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Abstract. We establish the existence and uniqueness of a weak solution of the three-
dimensional nonhomogeneous stationary Oseen flow around a rotating body in an exterior
domain D. We mainly use the localization procedure (see Kozono and Sohr (1991))
to combine our previous results (see Kra¢mar, Necasova, and Penel (2007, 2008)) with
classical results in an appropriate bounded domain. We study the case of a nonintegrable
right-hand side, where f is given in (/W’l’q (D))? for certain values of q.

1. Introduction. The study of Navier-Stokes fluid flows past a rigid body trans-
lating with a constant velocity (or past a rotating obstacle with a prescribed constant
velocity) is one of the most fundamental questions in theoretical and applied Fluid Dy-
namics. A systematic and rigorous mathematical study was initiated by the fundamental
pioneering works of Oseen (1927), Leray (1933, 1934) and then developed by several other
mathematicians with significant contributions.

In the last decade much effort has been made on the analysis of solutions to different
problems: stationary as well as nonstationary, linear models as well as nonlinear ones, in
the whole space as well as in exterior domains. We refer to [0} [7} [8, [9] 10}, [T}, 13, [14] [T5]
20, 211, [22], 23], 241, 25 261, 28], 29, [30].
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422 S. KRACMAR, S. NECASOVA, anp P. PENEL

In the present paper we mainly investigate the existence and uniqueness of weak
solutions to the linear stationary rotating Oseen system in exterior domains in the case
of a nonintegrable right-hand side.

Let D be an exterior domain in R3 with a boundary 9D regular enough, say of class
C?. We consider the motion of a viscous fluid filling the domain D when the “obstacle”
Q2 =R3\ D, which consists of a finite number of rigid bodies, is rotating about an axis
with constant angular velocity w and moving in the direction of this axis. We assume
the fluid with a nonzero velocity v,, = kes at infinity, and that w = |w|ez = (0,0, |w|)T:

Our aim is to solve the time-periodic Oseen system of equations for the velocity field
v =v(y,t) and the associated pressure ¢ = q(y,t):

ow—vAv+(v-Vv+Vg =f in D), t>0,
div v =g in D(t), t >0, (1.1)
v(y,t) =wAy on ID(t), t >0, ’

v(y,t) — v as |yl — co.
The time-dependent exterior domain is

D(t) = {y € R* : y = O(|wlt)w,x € D},

where
cos|w|t —sinjw|t O
O,(t) = | sin|w|t cos|w|t O0]. (1.2)
0 0 1

The coefficient of viscosity is ¥ > 0 and we will assume that nonnecessary integrable
external forces f = f(y,t) are given.
Introducing the change of variables

= 0,1)Ty (1.3)
and the new functions
u(z,t) = Of(t)(v(y, t) =), pla,t) =q(y,t), (1.4)
as well as the force term fi(x,t) = O,(t)T f(y,t), we arrive at the linear system of
equations in D x (0, 00):
Ou —vAu+kdsu — (wAz) - Viut+wAu+Vp = fr (1.5)
divu = g. '

In the case w = 0, the system of equations (5] is a nonhomogeneous Stokes system
when k = 0 and it is a classical nonhomogeneous Oseen system when k > 0.

We are interested in the stationary flow in D (and, therefore, the time-periodic solution
to (L) as well as the periodic solution to the initial model (I])), and for simplicity we
will consider v =1, k = 1. So, for given f and g, our system of equations is the following:

(1.6)

—Au+0su— (wAz) - Viu+wAu+Vp = f D
divu = g '
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STATIONARY ROTATING OSEEN EQUATIONS IN EXTERIOR DOMAINS 423
We assume that the system of equations ([6]) is now complemented by a homogeneous
condition at infinity
u—0as|z] > (1.7)
and Dirichlet boundary conditions on 052, either
ulgn =0 (1.8)
or
ulog = w Az —e3, x € . (1.9)

If D = R®, of course {u,p} is described by equations (L) and condition (LT only.
Through the relation div (((wAz)-V)u—wAu) = ((wAz)-V) div u = div ((wAz) div u),
we define p. The strong solution of the corresponding Cauchy problem (L6]), (L7) has

been analyzed in Li-spaces, 1 < ¢ < oo, in [8] proving the a priori estimates
IV2ully + Vel < el fllg + Vg + (wAz) - g = geslly), (1.10)

-2

105ullg + 1| = (WA z) - Vu+wAullg < eI+ || ) fllq (1.11)
with the constant ¢ > 0 independent of |w]|, the second estimate being written with g = 0

just to simplify. Further, these results were improved in [6] in weighted spaces, obtaining
the following a priori estimates (always written with g = 0 to simplify):

V2l g0 + V0l < €l fllaves (1.12)
105l g + | = (WA Z) - V)t +w A ullgew < (1 + 0] 72| fllg (1.13)

with the constant ¢ > 0 independent of |w|, and where the weights w belong to the more
general Muckenhoupt class fl; A weak solution to the same Cauchy problem (L),
([0 in the LY setting, 1 < ¢ < oo, was investigated in [2I] and the following a priori
estimates were proved (always written with g = 0):

IVullg + llplly + I = (WA Z) - V)u+wAull-1g < Cllfll-1,4, (1.14)

where data belong to the dual of nonhomogeneous Sobolev spaces (see at the end of this
section).

In the work of Galdi [I4], pointwise estimates for Navier-Stokes equations with rotating
terms were proved. He obtained that

ol Hu@) < e, a2 (IVu@)] + @)l < e

Another outlook on the above pointwise estimates in a differential framework by use of
functional spaces has been recently proved by Farwig and Hishida [I1]. Further, Galdi
and Silvestre [I6] have proved a stability of solution u. A generalization in the Lg
setting was done by Hishida and Shibata [27].

We will study the boundary value problem (L6), (L), (I8). By applying the so-
called localization technique [19], we immediately observe that it combines both systems
in the whole space and in a bounded domain. Indeed, choose p > py > 0 so large that
QC B,, ={zeR?: |z] < po} and take a cut-off function 1) € C§°(B,; [0, 1]) such that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



424 S. KRACMAR, S. NECASOVA, anp P. PENEL

1 =1 on B,, and supp(Ve) C {z : po < |z| < p}; introducing now U = (1 —Y)u, V
Yu,m = (1 —1)p and 7 = Yp, we get

u=U+V (1.15)
P=T+T (1.16)

within the whole space

—AU 4+ BU - ((wAz) - VYU +wAU + V1 = Fi(u,p)
divU = G1(u) , (1.17)
U—0as|z| >

where G (u) = (1 —)g — V¢ - u, and in the bounded domain D, = DN B,,

—AV 4+ 03V + V7 = Fy(u,p)

divV = Ga(u) , (1.18)
Vlep, =0
where Ga(u) = g+ Vi) - u and
Fi(u,p) =(1 =) f +2(Vp - V)u+ [A¢ + ((w A 2)V)Plu
— (V)p + (st o)

Fy(u,p) =¢f + (WA ) - V)u—wAu] =2(VY - V)u
— (AY)u+ (VY)p + (9s¢)u.

Let us observe that, in the bounded domain D,, we can equivalently write the following
nonhomogeneous Stokes problem:

~AV +Vr=F,
divV = Gy(u) Y, (1.20)
Vlop, =0

modifying Fo = ¢ f + [((wAz) - V)u—wAu] —2(V - Vu— (A)u+ (Vi)p + d5(¢u).

Let us also observe that, in order to prove the existence of solution in an exterior
domain even if g = 0 in (L6), we need to study the nonhomogeneous case (LIT) in the
whole space.

In Section 2, we will give the definition of a weak solution to problem (L6]), (7)),
(L) and our main result, existence and uniqueness of its solution. Sections 4 and 5 are
devoted to the proof of the main result. We need intermediate results for both problems
([LI7) and ([I8); Section 3 is devoted to them. Two appendices complete the paper, the
first one with the general results by Bogovskii, Farwig and Sohr [I], 2] 8], Kozono and
Sohr [19] and generalization in negative Sobolev spaces by Geissert, Heck, and Hieber
[18], and a second appendix with the technical treatment of dsu in negative Sobolev
spaces.

Let us fix the notations: C§°(R?) consists of functions of the class C'°° with compact
supports contained in R3. By L4(R3) we denote the usual Lebesgue spaces with norm
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STATIONARY ROTATING OSEEN EQUATIONS IN EXTERIOR DOMAINS 425

I llq- We define the homogeneous Sobolev spaces
1V-llq

Wh(R?) = C°(R?) = {v e L% (R%); Vv e LI(R®)?3}/R, (1.21)
WLQ(D) _ W“V‘Hq,D

={ve Ll (D); Vve LYD)? vlspp =0} for 3 <q< oo, (1.22)
= {v e L3C=9(D); Vv e LI(D)?, v|sp = 0} for 1 < ¢ < 3, (1.23)

and their dual spaces
WL (R?) = (Whe/ D (RY)),
W-14(D) = (Whe/a=1) (D)) .

(.,.) denotes either different duality pairings or the inner product in L?.

2. The main result. We consider the problem (L), (L), (L8) with g = 0 in the
exterior domain D. Let f be given in (Wﬁl’q(D))?’, 1<g<oo.
DEFINITION 2.1. We call {u,p} a weak solution to (LL6) 4—o, (L), (L8 if
(1) {up} € (WH(D))° x L1(D),
(2) divu=0 in L9(D),
3) Osu—((wAz)-Viu+wAu in W-La(D)3,
(4) (Vu, Vo) + (Gsu — (WA 2) - Vu+w Au, @) = (p,dive) + (f, 9)
for all pin C§°(D)3.

Our main result is

THEOREM 2.1. Let 3/2 < ¢ < 3, and suppose f is as given in (W‘Lq(D)):‘. Then there
exists a unique weak solution {u, p} to (LE) 4=, (L7), (I8)), which satisfies the estimate

IVu

lg.0 + [IPllg.p + [|03ull-1,4.0 + || = (WA Z) - V)u+wAull-14D
< Cq||f||fl,q,D>

with some constant ¢, > 0 independent of |w|.

(2.1)

REMARK 2.2. e Similar results were obtained by Hishida for the Stokes problem [24].
e As a corollary of Theorem 2.1, we also obtain existence and uniqueness of the
solution to the nonhomogeneous Dirichlet problem (6] 4o, (L), (I9); see The-
orem 5.1
e It is possible to avoid some of the restrictions 3/2 < ¢ < 3 (see [30]). In this way,
we can consider the null space of the problem

K = {u € W4(D)| div u = 0,ulsn = 0,
(u,p) is a solution of (L6 for some p € L7 (D)}

Then the solution u will be unique in W4(D)/K for 3/2 < q < oo.

e We can improve the result from Theorem 2.I] admitting nonsolenoidal solutions;
this will be the partial subject of a forthcoming paper. In the present paper, we
have decided to simply use the approach based on the Lax-Milgram theorem (see
Section 4, Step 1).
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426 S. KRACMAR, S. NECASOVA, anp P. PENEL

3. Intermediate results. We can start with the analysis of the homogeneous prob-
lem in the whole space, then precisely the problem (I7) for given F} and G; = 0. So
we use the notations {Up, 7o}, and the preliminary results from [21] 23] are:

DEFINITION 3.1. Let 1 < ¢ < oo. Given F; € W14(R3)3, we call {Up,m} €
WI’Q(R?’)?’ x L9(R3) a weak solution to (LIT7) with Gy = 0 if

(1)  divUp =0 in LI(R3),

(2) Uy — (wAz) VYU +wA Uy € W-L4(R3)3,

(3) (VU Vo) + (95U — ((wA ) - V)Uy +w A Usg, )
—(mo,divp) = (F1,p) forall ¢ e Cg°(R3)3.

THEOREM 3.1 ([2I]). Let 1 < ¢ < oo and let Fy € W—19(R3)3 be given. Then the
problem (LI7) with G; = 0 possesses a weak solution {Up, 7o} € WH4(R3)3 x LI(R3)
which satisfies

IVUollq + lImollq + 10500 — ((w A ) - V)Uo +w A Usll-1,4 < cllFill-1,; (3.1)
with some ¢ > 0 depending on q.

REMARK. Without a special treatment of the third component of the gradient of Uy,
we only have:

103Uy — ((wAx)-V)Uy +wAUp||—1 4 rs
= [[F1 + AUpl|-1,¢.rs < c(|F1ll-1,0.r3 + [VUollgr2) < cl[Fill-1,qr2,

with some ¢ > 0 depending on q.

PROPOSITION 3.2. Let 1 < ¢ < oo and let Fy € W*I”J(R?’):3 be given. Then the problem
(CI7) with G = 0 possesses a weak solution {Up,mo} € WH4(R3)3 x L4(R?) which
satisfies [[LT4] and, moreover,

105U0]| -1, < cllFill-1.,q
with some ¢ > 0 depending on q.

COROLLARY 3.3. Let 1 < g < oo and let Fy € W’Lq(RS)?’ be given. Then the problem
(CI7) with G; = 0 possesses a weak solution {Up,mo} € W14(R3)3 x LI(R?) which
satisfies:

IVUollq + [Imollg + 185V 1,4 + | = (W A2) - V)Up +w AUpl-1,4 < ¢[[F1]l-1,4-

Proof of Proposition 3.2. We need to estimate the quantity sup| v <1 (05U, ¢). Far-
wig [9] estimated 03Uy in L%-norms in the case ||Fi|, bounded and then, in a similar
study, we also used the multiplier theory starting from the integral representation of
93Uy induced in [21].

We know that Fy = Div H with H.,, = BFy, € L1(R?)? (see Appendix 1, and using the
fact that the space {Fy|Fy = DivH, H € C§°(R?)3*3} is dense in /{/[7—1711(1@3)37 we can
assume first that H € C§°(R3)3*3). Uy can be expressed in dependence of H as

Ub(e) = [ T(w.9)- Div H () do
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STATIONARY ROTATING OSEEN EQUATIONS IN EXTERIOR DOMAINS 427

where ['(z,y) = [, E; (Ou(t)x —y — tes) OL(t) dt and E; = We—liﬁ/‘lt. Applying

the Fourier transformation, we get the following form:

_ 1

2r /|| . R
Uo, (&) = G] /0 e~ WP+ OT (1) €, Hix (O, (1)€) dt,

D(

denoting

D(E)=1- o 2m (€17 +i€s) /|w|
So we have

- . 2 5 o
P00, () = gy [ e ROT (T (0L (06)
and also -
2
PR [T ©)- L) Ha0ul1). — tea o O
0

where the multiplier m; () has the form

_ &8 ey
T R

In fact, we decide to rewrite on purpose

€U0, (€)

(000 1, $1) = i [ = - |€| 0 (€)dE, (3.2)

which reads

~

/ 7(6)- B(e)de
RS

in duality L9-L7 . Indeed, ¥ can be taken in L9 and the term V(£) = % can be
estimated in L?. To this end, observing that || H (O, (t)-—tes)||, = || H ||, for all t € (0,27),
and knowing that e~ PAIjk(-) is the Fourier transform of H, (- —tes), one can show (see
Appendix 2) that ‘A/(f ) satisfies the Marcinkiewicz multiplier theorem which implies the

boundedness of V in L? by F; € W*I’Q(Rg)? Therefore we obtain
10300l 1,4 < [1Hlg < [|F2]l-1,4- O

REMARK 3.3. e Let 1 < ¢ < 3. Then Uy € L3¢/3~9(R3) and following Theorems 1.1
and 1.2 from [21], the solution {Up, mo} is unique.
e In the same conditions, following Corollary 1.2 from [21] (see also [12], pp. 59-62),
we have |||z|~1Up|lq < c||Fi]|-1,4 With a positive constant ¢ = ¢(q,w).
Concerning now the nonhomogeneous problem in the whole space, i.e. problem (1)
for given F; and G1, we recall the following result.

THEOREM 3.4 (J23]). Let 1 < ¢ < oo and let F; € /W_l’q(]R3)3 be given. Suppose
G1 € L9(R3) such that (wAz) -Gy € W~14(R3). Then problem (LIT) possesses a weak
solution {U, 7} € Wh4(R3)? x L4(R3) which satisfies

IVUlg + lI7llg + 185U = (w A ) - VIU + w AU 1,4
< cllFill-rg +1Gulg + (WA z) - Gill-1q), (3-3)

with some ¢ > 0 depending on g.
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428 S. KRACMAR, S. NECASOVA, anp P. PENEL

REMARK 3.5. Due to Proposition 3.2 we are able to improve the previous estimate;
now we have:

IVUllg + lI7llg + 103U -1, + | = (WA 2) - V)U + w AU|-1,4
< c(lFill-1q + 1Gullg + [[(w A z) - Gall-1,9)- (3.4)
We finally recall the well-known result, e.g. from [I9], about the nonhomogeneous

Stokes problem in bounded domains, solving problem (L20) in the domain D,. So, with
the previously used notations {V, 7}, the theorem reads

THEOREM 3.5. Let 1 < ¢ < 0o. Suppose that

Fy e WH4(D,)?, Gy € L{(D,), (so, we assume / Ga(z)dz = 0).
Dp

Then problem (L20) possesses a unique (up to an additive constant for 7) weak solution
{V,7} € Wy(D,)® x L9(D,), which satisfies the estimate

IVVlg.n, + 1T = 7llg.p, < C(IF2ll-1,4,0, + |G2ll¢.D,); (3.5)

where 7 = ﬁ po 7(x)dz.

4. Proof of the main theorem. The proof is presented in four steps.
STEP 1 (Existence (homogeneous divergence case)). Let f = Div F with F' € C§°(D)°.
In the domain Dp according to the support of F', we apply the classical approach to solve

—Au+0su—((wWAz) - Vu+wAu+Vp=f=DivF

with dive = 0 and with homogeneous Dirichlet boundary conditions on 0Dg.

The bilinear form b(u, p) = (Vu, Vo) + (0su, ) — (((wAx) - V)u—wAwu, p) is coercive
on (Wj72(DR))3 X (W;’z(DR))3; {.,.) here stands for the L%-inner product. One can
easily verify that b(ugr,ur) = [|[Vurll3, p, = (Div F,ug).

Using the Lax-Milgram theorem we justify the existence of a unique solution up €
(W12(Dg))3, which satisfies the estimate

IVurllz,pr < [IFll2,05 = |Fll2,0-

We can extend ug by zero in D \ Dg. Then we obtain ug € (W;Q(D))3 satisfying the
same estimate, uniform as R — +oo.

We now choose a sequence of numbers {R,, },,, tending to infinity, so that ug, converge
weakly in (W12(D))3. The limit u is unique and such that

(Vu, Vo) + (9su, 0) = (WA ) - V)u —w A, ) = (f,0) =0 (4.1)

for all ¢ € C§°(D)3, then for all € (/V[71’2(D))3.
Therefore there exists p € L? (D) (unique up to an additive constant) such that

loc
—Au+0su—((wAz) - Vu+wAu— f=—-Vp.
Applying in the next step the localization technique will imply that v and p satisfy
u € Wl’q(D)3, p € LYD) for 3/2 < g <6.
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STATIONARY ROTATING OSEEN EQUATIONS IN EXTERIOR DOMAINS 429

STEP 2 (localization procedure). Let ¢ € (C5°(R?))3, and let ¢ be always the same
cut-off function as in Section 1. We can successively choose the following test functions

©:

e v = (1 —1)¢, so we can read over R? all integrals from equation (4.4) and
interpret the solved problem in the whole space by {U, 7} = {(1 —v)u, (1 —¢)p}
as in ([LI7); the formulas describing Fy = Fj(u,p) and G; = G1(u) are given in
Section 1.

e © = 1@, so we can interpret in D, the solved problem by {V, 7} = {¢u, ¢¥p} as
in (LI8) or (L20); see in Section 1 the detailed formulas for Fy = Fy(u,p) and
G2 = G2 (u)

Theorem 3.6 and Theorem 3.7 respectively solve these problems under the following
hypothesis:

Fi € (W b(RY)? Gy € LIRY), (wA ) - Gy € W HI(R?),
Fy € (WH9(D,))*, G € L{(D,),

with estimates (B3] resp. ([B.3).

To exploit these estimates, it remains essentially to control all terms we have from
formulas (LI9) in || F}(u,p)|-1,¢,r%0rD,, for appropriate ¢ and j = 1,2. In this way, we
recall that Vi and At have compact support in D, at the most (precisely in the annulus
{z : po < |z| < p} closed to the “obstacle” ), so we have

o either [|¢llg/(g-1),p, < c(ID,DIVYllg/(q-1),D,

by Friedrichs-Poincaré inequality,

or [8lle/q-1), p, < 1Dp"?lI¢lls.D,

by Holder inequality, with 1 + & = %1, o it is necessary that q%l > L and

3
3

Thus [[6]lg/(q-1).0, < [Dol*?¢llrzs < eI D DIVEllgy(g—1).r2
(A =9)f, ) < cllfll-1.0.0VPllg/g—1).r2

9)|

[(2(VY - V)u+ [AY + (WA z) - V)ilu,
((wAz)-V)Y)g, u)l

< [(AY), u)| + [(2(VY - V), u)| + |

< cllulp, a0, IV llg/(q—1).28

{((VY)p, d)| < cllplp, | -1.4.0, IV @l g/ (q—1),r8

|<(831/))U7 ¢>‘ < C”ule ||q7Dp vab”q/(qfl)JRe‘

lw A @)(u- V)14 < Cllulp,llg,0, [VEllasq-1).rs-
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430 S. KRACMAR, S. NECASOVA, anp P. PENEL
Now, since G; = —V9yu and G2 = Vyu, we also have

‘<V¢U7¢>‘ < CHUJ‘DPHq,Dp||V¢||¢1/(<171)JR3

Then applying the estimates (33]), (3:4]) together with previous estimates, we get

IVUllges + [I7llgrs < e[l fll-1,4 + [lulp, llg.0, + IPID,ll-14,0,), (4.2)
103U —1,qrs + [[(wA2) - VU —w AU | —1,q.8
< c([fll-1,q + llulp, lla.0, + [IPID, I -1,4.0,);
IVVlla.p, + lI7lla.0, < c(Ifl-14 + lulp,la.0, + llplD, | -1.4.0, (4.4)

+‘/ e ‘),

and we can conclude with the estimate for ||Osul|—1,4,p, observing that

03ull-1,4,0 = 1|03 (U + V) [[-1,9.0 < [|03U]|—1,4r3 + |0V || -1,4,D,
<c (105U 1,98 + 105V lg.,) -

We know that u|p, € W,*(D,). Then, by means of the embedding W,?(D,) C
LY(D,) where ¢ < % < 2, we obtain |lu|p,|lq,p, < c. Therefore, all inequalities
make sense and ||Fj(u,p)||-1,4r30rp, is bounded in terms of |[f[|-14, |lulp,ll¢,p, and
Iplp, I-1.4.0,-

Finally (u=U+V,p=7m+ 1),

(4.5)

IValg,p +lp

00 < e(Ifll-1q + llul, 0.0, (4.6)
+lpln, |10, + | [ v@i(as]),
:
[0sul|-1,4.0 + [[(WA ) - VU —w Aul—1,4,D (4.7)
< c(Ifl-1.a + 19uln, o + 12I, 1)

From the estimates (0], (7)) we immediately get

190lg.0 + Iplla,p + 1050l -1.0,0 + @ A ) - Vs = w0 M| 10,5
(4.8)
< (1A 1.0+ lul, a0, + 121D, I-10,5, + | Jp, ¥)pla)dz]),

where the norms of v and p are computed only on the bounded set D,, and then from step
1 all norms on the right-hand side are finite. Therefore, for f = Div F, F € (C§°(D))3*3
we get that the problem (L8l),—o, (I7), (I8) has a solution {u,p}, u € (/Wl’q(D))S,
Osu € (WL9(D))?, (wAz)-Vu—wAu € (W-4(D))*, pe L9 (D), for all 3/2 < q < 6.
In this case

(Vu, Vo) + (0zu, ) — (wAx) - V)u—wAu,p) = (Div F,p), (4.9)

where the duality pairings all have meaning for ¢ € (/W;’q,(D))3.
If 3/2 < ¢ < 3, then also u € (L?¥/3~9(D))3. We also obtain the same results for
the adjoint problem.
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STEP 3 (Uniqueness). We shall state the following uniqueness result: Let {ug,po}

be a weak solution to problem (L6) j=o, g=0, (I77), (L) in the sense of Definition 2.1
such that w € (Wh4(D))3, d3u € (W=19(D))3, (wAz) - Vu—wAu€E (W’l’q(D))B,
p € L7 (D) for some 3/2 < ¢ < 3. Then uy =0 and py = 0.

Indeed, for {ug,po} we have

—Aug + d3ug — (WA z) - V)ug +w Aug = —Vpg } o D,

divig = 0 (4.10)

The adjoint model admits a weak solution, say {u*, p*}, so given any F € (C§°(D))3*3
we have

—Au* = 03u* + (wA ) - V)u* —wAu* =DivF — Vp* } in D (4.11)

divu* =0
with u* € (W (D)3, p* € L"(D), 3/2 <r <6.

Taking u* as a test function in (£I0) (here we use that ¢/(¢ — 1) > 3/2, i.e., ¢ < 3)
and similarly ug in the dual problem (@II]) we get, in accordance with (Z9),

(Vug, Vu*) + (O3ug,u™) — ((wA ) - Vug —w Aug,u*) =0
(Vu*, Vug) — (O5u™,uo) + (wA ) - Vu* —w Au*,ug) = (Div F, ug).
From both equalities it follows that
(Div F,up) = 0 for all F € (C§°(D))>*3.

By Lemma 6.2 it implies that (f,ug) = 0 for all f € ﬁ/\fl’q/(‘?’l)(D), which gives ug =0
in (W4(D))3 and pp = 0 in L4(D). This completes the proof of uniqueness.
STEP 4 (Proof of estimate (21I) for {u,p}). Estimate ([ZI)) reads

IVullg,p + lIpllg.p0 + 10sull-1,4.0 + | = (WA 2) - V)u+w Aul—14,0
< ¢q(IDiv F[|—1,4,)-
Let 3/2 < ¢ < 3. Suppose on the contrary the existence of a sequence {Div Fy} in

W‘l’q(D)3 tending to fo, = 0 as k tends to infinity such that, for the corresponding
sequence of solutions {uy,px} in Wy9(D)3 x L(D),

Vugllg,p + IPkllg, 0 + |02k -1,4.0

+| - ((wAz) V)ug +wAugll—1,40 =1, (4.12)

for all k. We know from Step 2 that

IV uklle.p + Ipelle. < e(IDiv Fell-1q + l[un|, 0.0,
Hlpelo, 100, +] [ @ pala)dal), (413)
DP
[0zl -1.9,0 + | = (WA ) - V)ug + w Aupll-1,4,0
< |[Div Fil-1,4 + IVuk|p,llq,0, + IPk|D, 4,0, (4.14)
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and also from ([@L8]) that

Vur — Vullg,p + |lpx — pillg,p + |03ur — O3wi||~1,4,0
H(wAz) V(ug —u) —wA (ug —w)l|-1,4,0

< C(||DiV (Fy = F)ll-1,4 + llux —wlp,llg,0, + Pk —PilD,l~1,4,D,

+| [, $(@) (pr(2) = pu()de] ).

On the other hand, we have (with ¢ < 3)

(4.15)

11,4,0, < IVuklp,llg,p, + clluk|p,ll3¢/(3-¢).0, < cllVukllg,n
|q,Dp S 1;

uklp,

Ipx|D,

thus we can extract subsequences {u},} and {p}} weakly convergent in W*¢(D,)* and
L%(D,), strongly convergent in L9(D,)* and W~14(D,) (by Rellich’s theorem), with
{Uoo, Poo } the limit.

From (@I5) we can deduce that {u},} and {p} are Cauchy sequences in W'4(D,)?
and LI(D,). Then {uso, poo} € WH(D)3 x L(D), and we obtain

(Vieo, Vi) + (03100, ) = (WA Z) - V)tioo — W A Ueo, 9) = (foo, ) =0 (4.16)

as in [@3) for p € /W;’q, (D)? with po as the associated pressure. From Step 3, it is clear
that s = 0 and peo = 0; {Ueo, Poo } is the unique weak solution to problem (L6 r=o, g=0,
([T, (L) with foo = 0. From the obtained strong convergence of {u}} and {p}}, it is
also clear that (ZI2) holds for {uws, oo}, leading to a contradiction.

We have completed the proof of Theorem 211

5. Nonhomogeneous boundary conditions. If we replace the homogeneous
Dirichlet boundary conditions by nonhomogeneous ones in the form of (L9), we also
have the following theorem:

THEOREM 5.1. Let 3/2 < ¢ < 3, and suppose f and g as previously given. Then there
exists a unique weak solution {u,p} to (L6)g=0, (I.1), (I.9) (uniqueness up to a constant
multiple of w for w), which satisfies the estimate

IVullq,p + pllg,p + 105ull-1,4,0 + (WA @) - Vu —w Aull-1,4,p } (5.1)

< cq(Ifll-1.0.0 + w| + [w]* + 1),
with some constant ¢, > 0 independent of |w|.

Proof. The result is a corollary of Theorem [ZI1 Choose a cut-off function £ €
C§°(R3;[0,1]) satisfying £ = 1 near the boundary 9 and set
b(z) = Lewrl (§(z)|z]*w — es A V]z|?)

blaa(z) = w Az — es.
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Let v = u — b, dive = 0 since dive = 0 and divb = 0. So we obtain

—Av+ 00— ((wAz) - VIv+wAv+Vp = [+ [ in D,
divo = 0 in D,

v = 0 on 01, (5.2)
v — 0 at oo,

where
fo=—Ab+03b— ((wAx)V)b+ (wAD).

Applying Theorem [ZT] we get the existence of the unique weak solution (v, p) with the
following estimate

Vvllg.p + [Ipllg.p+]| = (WA 2)V)v +wAv[| 14D
< c(fll-1.9,0 + I foll-1.4,0) (5.3)
< c(Ifll-1.q.0 + lw| + lw|* 4+ 1). O

Appendix 1 - Bogovskii operator. Let us formulate the geometrical assumptions
and the properties we will use to take into account a nonzero divergence vectorial field.
We refer, e.g., to [1 [2, 12, 19] for the details.

Geometrical assumptions:

Let 1 < ¢ < +00. Let Q ¢ RN, N > 2, be a domain with boundary 0Q € C*! and
suppose one of the following two cases:

(1) © is bounded.

(ii) Q is an exterior domain, i.e., a domain having a compact nonempty complement.
In the bounded situation, Bogovskii [Il [2] has constructed a bounded linear operator
B: L(Q) — W, 9(Q)N such that u = By is a solution to

divu = g inQ,

u = 0 on 99, (54)

satisfying ||Bg|lw1.a) < cllgllq- The problem (5.4)) is not uniquely solved, given g €
LI(Q), [, g9(x)dr =0 is always assumed.

The generalization of the Bogovskii operator in the case of star-shaped domains has
been solved by Galdi; see [12]. Additionally, B maps W, %(Q) N L(Q) into W29 (Q); see
[1]. There are many situations in Fluid Dynamics that use the solution of Bogovskii’s
operator in Sobolev spaces with negative order (precisely, B is a bounded linear operator
from W;?(Q) in WO(TH)’q(Q)N, r+2 > %) To solve this type of problem we define
Sobolev spaces in the following way:

Wg,p _ m”'uww’(m,
and for s < 0 we define
W2(Q) i= (W P (Q)), WP (Q) == (W7 (Q)),

where % + z% =1
For more details, see [I8]. Also we would like to mention that comments concerning
Sobolev spaces of negative order appear in the work of Galdi [12] and Farwig, Sohr [4].
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Farwig and Sohr [3] have observed B as a bounded linear operator in a domain satisfying
one of the assumptions (i), (ii).

o from Wh4(Q) N LI(Q) in WEHUQ)N N W24(Q)N, if Q is bounded,

e from /W’l’q(Q) in L9(Q)N, also if 2 is bounded,

o from Wh49(Q) N W=149(Q) in WH(Q)N N W24(Q)N if Q is unbounded,
and u = Bg always solves divBg = g with Bg|aq = 0 under the condition [, g(z)dx =0,
and satisfies the estimates

cllgll 1.0
Vgl + llgll-1.0);

l[ullq

<
[ull2,y <

q

where ¢ = ¢(£2, ¢) > 0 is a constant.
To complete our discussion regarding the denseness property, we have the following
lemma:

LEMMA 5.2 (Kozono-Sohr [19], Lemma 2.2, Corollary 2.3). Let @ C R, n > 2, be any
domain and let 1 < ¢ < co. For all f € W~14(Q), there is F' € L(Q)" such that

divF = f, [Fllgaa <Clfll-140
with some C' > 0. As a result, the space {div F; F € C§°(Q)"} is dense in Wta(Q).

Appendix 2 - Boundedness of J3U,. We recall that ‘A/(f) is proportional to the

. . '3 2 w
multiplier m;(§) = |w\\§|5(5)6 €17t/ w]

Let us estimate m(§) and £,0,m(§), o =1,2,3.
e In the case |£[*t/|w| < 1, we can neglect the exponential term and we have

] leP
Jw

to estimate mg(§). So we decompose the bal r < 1 into many (but a finite

number of) slices S,, = {¢£ € R3: lel® <1, | n’ < i}, with appropriate values

n, € Z, and the remaining part ‘gl (1n81de the ball, where dist (i}—"s‘,n*) > i)
It is easy to verify that |[D(&)| > 1 for & € S’. Then |mo(§)] < % < ﬁ for
e s

Now for & € S,,,, using a Taylor expansion of 1 —e™% we get the lower bound
|[D(&)| > co|(|f“ +i(& —n,)|. One can deduce that |mg(€)| < 1. If n, # 0, we

[w]
precisely have
1€511€; | 1€ 11651 1 1
Imo()] < GHEBtET < e v & ) = T S Bl 17D

e In the case |£]%t/|w| > 1, [D(§)] > co. Then |[my(§)] < C|2€3|2 <1
We now compute
2621¢1%t
wl
with (3, denotes Kronecker’s symbol)
0aD(E) _ 2m (264 +i€ab3a)
D) ~ D(§) |l

9aD(§)
D(¢)

EaOami(§) = my(§) — m(§) — & my(§) —
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All terms can be either uniformly bounded or estimated as m;. Then after some
elementary calculations, for each «, we get

maxpsupe 4o |E40aEm:(€)] < C(|wl),

where (3 runs through the set of all multi-indices in {0, 1}3.

We now come back to (93Up, #) : There exists a sequence of functions H") € C§° such
that |[H® — H|, — 0 as | — oo. Let Uél) be solutions corresponding to H®); we apply
all the previous considerations to this sequence U(gl) and then to <83U(§l), o).

Let us denote H,il)(t, &) =0L(t) H.(,i)(Ow (t). — tes/|w])(€). Marcinkiewicz’s multiplier
theorem implies that the functions o — F~1[my(€) - H,gl)(t, &)](z) are bounded in L7 for
all £, 0 <t < 2m by C(|w])[[Hx(Ou(t) - —tes/|w])]lg, i-e.; by Clw [ Hokllg -

Then we finally get

€U (€)

(OsUS) 0x) = i foa — e |€| 0 (€)de (55)
in the form
27 F 4 ma(€) - HY (8,)]dt, W), (5.6)

where we have denoted the relation by (V) ¥). Passing to the limit as I — oo, and
taking the supremum for || ¥/, < 1, we obtain the control of ||03Up ,||—1,¢ by [|H.x| q-
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