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Abstract
The cultivation of meadow orchards provides an ecological benefit for biodiversity, which 
is significantly higher than in intensively cultivated orchards. However, the maintenance 
of meadow orchards is not economically profitable. The use of automation for pruning 
would reduce labour costs and avoid accidents. The goal of this research was, using photo-
grammetric point clouds, to automatically calculate tree models, without additional human 
input, as basis to estimate pruning points for meadow orchard trees. Pruning estimates 
require a knowledge of the major tree structure, containing the branch position, the growth 
direction and their topological connection. Therefore, nine apple trees were captured pho-
togrammetrically as 3D point clouds using an RGB camera. To extract the tree models, the 
point clouds got filtered with a random forest algorithm, the trunk was extracted and the 
resulting point clouds were divided into numerous K-means clusters. The cluster centres 
were used to create skeleton models using methods of graph theory. For evaluation, the 
nodes and edges of the calculated and the manually created reference tree models were 
compared. The calculated models achieved a producer’s accuracy of 73.67% and a user’s 
accuracy of 74.30% of the compared edges. These models now contain the geometric and 
topological structure of the trees and an assignment of their point clouds, from which fur-
ther information, such as branch thickness, can be derived on a branch-specific basis. This 
is necessary information for the calculation of pruning areas and for the actual pruning 
planning, needed for the automation of tree pruning.

Keywords 3D point cloud · Photogrammetry · Tree modelling · Tree pruning

Introduction

Orchard meadows are an essential part of a small-scale cultural landscape, especially in the 
south of Germany. In addition, orchard meadows provide valuable habitats for many living 
organisms. They form an important retreat for many animal and plant species and play a 
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significant role in biodiversity (Schuboth & Krummhaar, 2019). However, orchard mead-
ows are not currently profitable from an economic point of view, due to the high labour 
input combined with low profit from the yields. As a result, orchard meadows are usu-
ally poorly maintained, thus their future is threatened (Zehnder & Wagner, 2008). In the 
state of Baden-Württemberg, more than 80% of the meadow orchard trees are currently 
only irregularly pruned, or are not pruned at all (MLR, 2015). A substantial decline of 
17% in the number of meadow orchard trees was recorded within ten years (Borngräber 
et al., 2020). For the preservation of the trees, regular pruning is necessary. Due to the fact 
that many meadow orchards are no longer adequately maintained, the knowledge of correct 
pruning is increasingly lost among many owners (Zehnder & Wagner, 2008). However, the 
use of external experts who can perform professional pruning is expensive. The use of pro-
fessional contractors could therefore be supported by automation, thus reducing costs and 
preserving the cultural landscape. In order to be able to implement automated pruning, the 
branch structure has to be detected and analysed.

There are already several projects dealing with the semantic interpretation of orchard 
trees in research. Most of them are using different types of 3D sensor data. For example, 
Sanz et al. (2018), Tsoulias et al. (2020) and Méndez et al. (2016) used 2D-LiDAR, Alvites 
et  al. (2021) and Sun et  al. (2021) used a 3D-LiDAR sensor in the form of a terrestrial 
laser scanner while Tabb and Medeiros (2017) used stereo vision. In addition, ToF (Time 
of Flight) cameras are often used in related applications which was shown in a review by 
He and Schupp (2018). These sensors have their advantages and disadvantages in terms 
of real-time capability, resolution, noise behaviour, cost, etc. A terrestrial laser scanner 
provides both a high point density and a high geometric accuracy of the point clouds. In 
contrast, conventional scanners have a low real-time capability and a relatively high price. 
In comparison, 2D LiDAR sensors, which are usually much cheaper, deliver a much lower 
point density and accuracy. In addition, the sensor platform must provide at all times accu-
rate position and orientation information for a registered 3D point cloud. Stereo and ToF 
cameras can already capture larger 3D point clouds in their image area from one viewpoint, 
but the accuracy and spatial resolution are often below that of a terrestrial laser scanner.

Based on the sensor data, there are different approaches in research for the analysis of 
fruit trees. In addition to the sensor technology, such algorithms can be subdivided by the 
analysis method used and the purpose of the analysis. Sanz et al. (2018) used the volume 
calculated by a voxel representation to establish a connection with the leaf-area of the trees 
and for calculating tree heights. Tsoulias et al. (2020) used a LiDAR point cloud for the 
detection of apples in a plantation orchard. This was used for yield estimation, and for 
calculating fruit positions, which is essential for many robotic tasks in orchards. Some-
thing similar was implemented by Kang and Chen (2020), where apples, as well as the 
branch structure, were recognised via semantic segmentation with a neural network. For 
the segmentation itself, only RGB information was used, but the resulting masks can be 
supplemented by the depth channel when using a depth camera, which then also results 
in a segmented 3D point cloud. Alvites et al. (2021) on the other hand, calculated a quan-
tification of timber assortments in a Mediterranean mixed forest. In forestry, the condi-
tions are similar to meadow orchards, unordered and unpredictable. However, they are still 
very different, as the trees have completely different growth forms and the environment 
is different. Nevertheless, in both cases, the algorithms must have greater robustness to 
special cases. The basic procedure starts with the initial processing of the point cloud and 
the removal of uninteresting objects (timber-leaf discrimination) and then proceeds with 
the detection of the tree trunk and the remaining tree structure using many cylinders. How-
ever, the focus there has been on the determination of the quantity of the timber and not 
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on the connectivity of the individual branches. Another option is a graph-based topologi-
cal structure of a tree, which has been used by Arikapudi et al. (2015). This was used for 
the representation of manually digitized trees, but not for the automatic generation of such 
a model. A distinction was made between the trunk, main branches, and sub-branches to 
build a model as a hierarchical graph based on this classification. A classification was used 
in their paper which distinguished instead between trunk, major and minor branches. How-
ever, several studies, such as Méndez et al. (2016) and Tabb and Medeiros (2017), used a 
graph-based representation of an orchard tree for automatic modelling. In these studies, 
the focus was on the analysis of orchard trees in plantation cultivations that have different 
preconditions, which means that the structure of these trees does not reach the same com-
plexity as in an orchard meadow and it may therefore be difficult to capture a large meadow 
orchard tree this way. Another graph-based approach, but with a different computational 
approach, was from Sun et al. (2021). They used a Laplacian-based contraction method for 
the generation of skeleton point clouds of cotton plants. Like in the method proposed in 
this work, they also used a minimum spanning tree to cut circles in their graph. However, 
the structure of the plants is clearly different from that of the meadow orchard trees.

No research is known to the authors so far, which has implemented the creation of a 
3D model outgoing from a photogrammetric point cloud using a graph representation for 
trees in meadow orchards. Therefore, in this work, an RGB camera using SfM (Struc-
ture from Motion) and MVS (Multi View Stereo) was used to generate photogrammetric 
point clouds. These are widely used evaluation methods that are used in different variants 
in most photogrammetric pipelines. SfM was used to determine the camera positions and 
camera geometry, while MVS was responsible for the actual generation of the dense point 
cloud. Even though a terrestrial laser scanner is certainly also a good choice here, an RGB 
camera offers a great cost advantage in addition to high resolution. The approach presented 
in this research enables additionally the simultaneous assignment of the points of the point 
cloud, which is a great advantage for the proposed application. Furthermore, the process is 
fully automated starting from a 3D point cloud.

The study objective was to create a geometrically and topologically accurate skeleton 
tree model of all relevant branch structures starting from a 3D point cloud. In addition, it is 
a requirement for the 3D model to be hierarchical to evaluate the branch directions. Also, 
the point cloud should be accessible by using the tree model. This means that all points 
of the relevant tree crown structure have to be assigned to a specific branch of the model 
which enables further local evaluation. In this way it is possible to carry out analyses con-
sidering geometric and topological features, the overlapping of different branches or the 
branch curvature. The fulfilment of these criteria is considered necessary in order to be 
able to make appropriate pruning recommendations in the future.

Materials and methods

Data acquisition and software

Nine different apple trees were recorded as photogrammetric 3D point clouds (see Fig. 1). 
The trees had trunk diameters between 0.121 m and 0.317 m, measured at 1 m, and 
a height between 4.419 m and 7.441 m (maximum Z-dimension in the segmented point 
clouds). The different trees were divided into two categories, based on their trunk diam-
eter, medium sized trees (T1–T6 see Fig. 1), with a trunk diameter between 0.121 m and 



1970 Precision Agriculture (2022) 23:1967–1982

1 3

0.218 m and large trees (T7–T9 see Fig. 1), with a trunk diameter between 0.299 m and 
0.317 m. The tree T9 had a significantly different growth form than the other large trees 
and was therefore a special case and was used to test the limits of the algorithm. The data 
was recorded under clear sky and direct sunlight. The first tree T1 was recorded in fall, and 
was already utilised in Straub et al. (2021). The remaining trees were then recorded in early 
spring, to extend the dataset.

The images were captured with a 21 MPix APS-C DSLR Camera (D7500, Nikon Cor-
poration, Tokyo, Japan) using a 10.5 mm fisheye lens (AF DX Fisheye-Nikkor 10.5mm 
f/2.8G ED, Nikon Corporation, Tokyo, Japan). The image acquisition was made in two 

Fig. 1  Filtered 3D point clouds of the apple trees T1–T9. The scale is shown by the white circle (radius = 1 
m) and the mark on the trunk (height = 1 m). Ø is the manually measured diameter at 1m height (white 
mark), h is the height
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circles, at different heights (between 1.30 m to 1.90 m above ground) around the tree to 
detect all the relevant structures. The recording distance was kept constant for each tree 
and was chosen so that the tree could be photographed in full-size. The pictures were then 
processed with the Agisoft Metashape software (Metashape Professional, Agisoft LLC, 
St. Petersburg, Russia, 2021) using the automatic calibration of the camera. The photo-
grammetric software generated a dense 3D point cloud of the trees from the images (see 
Fig.  2a). The first tree was scaled by manually measuring the circumference of the tree 
trunk at 0.5 m height. The point clouds of the other trees were scaled via the use of several 
simple scale bars as reference object. On these are two coded targets at a known distance, 
which can be automatically recognised with Agisoft Metashape.

The statistical filtering and the feature calculations (see Table 1.) used for the segmenta-
tion were carried out with CloudCompare (CloudCompare v2.12, [GPL software], 2021). 
The calculation of features using different search radii (40, 80, 150 mm), also called multi-
scale features, allowed for a better classification of points with locally similar features 
(Niemeyer et al., 2014). The model extraction was done in Python (2018) using the librar-
ies scikit-learn (Pedregosa et  al., 2011) for segmentation, SciPy (Virtanen et  al., 2020) 
and NetworkX (Hagberg et al., 2008) for network and graph algorithms and NumPy (Har-
ris et  al., 2020) for general computation. For visualization of the point clouds the point 
processing toolkit software (Here pptk, HERE Europe B.V, Eindhoven, The Netherlands, 
2018) was used.

Fig. 2  Overview of the pre-processing sequence. The input is the photogrammetric point cloud shown in 
its cartesian co-ordinate system from which the segmented major branches tree point cloud is generated in 
steps a–e 
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Pre‑processing

The pre-processing was used to reduce the input data to the main tree structure. It can be 
divided into five steps a–e (see Fig. 2a–e). In the first step (a), the point cloud was trans-
formed into the appropriate coordinate system. For this purpose, the ground was detected 
by a random sample consensus (RANSAC) plane detection (Fischler & Bolles, 1981) and 
the point cloud was then rotated and translated in such a way that the ground plane was 
positioned horizontally and had an average height of zero. Then, using the camera posi-
tions from the SfM algorithm, the point cloud was centred. This resulted in a position of 
the base of the trunk close to X, Y, Z = 0 m (see Fig. 2a). This was then used to specify the 
tree region within the point cloud via the distance to the origin and simplify further pro-
cessing of the data.

The second step (b) was then to segment the point cloud using a random forest classifier 
(Breiman, 2001), to filter out noise caused by the fine structure of the branches, which were 
photographed against the sky and differ strongly in their colour values from the real branch 
points (see Fig. 2b). The CIELAB colour values of each point were used as features, as 
proposed in Riehle et al. (2020).

Next (c) the point cloud was segmented using a simple decision tree into the classes 
‘ground’ and ‘tree’, using the distance from the ground plane and the verticality (Cloud-
Compare v2.12, [GPL software], 2021). While the distance to the ground plane allows a 
rough subdivision, it is still inaccurate at the transition to the trunk. Here, the additional 
consideration of the verticality of the tree trunk allows a precise segmentation (see Fig. 2c).

In the fourth step (d), the 3D point clouds were then subsampled to have a consistent 
point density and to reduce the amount of data. For sub-sampling, a minimum distance 
of 5 mm between points was chosen. In addition, a statistical outlier removal (SOR) filter 
(CloudCompare v2.12, [GPL software], 2021) was applied and disconnected components 
of the point cloud were removed. The resulting point cloud finally only shows components 
of the tree branches as seen in Fig. 2d.

As the interest of this research lay in the main branch structure of the tree, small 
branches and tree shoots were disregarded. Therefore, the fifth step (e) in pre-processing 

Table 1  List of features used for the random forest classification

Geometric feature type Type Search radius [mm]

Eigenvalue/-vector based PCA1 40, 80, 150
PCA2
Linearity
Planarity
Sphericity
Omnivariance
Surface variation
First order moment

Density based Number of neighbours 40, 80, 150
Surface and normal vector based Normal change rate 40, 80, 150

Verticality 40, 80, 150
Roughness 40, 80, 150

Other Cylinder distance –
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was the segmentation of the tree structure into major and minor branches (see Fig. 2e). 
Again, a random forest (Breiman, 2001) algorithm, with the parameters set to 200 trees, 
a depth of 30 and a minimum sample split of 10, was applied. Even though the same 
parameters were chosen for the random forest, the feature set used is completely dif-
ferent this time. Before the feature calculation, the trees were scaled to a standard size. 
For this purpose, the crown was separated from the trunk and an ellipsoid was estimated 
into the crown points via a principal component analysis (PCA). The volumes of the 
ellipsoids were put into proportion with their mean value, which then resulted in the 
scaling factor. The point clouds were then only scaled for the feature calculation, but 
the unscaled point clouds were still used for the remaining process. For the density fea-
ture, it was considered that the point cloud has a different density due to the scaling, 
which was later compensated for by the ellipsoid volume. At this stage, only geometric 
features were included (Table 1) as no large derivations in colour between branches of 
different sizes were detected. In addition, this made the method more independent of the 
data acquisition method. Besides the cylinder distance feature, all features were avail-
able as standard functions calculated in CloudCompare. More information about their 
calculation can be found in the corresponding documentation (CloudCompare v2.12, 
[GPL software], 2021) and the related paper (Hackel et al., 2016). These features have 
been found to be capable of the application carried out.

When validating the model, a few things have to be considered. Besides the gener-
alisation of the model to untrained data (points in the point cloud), the generalisation 
to untrained trees has to be given as well. A two-stage split was made, first a split into 
training and validation trees and then within the training trees a second split into 90% 
training and 10% validation points. Therefore, some of the trees were used exclusively 
for the validation. This was decided because the selection of separate validation trees 
has already allocated a relatively large portion of the data for validation. The amount 
of training data should therefore not be reduced any further. Furthermore, the valida-
tion trees are also more relevant for the generalisation of the model. It is also important 
to note that trees of medium and large size occur in both the training and validation 
data, so that the generalisation is as accurate as possible. The distribution of the trees is 
shown in Table 2. T9 thereby was treated separately, which resulted in a 1/3–2/3 train-
ing to validation ratio for large trees.

Following the segmentation, a morphological closing operator (Soille, 2004) was 
used, which first applies a dilation and then an erosion to the two classes. With dilation, 
a point that has a neighbour in the major branch class within a radius of 30 mm is also 
assigned to this class, with erosion being the inverse. This helps to close gaps in the 
segmentation. The number of dilations and erosions depends on the tree’s average point 
density [feature Number of neighbors (r = 150 mm)]. This is because smaller trees with 
a lower point density are more vulnerable to segmentation errors and therefore have 
more noise. The segmentation performed in the fifth step in combination with the sub-
sequent closing can be seen as an example in Fig. 2e. The segmented point cloud then 
represents the final result of the pre-processing.

Table 2  Splitting the trees into 
training and test data

Tree group Training Validation

Medium T1, T4, T5, T6 T2, T3
Large T7 T8, T9
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Approach for graph‑based tree reconstruction

The first step of the algorithm (see Fig. 3a) to estimate the tree model was detecting the 
tree trunk. This is straightforward because a cylinder fitting for the trunk was calculated 
previously for Cylinder distance. Points within a distance of 0.05 m were assumed to be 
trunk points. These were verified for connectivity to ensure that all points of the trunk 
were connected. After that, the points were divided vertically into different clusters, with 
each cluster having an extent in the Z-direction of half the cylinder diameter (as shown 
in Fig. 3a). A cylinder was again estimated for the points of these clusters, adding further 
points, lying on its surface, to the cluster. This makes it possible to recognise the trunk 
even if there are larger variations within the trunk diameter.

Next, using the centre of the lower tree cluster as the starting point, a graph was constructed 
in which all points at a distance of fewer than 0.1 m are linked. Based on this graph, the short-
est link to the starting point was calculated for each point using a Dijkstra algorithm (Dijkstra, 
1959). Thereby a growth direction vector (see Fig. 3b) and the graph distance were determined 
for each point of the tree using the respective predecessor. This contains information about the 
direction of the shortest path in the branch structure. Afterwards, the XYZ co-ordinates, the 
graph distance to the root, and the three components of the growth direction vector were used 

Fig. 3  Flow chart of the algorithm to create the skeleton tree model. a Shows the clustering of the point 
cloud, b shows the usage of the growth direction and c shows the creation of graph representation of the 
tree with the adjacency matrices G_dist, G_flow and G_angle of the unfiltered tree graph. 1, 2 and 3 show 
an example of the respective elements



1975Precision Agriculture (2022) 23:1967–1982 

1 3

to cluster the point cloud into small branch segments using a K-Means algorithm (Hartigan, 
1975). These clusters were then further modified by splitting clusters that extend, for example, 
on parallel branches and at intersections if possible. Clusters that contain too few points were 
dissolved and the points were assigned to the surrounding clusters or not assigned if there 
were no other clusters nearby. The total number of these clusters was determined by the voxel 
volume of the point cloud. The centres of the resulting clusters (see Fig. 3c) served as branch 
nodes for the construction of a graph representing a virtual 3D tree model. The centres of the 
tree trunk clusters were referred to as trunk nodes. In this case, the total number of clusters 
was defined as 25 clusters per 100 voxels, at a voxel size of 0.16 m.

All nodes were connected to one graph by building several graphs alongside each other, 
starting from each of the individual trunk nodes. Distances were calculated between the trunk 
nodes and the surrounding branch nodes. Then, the distances to the surrounding branch nodes 
were calculated from each branch node. From these, a combined adjacency matrix with the 
distances as weights was created to calculate the minimum distance of the respective cluster 
points. All connections with a distance > 30 mm were removed. Based on these connections, 
the minimum distance between points within each cluster was calculated and used as weights 
for the adjacency matrices which were built for each trunk node. The respective trunk node 
was used as the highest parent node in this group of adjacency matrices. This stack of matrices 
can simply be combined into a single graph representing the whole tree, as long as no main 
branch specific features were calculated. This would be given for example if a previous edge 
is needed in the calculation of the following one. Then the trunk nodes were connected in the 
Z-direction to complete the graph. After joining the stack of matrices, the result was the adja-
cency matrix G_dist, representing the graph (see Fig. 3c). Based on its connections, G_flow 
and G_angle were calculated using the branch cluster growth direction (mean growth direction 
in one K-Means cluster), as well as the branch cluster itself. The G_flow graph resulted from 
the set of close points between two clusters, and their distance, indicating if there is a strong 
connectivity. On the other hand, the G_angle resulted from the angle between the vectors of 
the growth direction of the two nodes. For the calculation of G_all the values of these three 
graphs were scaled by their standard deviation σ , and are added with the following weights 
(see Eq. 1).

At this point G_all still contained many false connections. These were removed using a 
minimum spanning tree using Kruskal’s algorithm (Kruskal, 1956). This has the advantage 
over using the shortest path (Dijkstra, 1959) algorithm, which was used in Straub et al. (2021), 
because it minimises the total value of all nodes in the graph, which in some cases, as shown 
in Fig. 4a and b, can lead to a better connection. The result was the final tree graph, which 
represented the whole tree (Fig. 3–3). Each node of this graph represented a cluster with asso-
ciated points of the tree point cloud. These points can be assigned to different sub-branches 
using the graph, which enabled branch-specific segmentation of the point cloud in addition to 
the skeleton. 

Evaluation methods

To evaluate the quality of the generated tree graphs, reference graphs were created by hand 
for the recorded trees. These reference graphs were almost identical in structure to the graphs 

(1)Gall = 2 ×
Gdist

σGdist

+ 4 ×
Gflow

σGflow

+

Gangle

σGangle
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in the generated models, with the difference that nodes only exist at points where the branch 
forks. To compare the two models all graph nodes with only two connections were removed 
in the computed one. This ensured that there were also only branch fork points in the graph. 
First, the corresponding nodes in the reference graph and the generated graph were matched. 
This involves searching for potential pairs within a radius of 0.15 m. These were then com-
pared with the reference model together with their direct neighbours. As a measure of simi-
larity, the graph edit distance (GED) (Abu-Aisheh et al., 2015) was calculated between these 
graphs. This describes, in the comparison of two graphs, the number of necessary changes 
of the one graph so that it is equivalent to the second one. For example, a graph in which all 
neighbours are mapped to their corresponding graph has a GED of zero. The GED was then 
weighted and normalised by the distance of the connected segments. The potential partner 
with the lowest GED was then chosen as the correspondent. If two reference nodes choose 
the same node as correspondent, the one with the lower GED will get it, while the second one 
will get the second best one. Through these correspondents, the equivalent graphs could then 
be created. Now the edges between the nodes can be compared directly. Missing nodes have 
a very large effect on the result, even if only one node is false. To reduce this effect, missing 
nodes in the reference graph are “skipped” (see Fig. 5). However, these cases cannot always be 
detected, so this effect is still present.

Results and discussion

Pre‑processing

The segmentation of the noise caused mainly by the background (sky) worked effectively 
with the chosen method. As shown in Fig. 2b, this was a simple and effective way to remove 
this kind of noise. The illumination conditions of the point clouds differed only slightly, but 
since the points were taken from different viewing directions, a degree of robustness could be 
observed. The segmentation of the ground points (in Table 3) achieved an overall accuracy 
(OA) of 99.78%. This meant that virtually all points from the tree could be separated without 
difficulty. The results decreased slightly if there were other objects besides the tree in the point 

Fig. 4  Two examples a, b  illustrating the difference between the Dijkstra algorithm (left) and minimum 
spanning tree (right) in the reconstructed tree graph

Fig. 5  Comparison between the 
edges of a generated graph (left) 
and a reference graph (right), 
skipping a node for better com-
parability
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cloud, as in T7 (see Fig. 1). However, it must be considered that the results are very specific 
to this use case. Therefore, this cannot be transferred to other applications in all cases. For the 
segmentation of other objects, with residual noise and other artefacts (clutter), which do not 
belong to the target trees, the OA was 97.79%. The number of clutter points varies strongly 
depending on the presence of other objects in the point cloud. However, almost all objects 
were reliably removed. If errors occur, as in T2, these were mainly in the area of the minor 
branches, which were subsequently segmented and removed as well.

Crucial for further processing was the segmentation into major and minor branches. 
Here (see Fig. 6), an OA of 88.96% for the validation trees was achieved, which was worse 
than the OA of the training trees (94.96%). This suggests a slight overfitting of the model 
to those trees. However, this was not unexpected under the given variety and the results 
are reasonable. There are still more minor differences between the different tree types. For 
example, in Fig. 6, T7, T8, and T9, representing the large or non-standard trees, performed 
slightly worse than the medium-sized trees. But this was also not unexpected, since there 
were significantly fewer training data available for these types of trees. A larger amount of 
training data would help, as the large trees were only trained with one tree. Overall, a good 
generalisation of the model for medium to large trees was achieved. The model was not 
investigated for trees with a trunk diameter smaller than 0.12 m. Small trees with a trunk 
diameter of less than 0.1 m are not the focus of this work.

Approach for graph‑based tree reconstruction

The result of the node verification, averaged over all trees (see Table 4), achieved a correct 
matching with the reference graph, here referred to as producer’s accuracy (PA), of 72.37% 
and a correct proportion of the calculated nodes, referred to as user’s accuracy (UA), of 
78.24%. After weighting by the edge length, the PA was 73.67%, and the UA was 74.30% 
for the edge verification. The results of the individual trees are shown in Fig. 7. The trees 
of medium size T1-T6 (see Figs. 8, 9) showed promising results for edge verification (see 
Fig. 7b) and range from approx. 75–87% for both PA and UA. The only exception was T5 

Table 3  Results for segmenting the ground points and removing the clutter from the tree points

“All” is thereby the mean value weighted by the number of points

T1 T2 T3 T4 T5 T6 T7 T8 T9 All

Ground [%] 99.97 99.87 99.95 99.11 99.97 99.98 98.89 99.97 99.97 99.78
Clutter [%] 97.86 95.76 98.46 98.24 97.89 97.85 97.36 97.22 98.98 97.79

Fig. 6  Results of the segmenta-
tion into the classes major and 
minor branches for validation 
data of the training trees (grey) 
and of the validation trees (blue). 
Trees T1–T6 are medium trees, 
trees T7, T8 and T9 are large 
trees, with T9 having an unusual 
tree structure compared to the 
other (Color figure online)



1978 Precision Agriculture (2022) 23:1967–1982

1 3

with results for PA of 72.68% and UA of 71.81%. For node verification, the situation was 
similar for the medium trees. However, T5 and T3 were noticeable, since there was a con-
siderable variation between the PA and the UA in the node verification (see Fig. 7a). This, 
combined with the still good results in edge verification, suggests that relatively small and 
short branches were not correctly detected. T3 and T5 were the two smallest trees in the 
data set, with accordingly more of the finer structures. The results were still sufficient, but 
indicated a limitation of the algorithm and/or the sensor technology with regard to smaller 
trees.

The large trees T7 and T8 (see Figs. 7, 9) performed slightly worse on average, both for 
node and edge verification. The results were between 70% and 78% for both UA and PA. 
T9, which was a large tree with a different and unusual structure, performed worst overall 
with a PA of 60.21% and a UA of 59.11%. This one had a complex structure with many 
small branches and all main branches start more or less at a similar trunk height. This can 
quickly introduce errors in the reconstruction. However, it should be noted, that errors are 

Table 4  Results of the node 
and edge verification (edges get 
scaled by length) for all trees as 
PA and UA

PA [%] UA [%]

Node verification 72.37 78.24
Edge verification (scaled) 73.67 74.30

Fig. 7  Results of node verification (a) and edge verification (b), showing the PA and the UA of the gener-
ated tree model to the reference model

Fig. 8  Detailed view of the results of the tree model of T6—best result (left) and T9—worst result (right)
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very rapidly noticeable, especially with the edge verification, since a wrong node always 
affects several edges, which can, however, be correct.

For better comparability, two of the trees were also visually compared. These trees were 
among the best resulting trees, namely T6 and the worst resulting tree T9 and are shown 
in more detail in Fig. 8. As expected from the previous results, the model showed a rea-
sonable reconstruction of the point cloud. The course of all leading branches was correct, 
and with a few exceptions, almost all the smaller branches were correctly reconstructed. 
An interesting error observed in Fig. 8 was the reconstruction of the bird-house as a short 
branch. Overall, the results were very good. Compared to T6, the results of T9 showed 
noticeably more errors. Smaller branches were occasionally not recognised, but there were 
also significantly more of these than in T6. A noticeable error here was that in very large 
leading branches, several clusters sometimes appeared against the direction of growth. This 
can also be observed to a lesser extent in the large trees T7 and T8 (see Fig. 9). In T9, 

Fig. 9  Calculated 3D-tree skeletons T1–T9 with their respective point clouds
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this led to unwanted distortions of the model, even if the correct linkage of the different 
branches was still given. These errors could occur when leading branches have very large 
diameters and were therefore incorrectly clustered by the K-Means algorithm. However, 
even at T9 all of the important structures of the tree were present and the model could still 
be considered acceptable.

The results of the approach for building the tree model were found to be sufficient to recon-
struct the recorded trees. The trees of medium size gave good results. Depending on the size 
of the trees, they degraded slightly towards the top and bottom, but the models still provided a 
suitable reconstruction. Nevertheless, this is where most of the potential for further improvement 
lies. Possible here would be an extension of the K-Means features to include other elements such 
as branch thickness. This could be done in two stages using the first clusters for this calculation. 
This would primarily help to improve the reconstruction of trees with strong leading branches. In 
addition, it would be a suitable feature to link the branches in the model and would generally add 
useful information that could be integrated into the model for other applications. Improvements 
could be made for smaller trees by extending the pre-segmentation of major and minor branches. 
Here, further training data could be useful. However, it should be noted here that for thinner 
branches, the resolution of the point cloud is not sufficient at some point.

Based on a tree model, like the one extracted here, further development for the automa-
tion of the pruning of meadow orchard trees can be made. Based on this model, pruning rec-
ommendations could now be calculated using geometric and topological criteria. The model 
allows the observation of overlaps of different branches, a first indicator for pruning. The 
integration of the previously segmented minor branches could be used in order to estimate 
the remaining space between two branches. Otherwise, the observation of water sprouts is 
also feasible, which could be recognised by their typical vertical growth using the angles 
between the edges of the graph. Fast growth and changes or areas which were pruned could 
be analysed using several observations over time. By the same logic, such a multi-temporal 
analysis could be used for the detection of deadwood, as there is no growth of small branches 
in this case. Another possibility would be an application as a decision support system, in 
which such a graph can be used to select pruning points to supervise a human worker.

Conclusions

The photogrammetric 3D point clouds of nine apple trees were recorded. These point 
clouds were pre-segmented using various methods including a random forest algorithm. 
This resulted in an OA of 88.96% for the sub-division into major and minor branches. 
From the major branch structure point clouds, 3D models in the form of skeletons were 
created with the method presented. A PA of 72.37% and a UA of 78.24% were achieved 
for the node verification of the tree graphs while, for the edge verification a PA of 73.67% 
and a UA of 74.30% were reached. The computed tree models are creating the possibility 
to analyse the crowns based on their topological as well as their geometrical structure and 
to use them to derive areas where pruning is necessary. The identification of such areas is 
crucial for the identification of pruning points and therefore for automated tree pruning. 
In addition, such a model is necessary to plan an autonomously performed pruning, as it 
allows the target point to be clearly defined and possible interfering objects to be avoided. 
Furthermore, there is a great potential for scientific tree analysis in terms of observing 
changes over multiple scans, for example in growth or in analysing performed pruning, or 
also for the creation of a digital twin.
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