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Abstract. We establish the existence and uniqueness of a weak solution of the three-

dimensional nonhomogeneous stationary Oseen flow around a rotating body in an exterior

domain D. We mainly use the localization procedure (see Kozono and Sohr (1991))

to combine our previous results (see Kračmar, Nečasová, and Penel (2007, 2008)) with

classical results in an appropriate bounded domain. We study the case of a nonintegrable

right-hand side, where f is given in (Ŵ−1,q(D))3 for certain values of q.

1. Introduction. The study of Navier–Stokes fluid flows past a rigid body trans-

lating with a constant velocity (or past a rotating obstacle with a prescribed constant

velocity) is one of the most fundamental questions in theoretical and applied Fluid Dy-

namics. A systematic and rigorous mathematical study was initiated by the fundamental

pioneering works of Oseen (1927), Leray (1933, 1934) and then developed by several other

mathematicians with significant contributions.

In the last decade much effort has been made on the analysis of solutions to different

problems: stationary as well as nonstationary, linear models as well as nonlinear ones, in

the whole space as well as in exterior domains. We refer to [6, 7, 8, 9, 10, 11, 13, 14, 15,

20, 21, 22, 23, 24, 25, 26, 28, 29, 30].
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In the present paper we mainly investigate the existence and uniqueness of weak

solutions to the linear stationary rotating Oseen system in exterior domains in the case

of a nonintegrable right-hand side.

Let D be an exterior domain in R3 with a boundary ∂D regular enough, say of class

C2. We consider the motion of a viscous fluid filling the domain D when the “obstacle”

Ω = R3 \D , which consists of a finite number of rigid bodies, is rotating about an axis

with constant angular velocity ω and moving in the direction of this axis. We assume

the fluid with a nonzero velocity v∞ = ke3 at infinity, and that ω = |ω|e3 = (0, 0, |ω|)T :
Our aim is to solve the time-periodic Oseen system of equations for the velocity field

v = v(y, t) and the associated pressure q = q(y, t):

∂tv − νΔv + (v · ∇)v +∇q = f̃ in D(t), t > 0,

div v = g̃ in D(t), t > 0,

v(y, t) = ω ∧ y on ∂D(t), t > 0,

v(y, t) → v∞ as |y| → ∞ .

(1.1)

The time-dependent exterior domain is

D(t) = {y ∈ R3 : y = O(|ω|t)x, x ∈ D},

where

Oω(t) =

⎛
⎝cos |ω| t − sin |ω| t 0

sin |ω| t cos |ω| t 0

0 0 1

⎞
⎠ . (1.2)

The coefficient of viscosity is ν > 0 and we will assume that nonnecessary integrable

external forces f̃ = f̃(y, t) are given.

Introducing the change of variables

x = Oω(t)
T y (1.3)

and the new functions

u(x, t) = OT
ω (t)(v(y, t)− v∞), p(x, t) = q(y, t), (1.4)

as well as the force term f1(x, t) = Oω(t)
T f̃(y, t), we arrive at the linear system of

equations in D × (0,∞):

∂tu− νΔu+ k∂3u− ((ω ∧ x) · ∇)u+ ω ∧ u+∇p = f1
divu = g.

(1.5)

In the case ω = 0, the system of equations (1.5) is a nonhomogeneous Stokes system

when k = 0 and it is a classical nonhomogeneous Oseen system when k > 0.

We are interested in the stationary flow inD (and, therefore, the time-periodic solution

to (1.5) as well as the periodic solution to the initial model (1.1)), and for simplicity we

will consider ν = 1, k = 1. So, for given f and g, our system of equations is the following:

−Δu+ ∂3u− ((ω ∧ x) · ∇)u+ ω ∧ u+∇p = f

divu = g

}
in D. (1.6)
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STATIONARY ROTATING OSEEN EQUATIONS IN EXTERIOR DOMAINS 423

We assume that the system of equations (1.6) is now complemented by a homogeneous

condition at infinity

u → 0 as |x| → ∞ (1.7)

and Dirichlet boundary conditions on ∂Ω, either

u|∂Ω = 0 (1.8)

or

u|∂Ω = ω ∧ x− e3, x ∈ ∂Ω. (1.9)

If D = R3, of course {u, p} is described by equations (1.6) and condition (1.7) only.

Through the relation div (((ω∧x)·∇)u−ω∧u) = ((ω∧x)·∇) div u = div ((ω∧x) div u),

we define p. The strong solution of the corresponding Cauchy problem (1.6), (1.7) has

been analyzed in Lq-spaces, 1 < q < ∞, in [8] proving the a priori estimates

‖∇2u‖q + ‖∇p‖q ≤ c(‖f‖q + ‖∇g + (ω ∧ x) · g − ge3‖q), (1.10)

‖∂3u‖q + ‖ − ((ω ∧ x) · ∇)u+ ω ∧ u‖q ≤ c(1 + |ω|−2
)‖f‖q (1.11)

with the constant c > 0 independent of |ω|, the second estimate being written with g = 0

just to simplify. Further, these results were improved in [6] in weighted spaces, obtaining

the following a priori estimates (always written with g = 0 to simplify):

‖∇2u‖q,w + ‖∇p‖q,w ≤ c‖f‖q,w, (1.12)

‖∂3u‖q,w + ‖ − ((ω ∧ x) · ∇)u+ ω ∧ u‖q,w ≤ c(1 + |ω|−5/2
)‖f‖q,w (1.13)

with the constant c > 0 independent of |ω|, and where the weights w belong to the more

general Muckenhoupt class Ã−
q . A weak solution to the same Cauchy problem (1.6),

(1.7) in the Lq setting, 1 < q < ∞, was investigated in [21] and the following a priori

estimates were proved (always written with g = 0):

‖∇u‖q + ‖p‖q + ‖ − ((ω ∧ x) · ∇)u+ ω ∧ u‖−1,q ≤ C‖f‖−1,q, (1.14)

where data belong to the dual of nonhomogeneous Sobolev spaces (see at the end of this

section).

In the work of Galdi [14], pointwise estimates for Navier-Stokes equations with rotating

terms were proved. He obtained that

|x|−1|u(x)| ≤ c, |x|−2(‖∇u(x)‖+ ‖p(x)‖) ≤ c.

Another outlook on the above pointwise estimates in a differential framework by use of

functional spaces has been recently proved by Farwig and Hishida [11]. Further, Galdi

and Silvestre [16] have proved a stability of solution u. A generalization in the L3,∞
setting was done by Hishida and Shibata [27].

We will study the boundary value problem (1.6), (1.7), (1.8). By applying the so-

called localization technique [19], we immediately observe that it combines both systems

in the whole space and in a bounded domain. Indeed, choose ρ > ρ0 > 0 so large that

Ω ⊂ Bρ0
= {x ∈ R3 : |x| < ρ0} and take a cut-off function ψ ∈ C∞

0 (Bρ; [0, 1]) such that
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424 S. KRAČMAR, Š. NEČASOVÁ, AND P. PENEL

ψ = 1 on Bρ0
and supp(∇ψ) ⊂ {x : ρ0 < |x| < ρ}; introducing now U = (1 − ψ)u, V =

ψu, π = (1− ψ)p and τ = ψp, we get

u = U + V (1.15)

p = π + τ (1.16)

within the whole space

−ΔU + ∂3U − ((ω ∧ x) · ∇)U + ω ∧ U +∇π = F1(u, p)
divU = G1(u)

U → 0 as |x| → ∞

⎫⎬
⎭ , (1.17)

where G1(u) = (1− ψ)g −∇ψ · u, and in the bounded domain Dρ = D ∩Bρ,

−ΔV + ∂3V +∇τ = F2(u, p)
divV = G2(u)

V |∂Dρ
= 0

⎫⎬
⎭ , (1.18)

where G2(u) = ψg +∇ψ · u and

F1(u, p) =(1− ψ)f + 2(∇ψ · ∇)u+ [Δψ + ((ω ∧ x)∇)ψ]u
− (∇ψ)p+ (∂3ψ)u,

F2(u, p) =ψf + ψ[((ω ∧ x) · ∇)u− ω ∧ u]− 2(∇ψ · ∇)u
− (Δψ)u+ (∇ψ)p+ (∂3ψ)u.

(1.19)

Let us observe that, in the bounded domainDρ, we can equivalently write the following

nonhomogeneous Stokes problem:

−ΔV +∇τ = F2

divV = G2(u)
V |∂Dρ

= 0

⎫⎬
⎭ , (1.20)

modifying F2 = ψf +ψ[((ω ∧ x) · ∇)u−ω ∧ u]− 2(∇ψ · ∇)u− (Δψ)u+ (∇ψ)p+ ∂3(ψu).

Let us also observe that, in order to prove the existence of solution in an exterior

domain even if g = 0 in (1.6), we need to study the nonhomogeneous case (1.17) in the

whole space.

In Section 2, we will give the definition of a weak solution to problem (1.6), (1.7),

(1.8) and our main result, existence and uniqueness of its solution. Sections 4 and 5 are

devoted to the proof of the main result. We need intermediate results for both problems

(1.17) and (1.18); Section 3 is devoted to them. Two appendices complete the paper, the

first one with the general results by Bogovskii, Farwig and Sohr [1, 2, 3], Kozono and

Sohr [19] and generalization in negative Sobolev spaces by Geissert, Heck, and Hieber

[18], and a second appendix with the technical treatment of ∂3u in negative Sobolev

spaces.

Let us fix the notations: C∞
0 (R3) consists of functions of the class C∞ with compact

supports contained in R3. By Lq(R3) we denote the usual Lebesgue spaces with norm
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STATIONARY ROTATING OSEEN EQUATIONS IN EXTERIOR DOMAINS 425

‖ · ‖q. We define the homogeneous Sobolev spaces

Ŵ 1,q(R3) = C∞
0 (R3)

‖∇·‖q
= {v ∈ Lq

loc(R
3); ∇v ∈ Lq(R3)3}/R, (1.21)

Ŵ 1,q(D) = C∞
0 (D)

‖∇·‖q,D

= {v ∈ Lq
loc(D); ∇v ∈ Lq(D)3, v|∂D = 0} for 3 ≤ q < ∞, (1.22)

= {v ∈ L3q/(3−q)(D); ∇v ∈ Lq(D)3, v|∂D = 0} for 1 ≤ q < 3, (1.23)

and their dual spaces

Ŵ−1,q(R3) = (Ŵ 1,q/(q−1)(R3))
′
,

Ŵ−1,q(D) = (Ŵ 1,q/(q−1)(D))
′
.

〈., .〉 denotes either different duality pairings or the inner product in L2.

2. The main result. We consider the problem (1.6), (1.7), (1.8) with g = 0 in the

exterior domain D. Let f be given in (Ŵ−1,q(D))3, 1 < q < ∞.

Definition 2.1. We call {u, p} a weak solution to (1.6)g=0, (1.7), (1.8) if

(1) {u, p} ∈ (Ŵ 1,q(D))3 × Lq(D),

(2) divu = 0 in Lq(D),

(3) ∂3u− ((ω ∧ x) · ∇)u+ ω ∧ u in Ŵ−1,q(D)3,

(4) 〈∇u,∇ϕ〉+ 〈∂3u− ((ω ∧ x) · ∇)u+ ω ∧ u, ϕ〉 = 〈p, divϕ〉+ 〈f, ϕ〉
for all ϕ in C∞

0 (D)3.

Our main result is

Theorem 2.1. Let 3/2 < q < 3, and suppose f is as given in (Ŵ−1,q(D))3. Then there

exists a unique weak solution {u, p} to (1.6)g=0, (1.7), (1.8), which satisfies the estimate

‖∇u‖q,D + ‖p‖q,D + ‖∂3u‖−1,q,D + ‖ − ((ω ∧ x) · ∇)u+ ω ∧ u‖−1,q,D

≤ cq‖f‖−1,q,D,
(2.1)

with some constant cq > 0 independent of |ω|.

Remark 2.2. • Similar results were obtained by Hishida for the Stokes problem [24].

• As a corollary of Theorem 2.1, we also obtain existence and uniqueness of the

solution to the nonhomogeneous Dirichlet problem (1.6)g=0, (1.7), (1.9); see The-

orem 5.1.

• It is possible to avoid some of the restrictions 3/2 < q < 3 (see [30]). In this way,

we can consider the null space of the problem

K =
{
u ∈ Ŵ 1,q(D)| div u = 0, u|∂Ω = 0,

(u, p) is a solution of (1.6) for some p ∈ Lq(D)
}
.

Then the solution u will be unique in W 1,q(D)/K for 3/2 < q < ∞.

• We can improve the result from Theorem 2.1 admitting nonsolenoidal solutions;

this will be the partial subject of a forthcoming paper. In the present paper, we

have decided to simply use the approach based on the Lax-Milgram theorem (see

Section 4, Step 1).
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3. Intermediate results. We can start with the analysis of the homogeneous prob-

lem in the whole space, then precisely the problem (1.17) for given F1 and G1 = 0. So

we use the notations {U0, π0}, and the preliminary results from [21, 23] are:

Definition 3.1. Let 1 < q < ∞. Given F1 ∈ Ŵ−1,q(R3)3, we call {U0, π0} ∈
Ŵ 1,q(R3)3 × Lq(R3) a weak solution to (1.17) with G1 = 0 if

(1) divU0 = 0 in Lq(R3),

(2) ∂3U0 − ((ω ∧ x) · ∇)U0 + ω ∧ U0 ∈ Ŵ−1,q(R3)3,

(3) 〈∇U0,∇ϕ〉+ 〈∂3U0 − ((ω ∧ x) · ∇)U0 + ω ∧ U0, ϕ〉
−〈π0, divϕ〉 = 〈F1, ϕ〉 for all ϕ ∈ C∞

0 (R3)3.

Theorem 3.1 ([21]). Let 1 < q < ∞ and let F1 ∈ Ŵ−1,q(R3)3 be given. Then the

problem (1.17) with G1 = 0 possesses a weak solution {U0, π0} ∈ Ŵ 1,q(R3)3 × Lq(R3)

which satisfies

‖∇U0‖q + ‖π0‖q + ‖∂3U0 − ((ω ∧ x) · ∇)U0 + ω ∧ U0‖−1,q ≤ c‖F1‖−1,q, (3.1)

with some c > 0 depending on q.

Remark. Without a special treatment of the third component of the gradient of U0,

we only have:

‖∂3U0 − ((ω ∧ x) · ∇)U0 + ω ∧ U0‖−1,q,R3

= ‖F1 +ΔU0‖−1,q,R3 ≤ c(‖F1‖−1,q,R3 + ‖∇U0‖q,R3) ≤ c‖F1‖−1,q,R3 ,

with some c > 0 depending on q.

Proposition 3.2. Let 1 < q < ∞ and let F1 ∈ Ŵ−1,q(R3)3 be given. Then the problem

(1.17) with G1 = 0 possesses a weak solution {U0, π0} ∈ Ŵ 1,q(R3)3 × Lq(R3) which

satisfies 1.14 and, moreover,

‖∂3U0‖−1,q ≤ c‖F1‖−1,q

with some c > 0 depending on q.

Corollary 3.3. Let 1 < q < ∞ and let F1 ∈ Ŵ−1,q(R3)3 be given. Then the problem

(1.17) with G1 = 0 possesses a weak solution {U0, π0} ∈ Ŵ 1,q(R3)3 × Lq(R3) which

satisfies:

‖∇U0‖q + ‖π0‖q + ‖∂3U0‖−1,q + ‖ − ((ω ∧ x) · ∇)U0 + ω ∧ U0‖−1,q ≤ c‖F1‖−1,q.

Proof of Proposition 3.2. We need to estimate the quantity sup‖∇φ‖≤1〈∂3U0, φ〉. Far-
wig [9] estimated ∂3U0 in Lq-norms in the case ‖F1‖q bounded and then, in a similar

study, we also used the multiplier theory starting from the integral representation of

∂3U0 induced in [21].

We know that F1 = Div H with H·k = BF1,k ∈ Lq(R3)3 (see Appendix 1, and using the

fact that the space {F1 |F1 = DivH,H ∈ C∞
0 (R3)3×3} is dense in Ŵ−1,q(R3)3, we can

assume first that H ∈ C∞
0 (R3)3×3). U0 can be expressed in dependence of H as

U0(x) =

∫
R3

Γ (x, y) · Div H (y) dy,
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where Γ(x, y) =
∫∞
0

Et (Oω(t)x− y − te3) O
T
ω (t) dt and Et =

1
(4πt)3/2

e−|ξ|2/4t. Applying

the Fourier transformation, we get the following form:

Û0,k(ξ) =
1

D(ξ)

∫ 2π/|ω|

0

e−(|ξ|2+iξ3)tOT
ω (t) ξjĤjk(Oω(t)ξ) dt,

denoting

D(ξ) = 1− e−2π(|ξ|2+iξ3)/|ω|.

So we have

∂̂3U0,k(ξ) =
iξ3ξj

D(ξ)|ω|

∫ 2π

0

e−(|ξ|2+iξ3)t/|ω|OT
ω (t)Ĥjk(Oω(t)ξ) dt,

and also
∂̂3U0,k(ξ)

|ξ| =

∫ 2π

0

mt(ξ) ·OT
ω (t) Ĥ·k(Oω(t).− te3/|ω|)(ξ) dt,

where the multiplier mt(·) has the form

mt(ξ) =
iξ3ξ

|ω||ξ|D(ξ)
e−|ξ|2t/|ω|.

In fact, we decide to rewrite on purpose

〈∂3U0,k , φk〉 = i
∫
R3

ξ3Û0,k
(ξ)

|ξ| · |ξ|φ̂k(ξ)dξ, (3.2)

which reads ∫
R3

V̂ (ξ) · Ψ̂(ξ)dξ

in duality Lq–Lq′ . Indeed, Ψ can be taken in Lq′ and the term V̂ (ξ) =
ξ3Û0,k

(ξ)

|ξ| can be

estimated in Lq. To this end, observing that ‖H(Oω(t)·−te3)‖q = ‖H‖q for all t ∈ (0, 2π),

and knowing that e−itξ3Ĥjk(·) is the Fourier transform of Hjk(·− te3), one can show (see

Appendix 2) that V̂ (ξ) satisfies the Marcinkiewicz multiplier theorem which implies the

boundedness of V in Lq by F1 ∈ Ŵ−1,q(R3)3. Therefore we obtain

‖∂3U0‖−1,q ≤ ‖H‖q ≤ ‖F1‖−1,q. �
Remark 3.3. • Let 1 < q < 3. Then U0 ∈ L3q/(3−q)(R3) and following Theorems 1.1

and 1.2 from [21], the solution {U0, π0} is unique.

• In the same conditions, following Corollary 1.2 from [21] (see also [12], pp. 59–62),

we have ‖|x|−1U0‖q ≤ c‖F1‖−1,q with a positive constant c = c(q, ω).

Concerning now the nonhomogeneous problem in the whole space, i.e. problem (1.17)

for given F1 and G1, we recall the following result.

Theorem 3.4 ([23]). Let 1 < q < ∞ and let F1 ∈ Ŵ−1,q(R3)3 be given. Suppose

G1 ∈ Lq(R3) such that (ω ∧ x) ·G1 ∈ Ŵ−1,q(R3). Then problem (1.17) possesses a weak

solution {U, π} ∈ Ŵ 1,q(R3)3 × Lq(R3) which satisfies

‖∇U‖q + ‖π‖q + ‖∂3U − ((ω ∧ x) · ∇)U + ω ∧ U‖−1,q

≤ c(‖F1‖−1,q + ‖G1‖q + ‖(ω ∧ x) ·G1‖−1,q), (3.3)

with some c > 0 depending on q.
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Remark 3.5. Due to Proposition 3.2 we are able to improve the previous estimate;

now we have:

‖∇U‖q + ‖π‖q + ‖∂3U‖−1,q + ‖ − ((ω ∧ x) · ∇)U + ω ∧ U‖−1,q

≤ c(‖F1‖−1,q + ‖G1‖q + ‖(ω ∧ x) ·G1‖−1,q). (3.4)

We finally recall the well-known result, e.g. from [19], about the nonhomogeneous

Stokes problem in bounded domains, solving problem (1.20) in the domain Dρ. So, with

the previously used notations {V, τ}, the theorem reads

Theorem 3.5. Let 1 < q < ∞. Suppose that

F2 ∈ W−1,q(Dρ)
3, G2 ∈ Lq

0(Dρ), (so, we assume

∫
Dρ

G2(x)dx = 0).

Then problem (1.20) possesses a unique (up to an additive constant for τ ) weak solution

{V, τ} ∈ W 1,q
0 (Dρ)

3 × Lq(Dρ), which satisfies the estimate

‖∇V ‖q,Dρ
+ ‖τ − τ̄‖q,Dρ

≤ C(‖F2‖−1,q,Dρ
+ ‖G2‖q,Dρ

), (3.5)

where τ̄ = 1
|Dρ|

∫
Dρ

τ (x)dx.

4. Proof of the main theorem. The proof is presented in four steps.

Step 1 (Existence (homogeneous divergence case)). Let f = DivF with F ∈ C∞
0 (D)9.

In the domain DR according to the support of F , we apply the classical approach to solve

−Δu+ ∂3u− ((ω ∧ x) · ∇)u+ ω ∧ u+∇p = f = DivF

with divu = 0 and with homogeneous Dirichlet boundary conditions on ∂DR.

The bilinear form b(u, ϕ) = 〈∇u,∇ϕ〉+ 〈∂3u, ϕ〉−〈((ω∧x) ·∇)u−ω∧u, ϕ〉 is coercive
on (Ŵ 1,2

σ (DR))
3 × (Ŵ 1,2

σ (DR))
3; 〈., .〉 here stands for the L2-inner product. One can

easily verify that b(uR, uR) = ‖∇uR‖22, DR
= 〈DivF, uR〉.

Using the Lax-Milgram theorem we justify the existence of a unique solution uR ∈
(Ŵ 1,2

σ (DR))
3, which satisfies the estimate

‖∇uR‖2,DR
≤ ‖F‖2,DR

= ‖F‖2,D.

We can extend uR by zero in D \DR. Then we obtain ũR ∈ (Ŵ 1,2
σ (D))3 satisfying the

same estimate, uniform as R → +∞.

We now choose a sequence of numbers {Rn}n, tending to infinity, so that ũRn
converge

weakly in (Ŵ 1,2
σ (D))3. The limit u is unique and such that

〈∇u,∇ϕ〉+ 〈∂3u, ϕ〉 − 〈((ω ∧ x) · ∇)u− ω ∧ u, ϕ〉 − 〈f, ϕ〉 = 0 (4.1)

for all ϕ ∈ C∞
0 (D)3, then for all ϕ ∈ (Ŵ 1,2(D))3.

Therefore there exists p ∈ L2
loc(D) (unique up to an additive constant) such that

−Δu+ ∂3u− ((ω ∧ x) · ∇)u+ ω ∧ u− f = −∇p.

Applying in the next step the localization technique will imply that u and p satisfy

u ∈ Ŵ 1,q(D)3, p ∈ Lq(D) for 3/2 < q ≤ 6.
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Step 2 (localization procedure). Let φ ∈ (C∞
0 (R3))3, and let ψ be always the same

cut-off function as in Section 1. We can successively choose the following test functions

ϕ:

• ϕ = (1 − ψ)φ, so we can read over R3 all integrals from equation (4.4) and

interpret the solved problem in the whole space by {U, π} = {(1−ψ)u, (1−ψ)p}
as in (1.17); the formulas describing F1 = F1(u, p) and G1 = G1(u) are given in

Section 1.

• ϕ = ψφ, so we can interpret in Dρ the solved problem by {V, τ} = {ψu, ψp} as

in (1.18) or (1.20); see in Section 1 the detailed formulas for F2 = F2(u, p) and

G2 = G2(u).

Theorem 3.6 and Theorem 3.7 respectively solve these problems under the following

hypothesis:

F1 ∈ (Ŵ−1,q(R3))3, G1 ∈ Lq(R3), (ω ∧ x) ·G1 ∈ Ŵ−1,q(R3),

F2 ∈ (Ŵ−1,q(Dρ))
3, G2 ∈ Lq

0(Dρ),

with estimates (3.3) resp. (3.5).

To exploit these estimates, it remains essentially to control all terms we have from

formulas (1.19) in ‖Fj(u, p)‖−1,q,R3orDρ
, for appropriate q and j = 1, 2. In this way, we

recall that ∇ψ and Δψ have compact support in Dρ at the most (precisely in the annulus

{x : ρ0 < |x| < ρ} closed to the “obstacle” Ω), so we have

• either ‖φ‖q/(q−1),Dρ
≤ c(|Dρ|)‖∇φ‖q/(q−1),Dρ

by Friedrichs-Poincaré inequality,

or ‖φ‖q/(q−1), Dρ
≤ |Dρ|1/3‖φ‖r,Dρ

by Hölder inequality, with 1
r + 1

3 = q−1
q , so it is necessary that q−1

q > 1
3 and

q > 3
2 .

Thus ‖φ‖q/(q−1),Dρ
≤ |Dρ|1/3‖φ‖r,R3 ≤ c(|Dρ|)‖∇φ‖q/(q−1),R3

• |〈(1− ψ)f, φ〉| ≤ c‖f‖−1,q,D‖∇φ‖q/(q−1),R3

• |〈2(∇ψ · ∇)u+ [Δψ + ((ω ∧ x) · ∇)ψ]u, φ〉|
≤ |〈(Δψ)φ, u〉|+ |〈2(∇ψ · ∇)φ, u〉|+ |〈(((ω ∧ x) · ∇)ψ)φ, u〉|
≤ c‖u|Dρ

‖q,Dρ
‖∇φ‖q/(q−1),R3

• |〈(∇ψ)p, φ〉| ≤ c‖p|Dρ
‖−1,q,Dρ

‖∇φ‖q/(q−1),R3

• |〈(∂3ψ)u, φ〉| ≤ c‖u|Dρ
‖q,Dρ

‖∇φ‖q/(q−1),R3

• ‖(ω ∧ x)(u · ∇ψ)‖−1,q,R3 ≤ C‖u|Dρ
‖q,Dρ

‖∇φ‖q/(q−1),R3 .
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Now, since G1 = −∇ψu and G2 = ∇ψu, we also have

|〈∇ψu, φ〉| ≤ C‖u|Dρ
‖q,Dρ

‖∇φ‖q/(q−1),R3 .

Then applying the estimates (3.3), (3.4) together with previous estimates, we get

‖∇U‖q,R3 + ‖π‖q,R3 ≤ c(‖f‖−1,q + ‖u|Dρ
‖q,Dρ

+ ‖p|Dρ
‖−1,q,Dρ

), (4.2)

‖∂3U‖−1,q,R3 + ‖((ω ∧ x) · ∇)U − ω ∧ U‖−1,q,R3 (4.3)

≤ c(‖f‖−1,q + ‖u|Dρ
‖q,Dρ

+ ‖p|Dρ
‖−1,q,Dρ

),

‖∇V ‖q,Dρ
+ ‖τ‖q,Dρ

≤ c
(
‖f‖−1,q + ‖u|Dρ

‖q,Dρ
+ ‖p|Dρ

‖−1,q,Dρ
(4.4)

+
∣∣∣ ∫

Dρ

ψ(x)p(x)dx
∣∣∣),

and we can conclude with the estimate for ‖∂3u‖−1,q,D, observing that

‖∂3u‖−1,q,D = ‖∂3 (U + V ) ‖−1,q,D ≤ ‖∂3U‖−1,q,R3 + ‖∂3V ‖−1,q,Dρ

≤ c
(
‖∂3U‖−1,q,R3 + ‖∂3V ‖q,Dρ

)
.

(4.5)

We know that u|Dρ
∈ W 1,2

0 (Dρ). Then, by means of the embedding W 1,2
0 (Dρ) ⊂

Lq(Dρ) where 1
6 ≤ 1

q ≤ 2
3 , we obtain ‖u|Dρ

‖q,Dρ
≤ c. Therefore, all inequalities

make sense and ‖Fj(u, p)‖−1,q,R3orDρ
is bounded in terms of ‖f‖−1,q, ‖u|Dρ

‖q,Dρ
and

‖p|Dρ
‖−1,q,Dρ

.

Finally (u = U + V, p = π + τ ),

‖∇u‖q,D + ‖p‖q,D ≤ c
(
‖f‖−1,q + ‖u|Dρ

‖q,Dρ
(4.6)

+ ‖p|Dρ
‖−1,q,Dρ

+
∣∣ ∫

Dρ

ψ(x)p(x)dx
∣∣),

‖∂3u‖−1,q,D + ‖(ω ∧ x) · ∇u− ω ∧ u‖−1,q,D (4.7)

≤ c
(
‖f‖−1,q + ‖∇u|Dρ

‖q + ‖p|Dρ
‖q
)
.

From the estimates (4.6), (4.7) we immediately get

‖∇u‖q,D + ‖p‖q,D + ‖∂3u‖−1,q,D + ‖(ω ∧ x) · ∇u− ω ∧ u‖−1,q,D

≤ c
(
‖f‖−1,q + ‖u|Dρ

‖q,Dρ
+ ‖p|Dρ

‖−1,q,Dρ
+
∣∣ ∫

Dρ
ψ(x)p(x)dx

∣∣), (4.8)

where the norms of u and p are computed only on the bounded setDρ, and then from step

1 all norms on the right-hand side are finite. Therefore, for f = DivF , F ∈ (C∞
0 (D))3×3

we get that the problem (1.6)g=0, (1.7), (1.8) has a solution {u, p}, u ∈ (Ŵ 1,q(D))3,

∂3u ∈ (Ŵ−1,q(D))3, (ω∧x) ·∇u−ω∧u ∈
(
W−1,q(D)

)3
, p ∈ Lq (D) , for all 3/2 < q ≤ 6.

In this case

〈∇u,∇ϕ〉+ 〈∂3u, ϕ〉 − 〈((ω ∧ x) · ∇)u− ω ∧ u, ϕ〉 = 〈DivF, ϕ〉, (4.9)

where the duality pairings all have meaning for ϕ ∈ (Ŵ 1,q′

σ (D))3.

If 3/2 < q < 3, then also u ∈ (L3q/(3−q)(D))3. We also obtain the same results for

the adjoint problem.
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Step 3 (Uniqueness). We shall state the following uniqueness result: Let {u0, p0}
be a weak solution to problem (1.6)f=0, g=0, (1.7), (1.8) in the sense of Definition 2.1

such that u ∈ (Ŵ 1,q(D))3, ∂3u ∈ (Ŵ−1,q(D))3, (ω ∧ x) · ∇u − ω ∧ u ∈
(
W−1,q(D)

)3
,

p ∈ Lq (D) for some 3/2 < q < 3. Then u0 = 0 and p0 = 0.

Indeed, for {u0, p0} we have

−Δu0 + ∂3u0 − ((ω ∧ x) · ∇)u0 + ω ∧ u0 = −∇p0
divu0 = 0

}
in D. (4.10)

The adjoint model admits a weak solution, say {u∗, p∗}, so given any F ∈ (C∞
0 (D))3×3

we have

−Δu∗ − ∂3u
∗ + ((ω ∧ x) · ∇)u∗ − ω ∧ u∗ = DivF −∇p∗

divu∗ = 0

}
in D (4.11)

with u∗ ∈ (Ŵ 1,r
σ (D))3, p∗ ∈ Lr(D), 3/2 < r ≤ 6.

Taking u∗ as a test function in (4.10) (here we use that q/(q − 1) > 3/2, i.e., q < 3)

and similarly u0 in the dual problem (4.11) we get, in accordance with (4.9),

〈∇u0,∇u∗〉+ 〈∂3u0, u
∗〉 − 〈(ω ∧ x) · ∇u0 − ω ∧ u0, u

∗〉 = 0

〈∇u∗,∇u0〉 − 〈∂3u∗, u0〉+ 〈(ω ∧ x) · ∇u∗ − ω ∧ u∗, u0〉 = 〈DivF, u0〉.

From both equalities it follows that

〈DivF, u0〉 = 0 for all F ∈ (C∞
0 (D))3×3.

By Lemma 6.2 it implies that 〈f, u0〉 = 0 for all f ∈ Ŵ−1,q/(q−1)(D), which gives u0 = 0

in (Ŵ 1,q(D))3 and p0 = 0 in Lq(D). This completes the proof of uniqueness.

Step 4 (Proof of estimate (2.1) for {u, p}). Estimate (2.1) reads

‖∇u‖q,D + ‖p‖q,D + ‖∂3u‖−1,q,D + ‖ − ((ω ∧ x) · ∇)u+ ω ∧ u‖−1,q,D

≤ cq(‖DivF‖−1,q,D).

Let 3/2 < q < 3. Suppose on the contrary the existence of a sequence {DivFk} in

Ŵ−1,q(D)3 tending to f∞ = 0 as k tends to infinity such that, for the corresponding

sequence of solutions {uk, pk} in Ŵ 1,q
0 (D)3 × Lq(D),

‖∇uk‖q,D + ‖pk‖q,D + ‖∂3uk‖−1,q,D

+‖ − ((ω ∧ x) · ∇)uk + ω ∧ uk‖−1,q,D = 1, (4.12)

for all k. We know from Step 2 that

‖∇uk‖q,D + ‖pk‖q,D ≤ c
(
‖DivFk‖−1,q + ‖uk|Dρ

‖q,Dρ

+ ‖pk|Dρ
‖−1,q,Dρ

+
∣∣ ∫

Dρ

ψ(x) pk(x)dx
∣∣), (4.13)

‖∂3uk‖−1,q,D + ‖ − ((ω ∧ x) · ∇)uk + ω ∧ uk‖−1,q,D

≤ ‖DivFk‖−1,q + ‖∇uk|Dρ
‖q,Dρ

+ ‖pk|Dρ
‖q,Dρ

, (4.14)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf
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and also from (4.8) that

‖∇uk −∇ul‖q,D + ‖pk − pl‖q,D + ‖∂3uk − ∂3ul‖−1,q,D

+‖(ω ∧ x) · ∇(uk − ul)− ω ∧ (uk − ul)‖−1,q,D

≤ c
(
‖Div (Fk − Fl)‖−1,q + ‖uk − ul|Dρ

‖q,Dρ
+ ‖pk − pl|Dρ

‖−1,q,Dρ

+
∣∣ ∫

Dρ
ψ(x)(pk(x)− pl(x))dx

∣∣).
(4.15)

On the other hand, we have (with q < 3)

‖uk|Dρ
‖1,q,Dρ

≤ ‖∇uk|Dρ
‖q,Dρ

+ c‖uk|Dρ
‖3q/(3−q),Dρ

≤ c‖∇uk‖q,D
‖pk|Dρ

‖q,Dρ
≤ 1;

thus we can extract subsequences {u′
k} and {p′k} weakly convergent in W 1,q(Dρ)

3 and

Lq(Dρ), strongly convergent in Lq(Dρ)
3 and W−1,q(Dρ) (by Rellich’s theorem), with

{u∞, p∞} the limit.

From (4.15) we can deduce that {u′
k} and {p′k} are Cauchy sequences in W 1,q(Dρ)

3

and Lq(Dρ). Then {u∞, p∞} ∈ Ŵ 1,q(D)3 × Lq(D), and we obtain

〈∇u∞,∇ϕ〉+ 〈∂3u∞, ϕ〉 − 〈((ω ∧ x) · ∇)u∞ − ω ∧ u∞, ϕ〉 = 〈f∞, ϕ〉 = 0 (4.16)

as in (4.9) for ϕ ∈ Ŵ 1,q′

σ (D)3 with p∞ as the associated pressure. From Step 3, it is clear

that u∞ = 0 and p∞ = 0; {u∞, p∞} is the unique weak solution to problem (1.6)f=0, g=0,

(1.7), (1.8) with f∞ = 0. From the obtained strong convergence of {u′
k} and {p′k}, it is

also clear that (4.12) holds for {u∞, p∞}, leading to a contradiction.

We have completed the proof of Theorem 2.1.

5. Nonhomogeneous boundary conditions. If we replace the homogeneous

Dirichlet boundary conditions by nonhomogeneous ones in the form of (1.9), we also

have the following theorem:

Theorem 5.1. Let 3/2 < q < 3, and suppose f and g as previously given. Then there

exists a unique weak solution {u, p} to (1.6)g=0, (1.7), (1.9) (uniqueness up to a constant

multiple of ω for u), which satisfies the estimate

‖∇u‖q,D + ‖p‖q,D + ‖∂3u‖−1,q,D + ‖(ω ∧ x) · ∇u− ω ∧ u‖−1,q,D

≤ cq(‖f‖−1,q,D + |ω|+ |ω|2 + 1),

}
(5.1)

with some constant cq > 0 independent of |ω|.

Proof. The result is a corollary of Theorem 2.1. Choose a cut-off function ξ ∈
C∞

0 (R3; [0, 1]) satisfying ξ = 1 near the boundary ∂Ω and set

b(x) = 1
2curl (ξ(x)|x|2ω − 1

2e3 ∧ ∇|x|2)

b|∂Ω(x) = ω ∧ x− e3.
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Let v = u− b, divv = 0 since divu = 0 and divb = 0. So we obtain

−Δv + ∂3v − ((ω ∧ x) · ∇)v + ω ∧ v +∇p = f + fb in D,

divv = 0 in D,

v = 0 on ∂Ω,

v → 0 at ∞,

(5.2)

where

fb = −Δb+ ∂3b− ((ω ∧ x)∇)b+ (ω ∧ b).

Applying Theorem 2.1 we get the existence of the unique weak solution (v, p) with the

following estimate

‖∇v‖q,D + ‖p‖q,D+‖ − ((ω ∧ x)∇)v + ω ∧ v‖−1,q,D

≤ c(‖f‖−1,q,D + ‖fb‖−1,q,D) (5.3)

≤ c(‖f‖−1,q,D + |ω|+ |ω|2 + 1). �

Appendix 1 - Bogovskii operator. Let us formulate the geometrical assumptions

and the properties we will use to take into account a nonzero divergence vectorial field.

We refer, e.g., to [1, 2, 12, 19] for the details.

Geometrical assumptions:

Let 1 < q < +∞. Let Ω ⊂ RN , N ≥ 2, be a domain with boundary ∂Ω ∈ C1,1 and

suppose one of the following two cases:

(i) Ω is bounded.

(ii) Ω is an exterior domain, i.e., a domain having a compact nonempty complement.

In the bounded situation, Bogovskii [1, 2] has constructed a bounded linear operator

B : Lq
0(Ω) → W 1,q

0 (Ω)N such that u = Bg is a solution to

divu = g in Ω,

u = 0 on ∂Ω,
(5.4)

satisfying ‖Bg‖W 1,q(Ω) ≤ c‖g‖q. The problem (5.4) is not uniquely solved, given g ∈
Lq(Ω),

∫
Ω
g(x)dx = 0 is always assumed.

The generalization of the Bogovskii operator in the case of star-shaped domains has

been solved by Galdi; see [12]. Additionally, B maps W 1,q
0 (Ω)∩Lq

0(Ω) into W 2,q
0 (Ω); see

[1]. There are many situations in Fluid Dynamics that use the solution of Bogovskii’s

operator in Sobolev spaces with negative order (precisely, B is a bounded linear operator

from W r,q
0 (Ω) in W

(r+1),q
0 (Ω)N , r + 2 > 1

q ). To solve this type of problem we define

Sobolev spaces in the following way:

W s,p
0 = Cc(Ω)

‖·‖Ws,p(Ω)
,

and for s < 0 we define

W s,p(Ω) := (W−s,p′

0 (Ω))′,W s,p
0 (Ω) := (W−s,p′

(Ω))′,

where 1
p + 1

p′ = 1.

For more details, see [18]. Also we would like to mention that comments concerning

Sobolev spaces of negative order appear in the work of Galdi [12] and Farwig, Sohr [4].
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Farwig and Sohr [3] have observed B as a bounded linear operator in a domain satisfying

one of the assumptions (i), (ii).

• from Ŵ 1,q(Ω) ∩ Lq
0(Ω) in W 1,q

0 (Ω)N ∩W 2,q(Ω)N , if Ω is bounded,

• from Ŵ−1,q(Ω) in Lq(Ω)N , also if Ω is bounded,

• from W 1,q(Ω) ∩ Ŵ−1,q(Ω) in W 1,q
0 (Ω)N ∩W 2,q(Ω)N , if Ω is unbounded,

and u = Bg always solves divBg = g with Bg|∂Ω = 0 under the condition
∫
Ω
g(x)dx = 0,

and satisfies the estimates

‖u‖q ≤ c‖g‖−1,q,

‖u‖2,q ≤ c(‖∇g‖q + ‖g‖−1,q),

where c = c(Ω, q) > 0 is a constant.

To complete our discussion regarding the denseness property, we have the following

lemma:

Lemma 5.2 (Kozono-Sohr [19], Lemma 2.2, Corollary 2.3). Let Ω ⊂ Rn, n ≥ 2, be any

domain and let 1 < q < ∞. For all f ∈ Ŵ−1,q(Ω), there is F ∈ Lq(Ω)n such that

divF = f, ‖F‖q,Ω ≤ C‖f‖−1,q,Ω

with some C > 0. As a result, the space {divF ;F ∈ C∞
0 (Ω)n} is dense in Ŵ−1,q(Ω).

Appendix 2 - Boundedness of ∂3U0. We recall that V̂ (ξ) is proportional to the

multiplier mt(ξ) =
iξ3ξ

|ω||ξ|D(ξ)e
−|ξ|2t/|ω|.

Let us estimate mt(ξ) and ξα∂αmt(ξ), α = 1, 2, 3.

• In the case |ξ|2t/|ω| ≤ 1, we can neglect the exponential term and we have

to estimate m0(ξ). So we decompose the ball |ξ|2
|ω| ≤ 1 into many (but a finite

number of) slices Sn = {ξ ∈ R3 : |ξ|2
|ω| ≤ 1,

∣∣ ξ3
|ω|−n

∣∣ ≤ 1
4}, with appropriate values

n∗ ∈ Z, and the remaining part S′ (inside the ball, where dist ( ξ3
|ω| , n∗) ≥ 1

4 ).

It is easy to verify that |D(ξ)| ≥ 1 for ξ ∈ S′. Then |m0(ξ)| ≤ |ξ|
|ω| ≤ 1√

|ω|
for

ξ ∈ S′.

Now for ξ ∈ Sn∗ , using a Taylor expansion of 1− e−z we get the lower bound

|D(ξ)| ≥ c0|( |ξ|
2

|ω| + i( ξ3
|ω| − n∗)|. One can deduce that |m0(ξ)| ≤ c1. If n∗ �= 0, we

precisely have

|m0(ξ)| ≤ |ξ3||ξj |
|ω||ξ||D(ξ)| ≤

|ξ3||ξj |
|ω||ξ||( |ξ|2

|ω| +i(
ξ3
|ω|−n∗))|

≤ 1
|ξ| ≤

1
|ω|(n∗−1/4) .

• In the case |ξ|2t/|ω| > 1, |D(ξ)| ≥ c2. Then |mt(ξ)| ≤ |ξ3|
c2|ξ|2 ≤ 1

c2
√

|ω|
.

We now compute

ξα∂αmt(ξ) = mt(ξ)−
2ξ2α|ξ|2t

|ω| mt(ξ)− ξα
∂αD(ξ)

D(ξ)
mt(ξ)−

ξ2α
|ξ|2mt(ξ),

with (δ3α denotes Kronecker’s symbol)

∂αD(ξ)

D(ξ)
=

2π

D(ξ)
· (2ξ

2
α + iξαδ3α)

|ω| .
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All terms can be either uniformly bounded or estimated as mt. Then after some

elementary calculations, for each α, we get

maxβsupξ �=0|ξβα∂β
αξmt(ξ)| ≤ C(|ω|),

where β runs through the set of all multi-indices in {0, 1}3.
We now come back to 〈∂3U0, φ〉 : There exists a sequence of functions H(l) ∈ C∞

0 such

that ‖H(l) −H‖q → 0 as l → ∞. Let U
(l)
0 be solutions corresponding to H(l); we apply

all the previous considerations to this sequence U
(l)
0 and then to 〈∂3U (l)

0 , φ〉.
Let us denote H(l)

k (t, ξ) = OT
ω (t) Ĥ

(l)
·k (Oω(t).− te3/|ω|)(ξ). Marcinkiewicz’s multiplier

theorem implies that the functions x → F−1[mt(ξ) · H(l)
k (t, ξ)](x) are bounded in Lq for

all t, 0 < t < 2π by C(|ω|)‖H·k(Oω(t) · −te3/|ω|)‖q, i.e., by C(|ω|)‖H·k‖q .

Then we finally get

〈∂3U (l)
0,k

, φk〉 = i
∫
R3

ξ3Û
(l)
0,k

(ξ)

|ξ| |ξ|φ̂k(ξ)dξ
(5.5)

in the form

〈
∫ 2π

0
F−1[mt(ξ) · H(l)

k (t, ξ)]dt,Ψ〉, (5.6)

where we have denoted the relation by 〈V (l),Ψ〉. Passing to the limit as l → ∞, and

taking the supremum for ‖Ψ‖q′ ≤ 1, we obtain the control of ‖∂3U0,k‖−1,q by ‖H·k‖q.
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