and we denote a

motion planning problem minus the weight vector w by M̄ .

In general, the terms {φk(·)}p
k=1 define a complex po-

tential, leading to a non-linear multi-modal optimization

landscape in Eqn. (1).



The optimization algorithms therefore tend to be problem

specific and vary greatly, depending on the functional form

of the various potential-field terms {φk(·)}p
k=1. We describe

the exact potential used in our problem and our solution

algorithm in Section IV.

B. Apprenticeship Learning and Potential Fields

In the apprenticeship-learning setting, we are given a set

of m motion planning problems without the weight vector

{M̄ (i)}m
i=1, and a set of corresponding expert demonstration

trajectories, denoted by {sE
(i)}m

i=1.

Throughout, we let µk({s(i)}) =
∑m

i=1 φk(s(i)). Thus µk

is a vector with the cumulative value over all trajectories

{s(i)} of each of the potential field terms φk.

III. ALGORITHM

In this section, we describe the adaptation of the appren-

ticeship learning algorithm from [1], which was originally

formulated in the Markov decision process (MDP) setting,

to the potential-field motion-planning setting. In essence the

algorithm in [1] solves an inverse optimization problem:

given the expert demonstrations, it finds a set of weights

for the reward function (in our setting, for the potential

function) such that the optimal policy (path) with respect

to the resulting reward function (potential function) is close

to the expert’s policy (path). Here closeness is measured

by closeness between the cumulative values of the potential

functions for the expert and for the policy (path). For

example, if the lengths of the forward driving segments and

the backward driving segments were the only two potential

field terms, then two paths (going from the same starting

point to the same goal point) are considered close when

they have a similar amount of forward driving and a similar

amount of backward driving.

A straightforward adaptation of the apprenticeship-

learning algorithm in [1] gives us the following algorithm

to learn the potential-term weights from demonstrations:

Our algorithm takes as input: {M̄ (i)}m
i=1, {s

(i)
E
}m

i=1 and,

optionally, a (convex) set W , which describes our prior

knowledge on the weight vector w. It then proceeds as

follows:1

1) Randomly pick a weight vector w(0). Set j = 0.

2) Solve the potential-field motion-planning problems for

the current weight vector w(j), i.e., find

s
(i) = arg mins Φ

(i)

w(j)(s).

3) Compute the cumulative values of the potentials:

µ
(j)
k =

∑m
i=1 φk(s(i))

4) Find the next estimate for the weight vector w(j+1)

as the solution to the following convex optimization

1The algorithm presented corresponds closely to the max-margin version
of [1].

problem:

min
w,x

‖w‖2
2

s.t. µ =
∑

j

xjµ
(j); x ≥ 0;

∑

j

xj = 1; w ≥ 0

w ≥ µ − µE ; w ∈ W

(2)

If ‖w‖ ≤ ǫ for some desired accuracy ǫ, then exit,

and return x, {w(0), µ(0), . . . , w(j), µ(j)}. Otherwise,

set j = j + 1, set w(j) = w
‖w‖ and go to Step 2.

Crudely speaking, the algorithm alternates between

(smartly) “guessing” a new weight vector, and solving the

motion planning problems for this weight vector. The for-

mer problem merely requires solving a convex optimization

problem, which can be done efficiently (see, e.g., [4] for

more details on convex optimization).

Note that our formulation for guessing the new weight

vector is a variation on the formulation used in [1]. In

particular, in [1], the last three constraints are not used,

but replaced with a single constraint w = µ − µE . The

constraints w ≥ 0, w ≥ µ − µE encode the fact that we

know the weights are positive, and the contributions of the

various potential terms to the distance are non-zero only

when the expert is outperforming the current best path µ(j).2

The constraint w ∈ W allows us to encode additional prior

information. For example, in our experiments we encode

the prior information that the weight for the potential term

corresponding to backward driving has to be at least as high

as the one for forward driving.

When the algorithm exits, we have that ‖µ − µE‖ ≤
‖w‖ ≤ ǫ. Hence, when stochastically choosing (according

to x) between the paths found throughout the iterations of

the algorithm, we can perform as well as the expert up to

some accuracy ǫ. To generalize to a new setting, we can

correspondingly stochastically choose between the weight

vectors {w(0), . . . , w(j)} according to x, and then solve

the resulting path-planning problem. In practice, it is often

undesirable to stochastically mix. Instead, we could inspect

the paths obtained for the vectors w(j) for which x(j) > 0.

From convex analysis (see, e.g., [12]) we are guarenteed that

the optimization problem in Step 4 has a solution with at

most p + 1 non-zero entries; we also have that at least one

of them performs as well as the expert.3 See [1] for details.

IV. PATH PLANNING

An algorithm capable of generating human-like trajecto-

ries in parking lots must model a cost that takes into account

a wide variety of factors such as the following:

2Similar to the variation on [1] presented in [13], this allows us to
outperform the expert. By contrast in [1] the sign of each potential term
is not know, hence the algorithm learns to “match” the expert’s behaviour,
rather than learning to perform equally well or better.

3By contrast, if one were to find a good weight vector by gridding the
p dimensional weight vector space, one would end up having a number of
trajectories that grows exponentially in the dimensionality p.



• The total length of the trajectory.

• The length of trajectory segments driven in reverse.

• The number of times the direction of motion switches

from forward to reverse.

• The proximity of the trajectory to obstacles.

• A measure of smoothness (or aggregate curvature) of

the trajectory.

• A measure of distance between the trajectory and the

driving lanes in the environment.

• A measure of alignment of the trajectory with the

principal driving directions of the parking lot.

The feature corresponding to the distance between the

trajectory and the driving lanes is needed to differentiate

between drivers that tend to cut across open space in parking

lots and those that stay in the appropriate lane until they reach

their goal. A network of driving lanes for a typical parking

lot is shown in Figure 1. We assume that such a graph is

provided as input to the planner.

This feature corresponding to the alignment of the tra-

jectory with the principal driving directions is needed to

differentiate between drivers that cut corners to minimize

curvature and drivers that take wider turns and prefer to

drive along the main driving directions of a parking lot. Such

principal driving directions can be automatically computed

from sensor data [6]; in this work, we use the road network

(as in Figure 1) to define such preferred directions of motion.

Let us define the kinematic state of the vehicle as 〈x, θ, d〉,
where x = 〈x, y〉 is the position of the vehicle, θ is its

orientation, and δ = {0, 1} determines the direction of

motion: forward (δ = 0) or backwards (δ = 1). Further,

assume that the network of road lanes is given as a directed

graph G = 〈V,E〉, and let αE be the angle of edge E. Let

us define a distance between a point x and the graph G:

D(x,G) = min
E

D(E,x),

where D(E,x) is the 2D Euclidean distance between a point

and a line segment. Also, let us define a distance between

an oriented point 〈x, θ〉 and the graph G:

D(x, θ,G) = min
{E:|αE−θ|<αmin}

D(E,x),

i.e., the distance to the nearest edge whose angle is close—

within αmin—to the heading of the car θ.

Further, define an indicator function R(s), where R(s) =
1 if the car is on the road, i.e., the 2D euclidean distance

between xi and G is below a given threshold: R(s) = 1 ⇐⇒
D(x,G) < Droad.

Finally, let αi = α
(

arg minE(D(E,xi))
)

be the angle of

the edge E nearest to the trajectory point xi.

Fig. 1. A graph of driving lanes (G) in a parking lot.

The objective of the path planner is to minimize the fol-

lowing potential defined over a trajectory s = {〈xi, θi, δi〉}:4

wfwd

∑

i:i>1,δi=0

‖xi − xi−1‖+

wrev

∑

i:i>1,δi=1

‖xi − xi−1‖ + wsw

∑

i:δi 6=δi−1

1+

wroad

∑

i:R(si)=0

‖xi − xi−1‖ + wlane

∑

i

D(xi, θi,G)+

wdir

∑

i

sin2 (2(θi − αi)) + wcurv

∑

i>1,i<|s|

(∆xi+1 − ∆xi)
2,

(3)

where ∆xi = xi − xi−1. The terms above respectively

correspond to: 1) length of trajectory driven forward, 2)

length of trajectory drive in reverse, 3) number of times the

direction of motion switches, 4) length of trajectory driven

off-road, 5) an aggregate distance of the trajectory to the

road-lane graph, 6) a measure of misalignment of trajectory

and the principal directions of the parking lot, and 7) a

measure of smoothness of the trajectory.

The weights in Eqn. 3 define the weight vector w intro-

duced in Section II and are used in learning.

The path-planning problem defined above is a complex

continuous-coordinate optimization program with multiple

local minima. For computational reasons, we therefore follow

the two-phase approach described in [7]. The first phase

performs an approximate discrete global search that finds a

solution in a neighborhood of the global optimum; the second

phase then fine-tunes the solution in continuous coordinates.

A. Global Search

Our first phase uses a variant of A* search with a discrete

set of control actions, applied to the 4-dimensional kinematic

state of the vehicle defined above. As this phase uses a

4In practice, the potential will also contain terms corresponding to hard
constraints such as collision avoidance, minimum turning radius of the
vehicle, etc. Since these constraints must be satisfied regardless of driving
style, we fix their weights at large values (orders of magnitude higher than
other terms) and do not include them in learning. See a more thorough
description of the core of our path-planning algorithm [7] for details on
modeling and implementing such constraints in optimization.



highly discretized set of control actions, it cannot cleanly

accommodate the potential terms in Eqn. 3 that correspond

to local properties of the trajectory (smoothness, alignment).

As such, the first phase focuses on a subset of features that

affect global behavior. The local features are used in the

subsequent second phase of the optimization algorithm.

The main components that define the behavior of A* are

the cost of a partial solution and the cost-to-go heuristics.

The heuristics are described in [7]. The cost function is

defined by the terms of the potential in Eqn. 3 that cor-

respond to the global features with the following weights:

〈wfwd, wrev, wsw, wroad, wlane〉.
Due to coarse discretization used in our global search

and for computational reasons, we replace the continuous-

coordinate version of the lane-attraction potential with a

discrete version similar to the on-road potential. Let us define

an indicator function L(s) = 1 if the car is in the correct

lane, i.e., the distance between the (oriented) car and the

lane graph G is below a given threshold: L(s) = 1 ⇐⇒
D(x, θ,G) < Dlane.

The lane-keeping potential is approximated as follows:

w′
lane

∑

i:i>1,L(si)=0

‖xi − xi−1‖,

i.e., this term computes a (weighted) length of the path driven

out of lane.

B. Local Smoothing

For computational reasons, the global A* uses a highly

discretized set of control actions, leading to paths that are

suboptimal. The second phase of our algorithm improves

the quality of the solution by using conjugate-gradient, a

very efficient numerical continuous-coordinate optimization

technique.

The input to the smoother is the trajectory produced by A*

as defined in the previous section. Since the global behavior

of the trajectory is already determined, the global features of

the potential in Eqn. 3 are meaningless in the second phase

of our algorithm, since it only performs local adjustment.

The second phase therefore uses the potential terms

corresponding to the weights 〈wdir, wcurv, wlane〉, and the

optimization is performed using conjugate-gradient descent.

The implementation of conjugate-gradient requires a gradient

of the objective function, which can be computed analytically

for all of these terms.5.

C. Trajectory Examples

The features described above–in both phase I and phase

II—allow our path-planing algorithm to mimic a wide va-

riety of human driving styles, which can be attained by

different setting of the weights w. Figure 2 demonstrates

several representative examples of trajectories. In all of

the shown examples, the start and goal states—defined by

their respective locations and orientations 〈x, y, θ〉—are the

same; the difference is only in the settings of weights w =

5See [7] for more details about smoothing via conjugate gradient, as well
as computing the gradient of such potentials

〈wfwd, wrev, wsw, wroad, wlane, w
′
lane, wcurv〉. In this figure

and others the initial state is shown as a car outline, and the

goal state is s shaded rectangle.

In this figure and in the rest of the paper, we use the

following legend. Gray objects are obstacles; the initial state

of the car is denoted by a single rectangle; the goal state

is denoted by several concentric rectangles; the path’s x-y

coordinates are shown by a colored line with dots according

to the planner’s time granularity. Regularly spaced (in time),

we overlay a triangle over the path to show the car’s heading.

The colored dots are replaced by black dots whenever the car

is not in its lane (L(s) = 0). When the car goes “off-road”

(R(s) = 0), we use larger-sized black circles. The green

lines show the graph of driving lanes G.

Figure 2a corresponds to a setting of weights with a low

penalty for switching directions (wsw) and a low cost of

driving in reverse wrev). If we increase the penalty for

switching directions and for driving in reverse, we obtain the

path in Figure 2b, which takes a slightly longer route to the

goal, but avoids driving in reverse. Increasing the weight on

the alignment with principal directions of the parking (wdir)

leads to the path shown in Figure 2c, which chooses the same

global path, but is more aligned with the lanes in the parking

lot, although it still cuts across the row of parked cars. The

latter behavior can be controlled with the penalty for driving

off-road: a high setting of the corresponding weight (wroad)

results in the trajectory shown in Figure 2d, which stays on-

road. Notice that this path tends to not stay in the right lane;

a high setting to the corresponding weights (w′
lane, wlane)

pushes the trajectory closer to the right lane, as shown in

Figure 2e.

V. EXPERIMENTAL RESULTS

For our experimental evaluation, we used the Stanford

Racing Team’s robotic vehicle, Junior (Figure 3), which is

equipped with several sensors modalities (RADAR, LIDAR,

cameras) and a high-precision GPS+IMU system. (See [10]

for a detailed description of Junior.) For the purposes of

our experiments, the autonomous-driving capabilities of the

vehicle were not used, rather the car was driven by a human

to collect training data. During such data-collection runs, we

logged the messages from the pose-estimation GPS+IMU

system as well as the messages from the car’s 3D LIDAR,

which allowed us to later reproduce the exact obstacle maps

of the environment as well as the precise trajectories that

were driven.

A. Experiments

We asked a human driver to navigate a parking lot using

three very distinct driving styles:

• “Nice”: we tell the driver to drive in the right lane

whenever safely possible.

• “Sloppy”: we tell the driver it is okay to deviate from

the standard lanes. We also tell the driver to only use

forward driving.

• “Backward”: we allow the driver to drive backward, but

only when it makes for a shorter path to the goal.



(a) (b) (c) (d) (e)

Fig. 2. The trajectories produced by our path-planning algorithm—when initialized with different weights—can mimic a wide range of driving styles
with different global and local behavior.

Fig. 3. All data used in this work was gathered using the Stanford Racing
Team’s robotic vehicle, Junior. Junior is equipped with several LIDAR
and RADAR units, and a high-accuracy inertial measurement system. The
training data for the algorithm described in this paper was obtained by
manually driving Junior and recording it sensor readings. Picture provided
at url mentioned below because of paper-size limits.

For each driving style, we collected five demonstrations

and ran our learning algorithm five times: every time we

learn from four of the demonstrations, and then evaluate

performance on the left-out fifth demonstration. As the

planner decomposes into two phases, and the features used

in the two phases have no intersection, we run our algorithm

in two phases: first run it for the first-phase (global) planner,

then run it—using the weights learned in the first phase—

to learn the weights for the second phase. Typically our

algorithm converges to a good solution in 5 to 10 iterations.6

6As the planner is not optimal, it is possible for the planner to not find the
optimal path for a certain guessed reward function, then our algorithm can
only be shown to converge down to the accuracy of the planning algorithm.
In our experiments, our learning algorithm tends to find good optima fairly
consistently. In its full generality, the algorithm returns a set of weights,
rather than a single weight. As explained in more detail in [1], one of these
weights will enable one to perform as well as the expert. In our experiments,
it turned out to be typically sufficient to simply pick the set of weights
that resulted in the cumulative cost term counts to be closest to the expert
amongst all iterations. In fact, out of the 15 experiments, only for one did
this heuristic return a bad set of weights, and for this one we followed the
strict procedure of inspecting and picking the best.

Figures 4, 5, 6, 7, 8, 9 show the nice expert demonstra-

tions, the nice autonomous navigation results, the sloppy

expert demonstrations, the sloppy autonomous navigation re-

sults, the backward expert demonstrations, and the backward

autonomous navigations results respectively.

In these figures, we use the same markers on trajectories,

as defined previously in Section IV. Expert demonstrations

are shown in blue, while trajectories produced by our path

planner are shown in red.

Inspecting the figures, we note that the learned navigation

styles are very similar to the expert’s styles. For example,

whenever learning from a subset of four nice demonstratoins,

it learns to keep the right-lane whenever possible. Whenever

learning from a subset of four backward demonstrations, it

learns that backward driving is allowed to make a shortcut,

and successfully executes a shortcut on the left-out fifth

navigation task. When learning from the sloppy driver, it

successfully learns to make a shortcut through parking space

whenever applicable. Interestingly, we learn similarity at the

level of the cost terms. E.g., when learning to cut across, it

might cut across at a different geographical location than the

expert, since the geographical location of the shortcut does

not contribute to the cost function.

Table I gives a quantitative evaluation of our experiments.

For each of the 15 learning/testing experiments, we report

the cumulative values of the cost functions of the expert

and the learned planner on the training data, the values of

the cumulative values of the cost functions in testing, and

the learned weight vector. Inspecting the table, we note that

indeed, our algorithm finds a set of weights such that both

at training and test time the cumulative values of the cost

functions are close to those obtained by the expert. Looking

more closely at the weight functions learned, we observe the

relative weightings for different driving qualitatively matches

our intuition about these styles. For the nice driver the

penalty for going backward, off-lane, or off-road is much

higher than for the other two styles. The backward driving

styles has a cost for going backwards that is as low as the

cost for going forward. (Consistent with our constrains on



(a) (b) (c) (d) (e)

Fig. 4. “Nice” parking lot navigation driving: expert demonstrations. (See text for details.)

(a) (b) (c) (d) (e)

Fig. 5. “Nice” parking lot navigation driving: trajectories found by learning on four demonstrations, and testing on the fifth. (See text for details.)

(a) (b) (c) (d) (e)

Fig. 6. “Sloppy” parking lot navigation driving: expert demonstrations. (See text for details.)

(a) (b) (c) (d) (e)

Fig. 7. “Sloppy” parking lot navigation driving: trajectories found by learning on four demonstrations, and testing on the fifth. (See text for details.)

the weights: w ∈ W , which enforces that backward driving

is at least as expensive as forward driving. This captures

the fact we only want to learn about backward driving as

a way to make a shortcut, not as a default driving style.)



(a) (b) (c) (d) (e)

Fig. 8. “Backward” parking lot navigation driving: expert demonstrations. (See text for details.)

(a) (b) (c) (d) (e)

Fig. 9. “Backward” parking lot navigation driving: trajectories found by learning on four demonstrations, and testing on the fifth. (See text for details.)

Similar observations hold for the weights for other features.

We also note the weight vector entries are fairly consistent

over different training runs.

VI. DISCUSSION

Motion and path planning algorithms often rely on com-

plex potentials for global navigation and local smoothing

of trajectories. The trade-off between the different potential

field terms greatly affect the results obtained. In this paper,

we showed that we can efficiently learn a trade-off corre-

sponding to expert demonstrations. We applied our algorithm

to learn to navigate a parking lot similar to human drivers.
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TABLE I
DETAILED EXPERIMENTAL RESULTS. (SEE TEXT FOR DETAILS.)

Forward Backward Change Fw/Bw Off-Road Lane Smoothness Principal Directions Lane

Nice 1 µE (train) 160.8239 0 0 1.2500 9.0000 1.3263 51.6937 25.4831

µ (train) 155.3227 0 0 1.2500 9.2500 1.3549 49.8545 15.3663

µE (test) 140.7808 0 0 1.0000 7.0000 0.8323 40.2750 18.4281

µ (test) 136.9459 0 0 1.0000 6.0000 1.2000 38.7015 4.1304

w 1.0000 96.8481 2.4397 4.3915 24.3970 100.0000 1.3551 2.0000

Nice 2 µE (train) 165.4818 0 0 1.2500 8.2500 1.1612 47.4633 24.2449

µ (train) 160.8447 0 0 1.2500 6.7500 1.1530 43.8947 11.5113

µE (test) 122.1495 0 0 1.0000 10.0000 1.4927 57.1965 23.3810

µ (test) 183.9400 0 0 1.0000 10.0000 1.7211 56.1258 13.7980

w 1.0000 94.2028 2.3731 10.4415 31.7990 100.0000 2.0000 1.6676

Nice 3 µE (train) 155.8637 0 0 1.2500 8.2500 1.2611 50.5259 21.5989

µ (train) 150.6531 0 0 1.2500 9.5000 0.8679 41.9264 19.7580

µE (test) 160.6220 0 0 1.0000 10.0000 1.0928 44.9460 33.9650

µ (test) 155.7224 0 0 1.0000 6.0000 0.8218 43.6927 22.1467

w 1.0000 83.1622 2.3952 17.3654 52.6949 100.0000 2.0000 0.3615

Nice 4 µE (train) 150.7121 0 0 1.0000 9.2500 1.1807 52.9129 24.7445

µ (train) 142.6400 0 0 1.2500 9.2500 1.4102 49.3730 11.9980

µE (test) 181.2283 0 0 2.0000 6.0000 1.4146 35.3982 21.3825

µ (test) 185.3469 0 0 2.0000 5.0000 1.2997 34.1287 10.4651

w 1.0000 83.9357 1.9501 19.5009 50.7023 100.0000 2.0000 1.9808

Nice 5 µE (train) 151.1952 0 0 1.2500 8.2500 1.2081 44.4539 24.2892

µ (train) 147.0585 0 0 1.2500 9.7500 1.4697 41.9111 13.0692

µE (test) 179.2960 0 0 1.0000 10.0000 1.3050 69.2340 23.2038

µ (test) 175.4344 0 0 1.0000 5.0000 1.4308 55.8842 10.8906

w 1.0000 57.4956 11.5709 1.0000 80.9961 100.0000 2.0000 1.7391

Sloppy 1 µE (train) 61.7910 0 0 8.5000 29.5000 0.6136 41.0509 32.0760

µ (train) 61.8828 0 0 8.5000 19.0000 0.2527 33.8667 15.4792

µE (test) 78.7679 0 0 10.0000 28.0000 0.7656 35.5559 25.1425

µ (test) 71.9947 0 0 11.0000 27.0000 0.3433 54.2620 15.7552

w 1.0000 1.0000 0.0309 2.7503 0.0309 100.0000 0.1000 0.1000

Sloppy 2 µE (train) 68.8222 0 0 8.5000 28.2500 0.7353 40.1163 31.7714

µ (train) 66.3593 0 0 9.5000 19.7500 0.3750 22.4864 19.6623

µE (test) 50.6431 0 0 10.0000 33.0000 0.2789 39.2942 26.3608

µ (test) 53.8260 0 0 10.0000 25.0000 0.3635 22.3366 16.6148

w 1.0000 2.0000 2.0000 2.0000 0.0010 100.0000 2.0000 0.0200

Sloppy 3 µE (train) 65.1835 0 0 8.0000 28.2500 0.7469 39.1279 31.5402

µ (train) 63.5014 0 0 8.5000 19.5000 0.2923 37.5554 14.5943

µE (test) 65.1980 0 0 12.0000 33.0000 0.2324 43.2479 27.2857

µ (test) 65.2282 0 0 13.0000 26.0000 0.1277 41.8750 16.1057

w 1.0000 2.0000 2.0000 2.0000 0.0010 100.0000 0.1000 0.1000

Sloppy 4 µE (train) 63.2560 0 0 10.7500 31.7500 0.3912 39.3911 26.7967

µ (train) 62.2515 0 0 11.5000 24.5000 0.3775 23.2818 16.1718

µE (test) 72.9078 0 0 1.0000 19.0000 1.6552 42.1948 46.2597

µ (test) 70.4276 0 0 1.0000 7.0000 0.3539 19.1550 30.5769

w 1.0000 2.0000 2.0000 2.0000 0.0010 100.0000 2.0000 0.0200

Sloppy 5 µE (train) 66.8792 0 0 8.2500 28.2500 0.7330 40.0732 31.2622

µ (train) 65.2396 0 0 8.7500 21.0000 0.2883 36.9720 16.6293

µE (test) 58.4152 0 0 11.0000 33.0000 0.2879 39.4666 28.3976

µ (test) 58.2752 0 0 12.0000 20.0000 0.1436 44.2084 7.9657

w 1.0000 2.0000 2.0000 2.0000 0.0010 100.0000 0.1000 0.1000

Backward 1 µE (train) 19.9921 157.6950 1.5000 1.0000 5.7500 4.8092 16.2583 17.0732

µ (train) 26.6345 124.0380 2.7500 1.0000 8.5000 12.3666 49.9002 38.5879

µE (test) 6.1878 134.9460 2.0000 1.0000 5.0000 4.5689 7.6401 12.0153

µ (test) 12.8795 187.6520 4.0000 1.0000 7.0000 15.4634 63.7094 32.3790

w 1.0000 1.0000 0.1075 0.6447 2.0416 100.0000 2.0000 1.3070

Backward 2 µE (train) 16.5697 141.5435 1.5000 0.7500 5.2500 4.7577 14.4087 13.7456

µ (train) 23.2810 84.5415 2.2500 0.7500 12.0000 10.9245 36.4021 28.2000

µE (test) 19.8776 199.5520 2.0000 2.0000 7.0000 4.7747 15.0385 25.3258

µ (test) 28.8845 139.8750 4.0000 2.0000 19.0000 18.3982 100.6706 68.6810

w 1.0000 1.0000 0.4925 0.3612 1.3517 100.0000 2.0000 1.4534

Backward 3 µE (train) 14.4007 162.3215 1.7500 1.2500 5.5000 4.6427 12.2424 16.8130

µ (train) 26.7334 74.7647 5.0000 1.2500 16.0000 13.2958 89.2681 87.5404

µE (test) 28.5533 116.4400 1.0000 0 6.0000 5.2350 23.7037 13.0560

µ (test) 31.1568 89.0720 1.0000 0 11.0000 4.6965 28.0617 16.9520

w 1.0000 1.0000 0.0365 0.1459 0.9481 100.0000 2.0000 1.8103

Backward 4 µE (train) 14.9579 157.1987 1.5000 1.0000 5.5000 4.7558 13.1276 14.1942

µ (train) 23.5130 119.3055 3.7500 1.0000 13.0000 10.9358 64.2291 39.8530

µE (test) 26.3246 136.9310 2.0000 1.0000 6.0000 4.7824 20.1630 23.5315

µ (test) 24.9511 99.2160 2.0000 1.0000 6.0000 8.8873 35.6120 29.0954

w 1.0000 1.0000 0.0681 0.6129 1.7026 100.0000 2.0000 1.1220

Backward 5 µE (train) 20.2358 146.9673 1.7500 1.0000 6.0000 4.8403 16.6363 18.4822

µ (train) 21.8514 87.2020 2.0000 3.5000 16.5000 5.4475 28.0484 21.3451

µE (test) 5.2129 177.8570 1.0000 1.0000 4.0000 4.4446 6.1280 6.3796

µ (test) 4.2384 186.8070 3.0000 3.0000 5.0000 15.7824 16.5083 30.0406

w 1.0000 1.0000 0.1547 1.5475 6.4993 100.0000 2.0000 0.1217


