
INFORMATICA, 2005, Vol. 16, No. 2, 175–192 175
 2005Institute of Mathematics and Informatics, Vilnius

Approach to Enterprise Modelling for Information
Systems Engineering

Saulius GUDAS, Audrius LOPATA
Information Systems Department, Kaunas University of Technology
Student ↪u 50, Kaunas, Lithuania
Kaunas Faculty of Humanities, Vilnius University
Muitinės 8, Kaunas, Lithuania
e-mail: gudas@soften.ktu.lt, audrius.lopata@if.ktu.lt

Tomas SKERSYS
Information Systems Department, Kaunas University of Technology
Student ↪u 50, Kaunas, Lithuania
e-mail: skertoma@pit.ktu.lt

Received: December 2003

Abstract. The paper deals with Knowledge-based Information Systems (IS) engineering. The En-
terprise management functions, processes and their interactions are considered as the major com-
ponents of the domain knowledge. This is the peculiarity of this approach to Enterprise modelling
for IS engineering. The resulting framework for Enterprise modelling and Knowledge-based IS
engineering – Enterprise meta-model (EMM) – is developed and presented in this paper. The ar-
chitecture of the advanced CASE system is also discussed in this paper.

Key words: information systems engineering, CASE system, knowledge-based, enterprise meta-
model.

1. Introduction

Nowadays efficient Information Systems (IS) engineering and Enterprise modelling are
directly interrelated issues. Enterprise modelling is treated as a source of Enterprise
knowledge that adds value to the business process and also influences methods of IS en-
gineering. Some of the IS engineering approaches involve Enterprise models as a source
of structured knowledge about the real world (business domain) in IS development life
cycle stages, such as user requirement analysis and specification, development of detailed
IS project solutions and other.

There is a great number of Enterprise modelling methods and approaches (such as
CIMOSA, GERAM, IDEF suite, GRAI) (Schekkerman, 2003), standards (ISO 14258,
ISO 15704, PSL, ISO TR 10314, CEN EN 12204, CEN 40003) and supporting Enterprise
modelling tools (Totland, 1997). Moreover, CASE tools, that appear in contemporary
market and are intended for the IS development, include graphical editors for business
process modelling and analysis techniques.



176 S. Gudas, A. Lopata, T. Skersys

Different types of Enterprise models became the main component of the CASE sys-
tems; among most widely used models one can distinguish dataflow diagram, workflow
diagram, organization (hierarchy) diagram, process (hierarchy) diagram, business goal’s
diagram, business interaction diagram, UML and IDEF diagram sets, etc. The problem is
that these diagrams are weakly integrated, which leads to the inconsistency of the whole
IS development life cycle and cannot give expected results.

Therefore, in order to reach a higher degree of integration between IS engineering
systems and Enterprise modelling techniques, one requires a common logical structure for
classifying and organizing the descriptive representations (i.e. models) of an Enterprise
that are significant to the management of the Enterprise as well as to the development of
the Enterprise systems including Information Systems (Persson, 2001).

To achieve this goal one must develop a normalized definition of the Enterprise meta-
model that would be a generalized structure of integrated core constructs, selected from
different Enterprise modelling approaches and methodologies. Some definite results in
this area are developed by the IFAC-IFIP Task Force, which works on the Architecture
for Enterprise Integration. The goal of this Task Force is the development of the Unified
Enterprise Modelling Language (UEML, 1999).

Object Management Group (OMG) has also proposed principles for the standardiza-
tion of a model-driven process of IS engineering that could potentially incorporate En-
terprise modelling constructs (Stephen and Kendall, 2004). The implementation of MDA
technology in UML-based approaches, that are capable to process Enterprise modelling
activities, is highly desirable. However, the UML itself does not satisfy the needs and
requirements for the domain knowledge modelling in the area of IS engineering. Infor-
mation Systems design languages require business-specific constructs and the Enterprise
meta-model (accepted by users as business domain experts and IS developers) from which
the particular models of specific business domain could be mapped.

Both MDA approach and the UEML constructs are aimed at the integration of the En-
terprise modelling and the processes of Information Systems engineering. Nevertheless,
this paper concentrates more on the UEML as it is particularly aimed at the unification of
the Enterprise modelling approaches and is certainly important in the enhancement of IS
engineering methods and tools.

It should be mentioned that Enterprise modelling introduces one important concept
– that is Knowledge-based Enterprise – which expands the horizon of the Information
Systems development itself.

The Knowledge-based Enterprise from the IT point of view has to be connected to the
shared Enterprise Repository that represents the Enterprise Knowledge Base common for
both business Enterprise and IS engineering activities. From the perspective of IT, the
unified framework for the Enterprise modelling and IS development is a background that
warrants relevant technology solutions, delivered to the business (Popkin, 2002).

Enterprise models and languages mentioned above do not satisfy the needs and re-
quirements for Enterprise modelling in the area of IS engineering. The paper deals with
a formal framework aimed at the development of the Enterprise Knowledge Base. This
formal structure is called an Enterprise meta-model (EMM).



Approach to Enterprise Modelling for Information Systems Engineering 177

2. The UEML Constructs

One of the attempts to integrate approaches of Enterprise modelling is Unified Enterprise
Modelling Language (UEML). Fig. 1 depicts basic constructs of the UEML core (UEML,
1999). The UEML core assumes the CEN ENV 12204 (ENV 12204, 1996), CEN ENV
40003 (ENV 40003, 1990), also Enterprise-modelling standards and languages such as
IDEF, OMT, UML, CIMOSA, ARIS (Vernadat, 2001; UEML, 1999; Lopata, 2002).

Constructs of the UEML core (UEML, 1999) are as follows:

UEMLcore =
{

Objects(Event, Time, Agent, Process, Activity, Function,

Input Object, Output Object, Environment);

Relations (Raises, Triggers, Produces,

Happens at, Made of, Performs, Used by)
}
.

The refinement and definition of the conceptsProcess and Function is one of the
background points in Enterprise modelling. The UEML core includesFunction andPro-
cess as separate constructs of Enterprise model, yet the collaboration (interaction) of the
Activity, Process andFunction is not defined in UEML (UEML, 1999). Fig. 1 depicts that
the constructFunction includes the constructProcess, and the constructProcess consists
of a set ofActivities. The transactions(information flow) amongActivity, Process and
Function are also not declared in this UEML core.

The next UEML version (UEML 1.0) involves a wider set of the constructs (Vernadat,
2001). The formalized description of the UEML 1.0 is as follows:

UEML_model =
{

UEML_Object(UEML_model, Object(Information Object,

Resource(HumanResource, MaterialResource)), Port(ResourceRole,

Anchor(InputPort, OutputPort, ConnectionOperator), Geometry),

Fig. 1. The enterprise meta-model according to the UEML core.



178 S. Gudas, A. Lopata, T. Skersys

Flow(IOFlow, ResourceFlow, ControlFlow(TriggerFlow, ConstraintFlow)),

Activity(InputPort, OutputPort)), Relations(Precedence relation, HasIP, HasOP,

Contains, IOcarried, Object_carried, Resource_carried)
}
.

It must be pointed out that this version of UEML specifies only two essential con-
structs for Enterprise process-oriented modelling, namely,Activity andFlow. Meanwhile
here are noProcess andFunction constructs in the UEML 1.0 core. We can only assume
that those two Enterprise modelling constructs are hidden under the constructActivity.
The constructEvent is also omitted in the UEML 1.0 core, though it was presented in the
earlier version of the UEML.

It is neither clear which constructs support decision-making mechanism in the UEML
1.0 core. Though, it could be assumed that such decision-making mechanism should be
modelled because a control flow (ControlFlow) – the output of decision-making – is
declared as the construct of the UEML 1.0 core.

Both UEML versions are comprised of only two types of modelling constructs – ob-
jects (or entities) and relationships between objects (semantic relationships). Thus only
the static structure of the Enterprise is taken into consideration while dynamic aspects
of the Enterprise are still left behind. The sequence of transactions among Enterprise
constructs is neither included.

3. One more Aspect of Enterprise Modelling

Enterprise modelling usually involves the definite set of aspects: function, behaviour, in-
formation, resource and organization (Vernadat, 2001; GERAM, 1999). In addition, it is
possible to distinguish one more aspect of an Enterprise modelling, defined asthe man-
agement point of view. From this point of view the major Enterprise modelling constructs
are identified. In the management control systems literature similar aspect is calledthe
management control perspective (Anthony, 2003; Drury, 2001; Merchant, 1997). The
management control perspective focuses on the organisation management issues; mean-
while the particularity ofthe management point of view is the refinement of information
processing constructs and their interactions in the Enterprise.

Some business systems are able to choose their own behaviour. Business processes in
such systems are guided by thedecision-making mechanism. That is why the modelling
of management process andmanagement information flows must be taken into account
as mandatory aspects of Enterprise modelling. The scope of management process mod-
elling is the internal structure of management information (Enterprise knowledge, data,
objectives) and the management information processing as well.

It is claimed in Systems and Control Theory that a system can be controlled effectively
only if somefeedback loops (also calledcontrol loops) are implemented. Consequently,
the components of the control loop should be included into Enterprise meta-model.

It should be pointed out that the termControl flow (in the sense ofworkflow) is asso-
ciated with the conceptActivity in the UEML 1.0 (Vernadat, 2001). However, the earlier



Approach to Enterprise Modelling for Information Systems Engineering 179

version of UEML core (UEML, 1999) includes separate modelling constructsFunction
andProcess, and that makes this UEML core closer to the Enterprise modelling from the
management point of view.

Further, the Control Theory defines the typical structure of aSystem – a real world
System with internal “mechanism” of control.A System involves the following manda-
tory (complex) constructs: a real worldProcess, a Control System and aFeedback Loop
which createsan Information flow (Control flow) between aProcess and aControl Sys-
tem (Gupta and Sinha, 1996).A Control System performs a definite set of activities
(Functions, related to a definitecriterion) aimed to controla Process. Any Function
takes (makes measurements of)a Process state attributes, calculates aProcess control
attributes and in that way influences the state of aProcess.

Before we go further, let us define that any item (structural unit) ofa System is named
an object. An object could be conceptualised asan entity or a class (of the UML), or in
some other way in accordance with particular modelling methodology.

Therefore, anySystem is a set of interdependent objects that interact regularly in order
to perform a task. ASystem can be conceptualised in accordance with the above stated
considerations (principles) fromthe managementpoint of view:

a. A modelof a System includes the following subsets of constructs:a Process, a
Function, a Control System, anda Feedback Loop;

b. A Process consists of a partially ordered set of steps –sub-processes (or stages);
c. AnyFunction comprises two constructs (Fig. 2) –a Control System and aFeedback

Loop;
d. A Control System comprises the following mandatory constructs:Data Processing

andDecision Making; these two constructs are interrelated byData Flows between
them;

e. A Feedback Loop comprises two types of constructs: a construct for transferring
data flow (Process state attributes) directed fromProcess to Control System, and a
construct for transferring data flow (Process control attributes) from Control Sys-
tem to Process;

f. A Feedback Loop creates an interaction betweena Process anda Control System:
a Control System transforms a set ofProcess state attributes to a set ofProcess

Fig. 2. Interaction ofFunction andProcess in a System.



180 S. Gudas, A. Lopata, T. Skersys

control attributes, and hereby influencesa Process itself;
g. Any managementFunction is defined as a mandatory sequence of steps –inter-

actions between the structural elements ofa Control System andFeedback Loop.
An interaction of any two constructs ofa Function is an information transferring
process.

Consequently, every single managementFunction in the Enterprise model is com-
prised of:

a) a definite set of mandatory structural elements that are defined as instances of meta-
level elementsControl System andFeedback Loop,

b) a definite set of relations, defined as ordered sequences of interactions between
structural elements of theFunction.

In summary, a managementFunction is one of the complex constructs of an Enter-
prise model, comprising objects of aControl System andFeedback Loop, and an ordered
sequence ofinteractions between these objects.

There are few Enterprise models that contain some enumerated elements ofa System,
but not the complete set of interacting constructs:Process, Function, Control System,
Feedback Loop. One of such models is Value Chain model that declaresBusiness En-
terprise as a mandatory interaction of the primary activities (Enterprise processes) and
secondary activities (management functions) (Turban, 1999). The process management
model of the Framework for Managing Process Improvement (DoD, 1994) should also
be mentioned, as it makes a distinction between the concepts “Function” and “Process”.
A process here is defined as a unit of workflow through an Enterprise, and afunction is a
specified type of work applied to a product or service running within a process.Function
sets the rules and controls the resources assigned to theprocess (activity).

The analysis of the Enterprise modelling fromthe management point of view gives
some new aspects for the Enterprise modelling itself:

– The matter under investigation is a content of information, information processing
and decision-making activities in the organizational system.

– It is aimed at the enhancement of the Enterprise model that can be used as a source
of domain knowledge for business process analysis and IS development.

– A set of EMM core constructs and their types of relation should be revisedfrom the
management point of view (EMM core constructs are the mandatory elements of
the meta-model in order to support computer-aided modelling of the Enterprise).
These constructs should include a definite set of structural elements and relations
for the modelling of management functions.

4. The Interaction of Function and Process

The interaction of Enterprise meta-model core elementsProcess andFunction is formally
assumed as aControl Process. It is defined as aFeedback Loop betweenProcess P (j)
and Function F (i). The analysis of theFunction-Process interaction is a background
of the formalized model of the organizational system (an Enterprise model) described



Approach to Enterprise Modelling for Information Systems Engineering 181

in (Gudas, 1991). Fig. 3 presents the basic components of the formalized model of the
Function-Process interaction.

From the management point of viewProcess P (j) is defined by two sets of attributes:
a set ofProcess state attributes and a set ofProcess control attributes. A set of Pro-
cess state attributes includes theProcess input (material flow)attributes, Process output
(material flow)attributes and theattributes of the particularProcess P (j).

A managementFunction consists of the predefined sequence of mandatory steps of
information transformation (Interpretation, Information Processing, Realization); these
steps compose a management cycle (a feedback loop). A definite set of attributes (a set of
information items) is formed and transmitted during each management step. A manage-
mentFunction F(i) is initiated by someEvent – a fact or a message associated with some
internal or external (environmental) object. This definition ofFunction is close to the def-
inition of function presented in (ENV 40003, 1990). This paper presents more detailed
content ofFunction F(i) since it defines a sequence of definite types of interacting infor-
mation activities (Interpretation, Information Processing, Realization) directed to control
Process P (j) (Fig. 4).

Fig. 3. The formalized model of theFunction-Process interaction.

Fig. 4. The structured model of theFunction-Process interaction.



182 S. Gudas, A. Lopata, T. Skersys

Fig. 5. Structure of the constructFunction.

Fig. 4 presents the structured model of theFunction-Process interaction. The concept
Process is assumed as “a black box”. The internal structure ofProcess is not important,
only the information about the state ofProcess is considered from the point of view of
some definite managementFunction. The conceptProcess (dark grey box in Fig. 3) is
characterized by a set ofProcess state attributes (this set comprises subsets ofInput flow
attributes, Output flow attributes andProcess attributes) and it is influenced by the output
of managementFunction – a set ofProcess control attributes.

All other constructs ofFunction-Process interaction in the structured model (except
constructsProcess, Input flow andOutput flow) are assumed to be the components of the
constructFunction – an Enterprise management function (Fig. 5).

It is assumed, thatProcess and managementFunction are activated by someEvent. A
definite set ofstate attributes of an activatedProcess is the information flow defined as an
input of (one or more) specific managementFunction that is activated by some particular
Event.

It should be pointed out, that the set of attributes of managementFunction is closely
related to the description of function presented by CIMOSA (ENV 40003, 1990). The
CIMOSA specification of function includes the structural part (the list of sub-functions is
used), the functional part (goals, limitations, functional description, necessary equipment,
input, output) and the part of an attitude (goals, limitations, procedural rules, events, end
state).

5. The Enterprise Meta-Model

The Enterprise meta-model (EMM) is illustrated in Fig. 6. The Enterprise meta-model
development process is supervised from the management point of view which is defined
in Section 4. The Enterprise meta-model integrates common constructs of the Enterprise
modelling standards and frameworks and new Enterprise modelling constructs developed
from the management point of view.

The Enterprise meta-model is developed for the model-driven information systems
engineering. It is supposed to be a formal structure for domain knowledge evaluation



Approach to Enterprise Modelling for Information Systems Engineering 183

Fig. 6. The principle schema of the Enterprise meta-model (EMM).

during the process of Enterprise model development. This EMM-based Enterprise model
should be used as the source of domain knowledge in all stages and steps of the IS devel-
opment life cycle.

The EMM includes basic constructs for the Enterprise modelling identified from the
management point of view:Business Process, Function, Process, Actor, Business Rule,
Event, Objective and Environment.

Formalized description of the EMM is as follows:

EMM =
{

EMM_Object(Business Process(Function

(Process state attributes, Interpretation, IP input, Information processing,

IP output, Realization, Process control attributes), Process, Input, Output),

Business rules, Objectives, Actor, Event), Relation(Made of, Define, Influence,

Performs, Initiates, Raises, Produces, Is used by, Trigger)
}
.

The EMM core constructs are shown in Fig. 7 (UML notation). For the comparison
purposes the composition of the UEML core (UEML, 1999) is shown in Fig. 8.

The components of theOperative part of the constructFunction are information ac-
tivities Interpretation (IN), Realization (RE) andInformation Processing (IP). TheIN, IP
andRE are the mandatory steps of a managementFunction. Interpretation transforms
Process state attributes (the input of theIN) in accordance with the requirements of the
next step of the management cycleInformation Processing. The result ofIN is a control
flow IP input. Control flowIP input is an input of the next step in the management cycle,



184 S. Gudas, A. Lopata, T. Skersys

Fig. 7. Composition of the EMM core.

Fig. 8. Composition of the UEML core.

namely,Information Processing. The management stepInformation Processing includes
data processing and decision-making procedures. The output of the information activity
IP is a control flowIP output. Realization (RE) is the last step in the management cycle.
TheRE is the information process concerning the implementation of decisionIP output,
developed by the management stepIP. The result ofRE is Process control attributes – a
set of attributes, aimed to influence the state ofProcess.

The constructsEvent, Actor, Business rule andObjective have their definite roles at
Function – Process interaction. ConstructEvent represents a change in the system’s state
and initiates or triggersProcess or/and someFunction. ConstructActor is an active re-
source (human, application, machine with control device) used to support the execution of
Process or/andFunction. ConstructBusiness rule defines a set of conditions, constraints
and calculations to be associated with particularFunction (its information activities).

ConstructObjective defines a set of Enterprise business goals. The content of the
Objective influences the definition ofBusiness Rules hence the execution ofFunction as
well.

The constructEnvironment represents the environment of the Enterprise. This con-
struct refers to the outside objects or entities that can influence EnterpriseObjectives and
raises definiteEvents.



Approach to Enterprise Modelling for Information Systems Engineering 185

6. The Architecture of Knowledge-based CASE System

Fig. 9 depicts the architecture of the CASE system enhanced by theKnowledge Base.
The Knowledge Base of the CASE system consists of two parts: Enterprise meta-model
(EMM) and Enterprise model (EM). Enterprise meta-model is the model of generic level;
Enterprise model includes the partial and particular level models in accordance with
GERAM (GERAM, 1999).

The Knowledge Base of the CASE system is supposed to be the third active source of
Enterprise knowledge (next to Analyst and User) for Information Systems engineering.
Enterprise meta-model (EMM) in this enhanced CASE system is a source of pre-defined
knowledge, and is used to control the process ofBusiness Domain Knowledge Acquisition
andAnalysis. It is also used to control the construction of an Enterprise model (EM) for
particular business domain.

Knowledge-based IS development supposes that all stages of IS development life cy-
cle are supported by the CASE system’s Knowledge Base. The Knowledge Base of the
CASE system in conjunction with appropriate algorithms assures the consistency among
the IS analysis and design models, gives new possibilities for verification and validation
of IS development life cycle steps. Moreover, it can be used to simulate and improve
business processes within the Enterprise.

The Knowledge Base of the CASE system can be also used to verify business do-
main knowledge, which was captured by analysts and used to construct particular EM –
it is done by verifying constructed EM against the pre-defined knowledge structure of the
EMM. This verification technique allows the analyst to identify logical gaps in the busi-
ness process models and formal gaps that can occur in the acquired management function
models.

A logical gap is a semantic discontinuity between the elements of the problem domain
model (for instance, workflow model). The logical gaps appear when problem domain
knowledge is acquired incompletely.

A formal gap shows the absence of some formally predefined mandatory component
of the particular model. Gaps of this type can be identified during the process of veri-

Fig. 9. Architecture of the CASE system with Knowledge Base.



186 S. Gudas, A. Lopata, T. Skersys

fication of the particular model against predefined formal constraints represented by the
EMM.

Enterprise meta-model presents an architecture that improves the integration process
of business modelling and IS design. Therefore, the Knowledge Base of the CASE system
can be used to identify discontinuities among business process models and IS design
models.

7. The Class Diagram of the Enterprise Meta-Model

The Knowledge Base of CASE system (Fig. 9) includes the Enterprise meta-model
(EMM) as its major part. The EMM is used as a “normalized” knowledge structure to
control the process of construction of an Enterprise model (EM) for particular business
domain.

The UML class diagram of the Enterprise meta-model is shown in Fig. 10. The classes
of the EMM class diagram correspond to the certain constructs of the Enterprise meta-
model depicted in Fig. 6.

We will further discuss constructs of the Enterprise meta-model (Fig. 10). The con-
structs of the EMM are presented in the same formal way as a set of UEML core con-
structs in (Vernadat, 2001).

Event. An event depicts a change in the system state. It represents a solicited or unso-
licited fact that triggers a process or a function.

A constructEvent can be formally defined as follows:

Event =< EventID, Time, {Expression}, {relatedEMelement} >,

whereEventID is the event identifier;Time is clock time or time interval when the event
occurs;Expression is a boolean expression that sets to true when the event becomes ac-

Fig. 10. The Class diagram of the Enterprise meta-model (UML notation).



Approach to Enterprise Modelling for Information Systems Engineering 187

tive; figure brackets denote a set of elements (therefore, {Expression} means that there
is a set of expressions related to the event); {relatedEMelement} is a set of Enterprise
elements (defined in the EMM) associated with the event.

Process. Process is a partially ordered set of steps, which can be executed to achieve
some desired material end-result. Process consumes material resources (it is an input of
the process) and produces some material output – production. Processes are triggered by
one or more event occurrences.

ConstructProcess can be formally defined as follows:

Process =< ProcID, {ProcStep}, {Expression}, {relatedEMelement} >,

whereProcID is the process identifier; {ProcStep} is a set of process steps; {Expression}
is a set of triggering events that need to be true to start the process; {relatedEMelement}
represents a set of Enterprise model elements related to the process.

Function. Let us describe the function in more detailed way because it is a complex
construct. ConstructFunction can be formally defined as follows:

Function=< FuncID,{InformationPart},{OperativePart},{relatedEMelement} >,

where FuncID is the management function identifier; {InformationPart} is a set of
mandatory attribute types important to theFunction; { Operative Part} is a set of manda-
tory information processing method types; sets {InformationPart}, { OperativePart}, { re-
latedEMelement} are represented as classes in the class diagram depicted in Fig. 10; {re-
latedEMelement} is a set of Enterprise model objects related to theFunction.

InformationPart can be formally defined as a set of mandatory attribute types:

InformationPart = < ProcessStateAttributes, IPInputAttributes,

IPOutputAttributes, ProcessControlAttributes > .

ProcessStateAttributes, IPInputAttributes, IPOutputAttributes, ProcessControlAttributes
are represented as classes in the class diagram depicted in Fig. 10; these classes are gen-
eralized as a higher-level classInformationFlow.

Operative Part can be formally defined as a mandatory set of information processing
method types:

Operative Part =< Interpretation, InformationProcessing, Realization > .

The classesInterpretation, InformationProcessing and Realization are generalized as
a higher-level classInformationActivity.

This hierarchy of components of the classFunction is defined in accordance with the
formal definition of management function (Figs. 3 and 4).

Interpretation is a step of information feedback loop directed from theProcess to the
InformationProcessing of theFunction. Interpretation is an information activity, and it is



188 S. Gudas, A. Lopata, T. Skersys

aimed to transform and transferProcessStateAttributes. ConstructInterpretation can be
formally defined as follows:

IN = < IntID, {InputAttrib}, {IntRule}, {OutputAttrib},
{preCond}, {postCond}, {relatedEMelement} >,

whereIntID is the identifier of this information activity; {InputAttrib} is a set of pro-
cess state attributes (ProcessStateAttributes) related to the identified interaction of the
Function and theProcess; { IntRule} is a set of rules for identification, capturing and in-
terpretation of the process state attributes; {OutputAttrib} is a set of interpreted attributes
that are required by the information processing activities (InformationProcessing) of the
Function (this set corresponds to theIPInputAttributes in Fig. 10); {preCond} is a set
of pre-conditions that have to be satisfied to enable execution of this particular informa-
tion activity; {postCond} is a set of post-conditions (ending statuses) of this particular
information activity; {relatedEMelement} is a set of identifiers of theFunction and re-
lated information activities of thatFunction as well as identifier ofa Process, which is
managed by thatFunction.

InformationProcessing is an information activity of the function and it is aimed to
transform systematized data about the controlled process to management decisions. Con-
structInformationProcessing can be formally defined as follows:

IP = < InProcID, {InputAttrib}, {InProcRule}, {OutputAttrib},
{preCond}, {postCond}, {relatedEMelement} >,

whereInProcID is the identifier of this information activity; {InputAttrib} is a set of at-
tributes that represent systematized information about theProcess; {InProcRule} is a
set of rules for data processing and decision-making; {OutputAttrib} is a set of attributes
that represent management decisions of theFunction (this set corresponds to theIPOut-
putAttributes in Fig. 10); {preCond} is a set of pre-conditions to be satisfied to enable
execution of this particular information activity;{postCond} is a set of post-conditions
(ending statuses) of this particular information activity; {relatedEMelement} is a set of
identifiers of a managementFunction and related information activities of thatFunction.

Realization is a step of information feedback loop directed from theInformationPro-
cessing to theProcess. Realization is an information activity and it is aimed to transform
InformationProcessing output (management decisions of theFunction) to process con-
trol attributes (ProcessControlAttributes). ConstructRealization can be formally defined
as follows:

RE = < ReID, {InputAttrib}, {ReRule}, {OutputAttrib},
{preCond}, {postCond}, {relatedEMelement} >,

whereReID is the identifier of this information activity; {InputAttrib} is an input of the
Realization and represents management decisions of theFunction; { ReRule} is a set of



Approach to Enterprise Modelling for Information Systems Engineering 189

rules for realization of management decisions, in other words for transformation ofIn-
formationProcessing output (IPOutputAttributes) into a set of process control attributes
(ProcessControlAttributes) aimed to influence theProcess. { OutputAttrib} is an output of
theRealization and represents theProcess control attributes (ProcessControlAttributes);
{ preCond} is a set of pre-conditions to be satisfied to enable execution of theRealization;
{ postCond} is a set of post-conditions (ending statuses) of this particular information ac-
tivity; { relatedEMelement} is a set of identifiers of theFunction and related information
activities of thatFunction as well as identifier ofProcess, which is managed by that
Function.

Business Rule. A business rule, as a construct of the Enterprise model, is considered
as some condition, constraint or calculation related to some Enterprise element, which is
defined in the Enterprise meta-model. ConstructBusinessRule can be formally defined as
follows:

BusinessRule = < BRuleID, BRuleBody,{preCond},
{postCond}, {relatedEMelement} >,

whereBRuleID is the identifier of the business rule,BRuleBody is a formal expression
of a rule; {preCond} is a set of pre-conditions to be satisfied to enable business rule
execution; {postCond} is a set of post-conditions (ending statuses) of the business rule;
{ relatedEMelement} is as set of Enterprise model elements related to theBusinessRule.

Actor. An actor denotes an element of organisation structure provided with respon-
sibility on identified management functions and/or processes. ConstructActor can be
formally defined as follows:

Actor =< ActorID, {Responsibility} >, {relatedEMelement} >,

whereActorID is an identifier of the actor; {Responsibility} is a set of responsibilities
assigned to the actor (department, division, role or some other organization unit); {relat-
edEMelement} is a set of Enterprise model elements related to theActor.

Objective. An objective is a statement of preference about possible and achievable
future situations that influences the choices within some behaviour. ConstructObjective
can be formally defined as:

Objective =< ObjID, ObjBody, {relatedEMelement} >,

whereObjID is an identifier of the objective,ObjBody is a formal or informal statement
defining a content of theObjective; { relatedEMelement} is a set of Enterprise model
elements related to theObjective.

It should be noted that this minimal set of constructs complies with the basic principles
stated in the Sections 4 and 5 with the emphasis on the implementation of theFunction –
Process interaction principles fromthe management point of view.



190 S. Gudas, A. Lopata, T. Skersys

8. Conclusions

The problems of the Knowledge-based Information Systems engineering have been dis-
cussed in this paper. The Enterprise modelling is considered as the major source of knowl-
edge in Information Systems engineering. The Enterprise model formalizes the structure
and behaviour of organizational system in order to understand business Enterprise, spec-
ify requirements and improve the process of Information Systems design and implemen-
tation.

The Enterprise modelling is analysed from the new perspective, namelythe man-
agement point of view. The peculiarity of this approach to Enterprise modelling is the
identification of two different types of Enterprise activities, defined asFunction andPro-
cess. The absence of the constructsFunction andProcess in other Enterprise modelling
approaches makes it impossible to define the feedback loop and, consequently, refine the
information flow of Enterprise management.

The definition of theFunction in the Enterprise model presented in the paper differs
from the definition of this particular construct used in other Enterprise modelling ap-
proaches. The definition of the constructFunction is formalized, because it is based on
the principles found in Systems and Control Theory and therefore has a strong theoretical
background.

The formalized analysis and modelling of theFunction – Process interaction refines a
set of new constructs of the Enterprise modelling. As a result the Enterprise meta-model
(EMM) has been constructed and discussed in this paper. The EMM is intended to be a
formal structure aimed to integrate the domain knowledge for the IS engineering needs.

Knowledge Base of the enhanced CASE system should include the Enterprise meta-
model (EMM). The EMM is used as the “normalized” knowledge architecture to control
the process of construction of an Enterprise model (EM) for the particular business do-
main. The usage of such Enterprise model facilitates the automation of the whole IS
development process. Some work in this area has already been done (Skersys and Gudas,
2003; Lopata and Gudas, 2003). The architecture of the Knowledge-based CASE system
for the enhanced IS engineering is presented in this paper.

References

Anthony, R., and V. Govindarajan (2003).Management Control Systems. 11th ed. McGraw-Hill/Irwin, Boston.
Drury, C. (2001).Management Accounting for Business Decisions, 2nd ed. Thomson Learning College.
ENV 12 204 (1996).Advanced Manufacturing Technology Systems Architecture – Constructs for Enterprise

Modelling. CEN TC 310/WG1.
ENV 40 003 (1990).Computer Integrated Manufacturing Systems Architecture – Framework for Enterprise

Modelling. CEN/CENELEC.
DoD (1994).Department of Defence Technical Architecture Framework for Information Management. Version

3.0. Defence Information Systems Agency, Center of Standards.
GERAM (1999).GERAM: Generalised Enterprise Reference Architecture and Methodology. Version 1.6.3.

IFIP–IFAC Task Force on Architectures for Enterprise Integration.
http://www.cit.gu.edu.au/∼bernus/taskforce/geram/versions/geram1-6-
3/v1.6.3.html.



Approach to Enterprise Modelling for Information Systems Engineering 191

Gudas, S. (1991). Organisational system as a hierarchy of information processes. InApplications of Artificial
Intelligence in Engineering VI (AIENG 91). Computational Mechanics Publications, Southampton, Boston.
pp. 1037–1050.

Gupta, M.M., and N.K. Sinha (1996).Intelligent Control Systems: Theory and Applications. The Institute of
Electrical and Electronic Engineers, Inc., New York.

Lopata, A. (2002). Enterprise model based identification of information resources. InProceedings “Informa-
cinės technologijos 2002”. Technologija, Kaunas. pp. 377–381 (in Lithuanian).

Lopata, A., and S. Gudas (2003). Enterprise model based generation of the use case model.Informacijos mok-
slai, 26, 134–140 (in Lithuanian).

Merchant, K. (1997).Modern Management Control Systems, 1st ed. Prentice Hall, Upper Saddle River, New
Jersey.

Persson, A. (2001). Enterprise modelling in practice: situation factors and their influence on adopting a partic-
ipative approach. Department of Computer and Systems Sciences, Stockholm University/Royal Institute of
Technology. Report Series No.01-020– pp.334.

Popkin (2002). Popkin Software. InBuilding an Enterprise Architecture: The Popkin Process. Version 1.0.
http://www.popkin.com.

Schekkerman, J. (2003).How to Survive in the Jungle of Enterprise Architecture Frameworks. Trafford, Canada.
Skersys, T., and S. Gudas (2003). Enterprise model based generation of class model.Informacijos mokslai, 26,

199–205 (in Lithuanian).
Stephen, J., and S. Kendall (2004).MDA Distilled: Principles of Model-driven Architecture. Addison-Wesley

Pub. Co.
Totland, T. (1997). Enterprise modelling as a means to support human sense-making and communication in

organizations. Norwegian University of Science and Technology (NTNU), Trondheim IDI-raport 1997:8.
Turban, E., E. McLean, J. Wetherbe (1999).Information Technology for Strategic Advantage. 2rd ed. John

Wiley & Sons.Inc.
Universal Enterprise Modelling Language (1999). IFAC-IFIP Task Force, UEML Group.

http://www.cit.gu.edu.au/ ∼bernus/taskforce/archive/UEML-TF-IG.ppt.
Vernadat, F. (2001). UEML: towards a unified enterprise modelling language. InProceedings of International

Conference on Industrial Systems Design, Analysis and Management (MOSIM’01, 2001), Troyes, France.

S. Gudas is a doctor of computer sciences, associate professor of Information Systems
Department of Kaunas University of Technology and Kaunas Faculty of Humanities of
Vilnius University. His research interests include computer-aided information systems
engineering methods and tools, enterprise modelling for information systems engineer-
ing.

A. Lopata is a doctor of computer sciences, lecturer of Information Systems Depart-
ment of Kaunas University of Technology. His main research interest includes enterprise
modelling, user requirements acquisition, analysis and specification stage of information
system development life cycle.

T. Skersys received degree of master of informatics science in 2001. He is a doctoral
student since 2001 and junior research assistant since 2003 at Kaunas University of Tech-
nology Information Systems Department (ISD). His research interests include computer-
aided methods for information systems engineering, nterprise modelling and business
rules-extended IS development.



192 S. Gudas, A. Lopata, T. Skersys

Žini ↪u apie problemin ↪e srit ↪i integravimas informacijos sistem ↪u
inžinerijoje

Saulius GUDAS, Audrius LOPATA, Tomas SKERSYS

Straipsnyje analizuojamas žiniomis grindžiamos informacijos sistem↪u (IS) inžinerijos b̄udas.
Pasīulytas ir teoriškai pagr↪istas organizacijos veiklos meta-modelis, kuris atskiria ir detaliai aprašo
organizacijoje vykstaňcius technologinius procesus, valdymo funkcijas ir ši↪u element↪u tarpusavio
s ↪aveik↪a. Tai sīulomo organizacijos veiklos modeliavimo būdo, skirto žiniomis grindžiamai IS in-
žinerijai, ypatumas. Pasiūlytojo veiklos meta-modelio pagrindu gali būti sudaryta CASE sistemos
žini ↪u baże. Pateikta tokios žini↪u baze papildytos CASE sistemos principinė schema.


