
Citation: Álvarez-Estrada, R.F.

Approach to Equilibrium of

Statistical Systems: Classical Particles

and Quantum Fields Off-Equilibrium.

Dynamics 2023, 3, 345–378. https://

doi.org/10.3390/dynamics3020020

Academic Editor: Christos Volos

Received: 3 April 2023

Revised: 5 June 2023

Accepted: 7 June 2023

Published: 13 June 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Approach to Equilibrium of Statistical Systems: Classical
Particles and Quantum Fields Off-Equilibrium
Ramon F. Álvarez-Estrada

Departamento de Física Teórica, Universidad Complutense de Madrid, 28040 Madrid, Spain; rfa@ucm.es

Abstract: Non-equilibrium evolution at absolute temperature T and approach to equilibrium of
statistical systems in long-time (t) approximations, using both hierarchies and functional integrals,
are reviewed. A classical non-relativistic particle in one spatial dimension, subject to a potential
and a heat bath (hb), is described by the non-equilibrium reversible Liouville distribution (W) and
equation, with a suitable initial condition. The Boltzmann equilibrium distribution Weq generates
orthogonal (Hermite) polynomials Hn in momenta. Suitable moments Wn of W (using the Hn’s)
yield a non-equilibrium three-term hierarchy (different from the standard Bogoliubov–Born–Green–
Kirkwood–Yvon one), solved through operator continued fractions. After a long-t approximation,
the Wn’s yield irreversibly approach to equilibrium. The approach is extended (without hb) to: (i) a
non-equilibrium system of N classical non-relativistic particles interacting through repulsive short
range potentials and (ii) a classical φ4 field theory (without hb). The extension to one non-relativistic
quantum particle (with hb) employs the non-equilibrium Wigner function (WQ): difficulties related
to non-positivity of WQ are bypassed so as to formulate approximately approach to equilibrium. A
non-equilibrium quantum anharmonic oscillator is analyzed differently, through functional integral
methods. The latter allows an extension to relativistic quantum φ4 field theory (a meson gas off-
equilibrium, without hb), facing ultraviolet divergences and renormalization. Genuine simplifications
of quantum φ4 theory at high T and large distances and long t occur; then, through a new argument
for the field-theoretic case, the theory can be approximated by a classical φ4 one, yielding an approach
to equilibrium.

Keywords: statistical systems; classical particles; quantum fields; approach to equilibrium

1. Introduction

Many fundamental issues continue to be open in the extensive avenues leading from
equilibrium statistical mechanics [1–8] to non-equilibrium statistical mechanics [8–16] in
both classical and quantum regimes.

Off-equilibrium evolution of statistical systems displays stochasticity: see [17–19] in
the classical domain and [20–26] in the quantum one, specifically in the theory of open
quantum systems. For further background in classical (thermodynamical) frameworks,
see [27–30].

Our leading motivation has been to study the possible approach to equilibrium of
various statistical system, under suitable approximations, for very long time t.

Previous authors have employed infinite hierarchies in the analysis of several stochas-
tic equations [31,32].

The present author has analyzed the classical Liouville and quantum Wigner equations,
by using infinite hierarchies in order to implement approaches to equilibrium [33–41].
The analysis has been extended, using different techniques (generating functionals), to
off-equilibrium evolution in the relativistic quantum φ4 field theory [42,43]. The above
approaches face various complications, which have been treated succesively.

Based upon those works, the present work will review, from a first principles stand-
point, the evolution of certain statistical classical and quantum systems in some non-
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equilibrium states at the initial time t0 and their approximate off-equilibrium development
for long time t � t0. The evolution will be supposed to proceed at given absolute tem-
perature T, in the following sense: (i) either the system is small and evolves subject to an
external heat bath (hb) or (ii) it has a very large (or infinite) number of degrees of freedom,
a large part of them being at equilibrium at T, while the remaining ones are not and so
are responsible for the off-equilibrium evolution. In case (i), we omit any analysis of the
states of the hb, and we focus exclusively on the states of the system considered. Ab
initio dissipation is excluded, by assumption, in all cases (vanishing friction due to any
other system).

Section 2 begins with a one-dimensional statistical system, namely, one classical non-
relativistic particle subject to an external potential and to a hb at thermal equilibrium.
Section 2 also deals with a closed classical non-relativistic many-particle system, in three
spatial dimensions: the particles interact among themselves without any external hb, with
initial states describing thermal equilibrium at large distances but non-equilibrium at
finite ones.

Section 3 outlines the extension of the methods in Section 2 to classical φ4 field theory.
In order to illustrate some difficulties of the approach in Sections 2 and 3 in the

quantum case and how they could be bypassed under certain approximations, Section 4
studies, with less detail, a one-dimensional statistical system, namely, the quantum version
of the one in Section 2. Rather wide references provide developments omitted here.

By avoiding the strategy in Sections 2–4, and as an introduction to the power of the
functional methods to be employed profusely in Section 6, Section 5 treats a quantum
anharmonic oscillator in which no ultraviolet divergences are present.

Section 6 is devoted to relativistic quantum φ4 field theory. Various approaches to the
non-equilibrium quantum meson gas are summarized. General problems with initial non-
equilibrium states at finite time ρin are described in outline. The overview to be presented
will enable the discussion of the quantum-field-theoretic framework at certain stages and
under certain conditions, and the approximate approach to equilibrium, through a new
argument, so as to connect with Section 3. Suitable references give derivations omitted here.

The contents of the successive sections have been described above in a somewhat
sketchy way so as not to burden this introduction. The reader could proceed directly to
Section 7, which offers a less sketchy account of Sections 2–6, summarizes the work, and
presents the conclusions. Some open problems are highlighted in Section 7.

This feature article presents globally consistent consequences for the systems consid-
ered in it. Computations and derivations will be omitted by referring to suitable references.

2. Classical Particle Systems
2.1. Open Classical One Particle Systems

Methods in the hierarchy approach, to be also used in Sections 3 and 4, will be
introduced in this section.

2.1.1. One-Dimensional Case: Some General Aspects

Let a classical particle, with mass m, position x and momentum q, be subject to a
real potential V = V(x), in the presence of a heat bath (hb) at thermal equilibrium at
absolute temperature T. We shall employ the standard variable βeq = (kBT)−1 (kB being
Boltzmann’s constant).

By assumption, the potential is repulsive: V(x) ≥ 0: either V(x) → 0 as | x |→ +∞
or V(x) ≡ 0. The Hamiltonian of the particle is: H = q2/(2m) + V. Let the classical
particle be, at the initial time t = 0, out of thermal equilibrium with the hb, and have a
Liouville probability distribution function Win = Win(x, q)(≥0) to be at x with momentum
q. Then, the non-equilibrium particle could be, at time t(>0), at x with momentum q, with
probability distribution W = W(x, q; t)(≥0).
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As an example, the classical particle could be a virus or a grain of pollen, performing
Brownian motion in air (at rest and at thermal equilibrium, at T ' 300 ◦K) in a room. Air
would be the hb.

The (time-reversible or, simply, reversible) Liouville equation accounts for the time
evolution of W:

∂W
∂t

+
q
m

∂W
∂x
− ∂V

∂x
∂W
∂q

= 0 (1)

with the initial condition Win. The equilibrium (Boltzmann’s) distribution, the t-independent
solution of Equation (1) describing thermal equilibrium of the particle with the hb, is

W = Weq = exp[−βeq(q2/(2m) + V)],

which is Gaussian in q.
Let qeq = [2m/βeq]1/2 be the momentum scale determined by T. With y = q/qeq,

let us introduce the denumerably infinite family of all (unnormalized) polynomials in
y: Hn = Hn(y) (n = 0, 1, 2, 3, . . . ), the standard n-th Hermite polynomial [44]. They
are orthogonalized in y (for fixed x) by using Weq as (Gaussian) weight function. With
H0(y) = 1, one has, for n 6= n′ and any x (left unintegrated):∫ +∞

−∞
dyWeq(x, q)Hn(y)Hn′(y) = 0 (2)

The orthonormalized polynomials are

Hn(y)/(π1/22nn!)1/2.

We shall introduce the (normalized) non-equilibrium classical moments Wn = Wn(x; t)
(n = 0, 1, 2, . . . ) of W [17,31,33,34]:

Wn = Wn(x, t) =
∫

d(q/qeq)
Hn(q/qeq)

(π1/22nn!)1/2 ×

W(x, q; t) (3)

W0 is the marginal probability distribution for x. If W = Weq, then Weq,0 = π1/4 exp[−βV]
and Weq,n = 0, n = 1, 2, . . . Equation (3) can also be applied to the initial off-equilibrium
distribution Win and gives the initial moments, Win,n. One has the following (formal)
expansion for W:

W = Weq(x, q)
+∞

∑
n=0

Wn(x; t)×

Hn(y)
(π1/22nn!)1/2 (4)

2.1.2. Three-Term Hierarchy and Operator-Continued Fractions

Equations (1)–(3) give rise to an exact three-term non-equilibrium hierarchy for all
Wn’s. It is more convenient to replace the latter by the symmetrized moments

gn = gn(x, t) = Weq,0(x)−1/2Wn(x, t).
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Then, the hierarchy for the Wn’s becomes directly the following exact three-term
(reversible) hierarchy for the gn’s, for any n:

∂gn

∂t
= −Mc,n,n+1gn+1 −Mc,n,n−1gn−1 (5)

Mc,n,n±1gn±1 ≡ [
(n + (1/2)(1± 1))kBT

m
]1/2 ×

[
∂gn±1

∂x
− (±1)gn±1

2kBT
∂V
∂x

] (6)

with initial condition gin,n = Win,n/W1/2
eq,0 . One crucial property is that the operators

Mc,n,n+1 and −Mc,n+1,n are the adjoint of each other.
Let the Laplace transform

g̃n = g̃n(s) =
∫ +∞

0
dtgn exp(−st)

be performed. Its inverse is

gn =
∫ c+i∞

c−i∞
(ds/2πi)g̃n exp(st)

(c being real and g̃n(s) being analytic in the half-plane Res > c of the complex s-plane).
This definition and Equation (5) gives rise to the three-term hierarchy for g̃n:

sg̃n = gin,n −Mc,n,n+1 g̃n+1 − (7)

Mc,n,n−1 g̃n−1

The hierarchy in Equation (7) can be solved through a formally direct extension of
standard methods for dealing with numerical three-term linear recurrence relations in terms
of continued fractions (see, for instance, [17]). Such a formal procedure yields all g̃n(s),
for any n = 1, . . . , in terms of sums of products of certain s-dependent linear (integral)
operators D[n′; s], n′ ≥ n, which act upon g̃n−1(s) and upon all gin,n′ ’s, with n′ ≥ n. The
linear operators D[n; s]’s are defined in a recurrent way through:

D[n; s] =

[sI −Mc,n,n+1D[n + 1; s]Mc,n+1,n]
−1 (8)

I is the unit operator. By iteration of Equation (8), D[n; s] becomes a formal infinite con-
tinued fraction of products of the linear operators Mc,n,n+1 and Mc,n+1,n (which in general
do not commute with each other). The formal infinite continued fraction of operators reads:

D[n; s] =
I

sI −Mc,n,n+1
I

sI−... Mc,n+1,n
(9)

A simpler hierarchy, without an essential loss of generality, follows by assuming,
except otherwise stated, that Win,n′ = 0 for n′ ≥ 1, with Win,0 6= 0.

By solving Equation (7) for n(≥1) (using Equation (8)), we arrive at the following
result (involving no approximations thus far):

sg̃0(s) =

W−1/2
eq,0 Win,0 −Mc,0,1 g̃1(s) (10)

g̃n(s) = −D[n; s]Mc,n,n−1 g̃n−1(s), (11)

for n ≥ 1.
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2.1.3. Properties of D[n; s]

Let us choose n(≥1) and fix s = ε > 0 (real and suitably small) in any D[n; s]. Then, the
following crucial properties appear to hold (in general, for either V 6= 0 or V = 0) [33,34]:
if D[n + 1; ε] were Hermitian, and if all its eigenvalues (which would be real) were non-
negative, then the same would hold true for D[n; ε]. As an example, it is easy to confirm
the validity of that property if Mc,n,n+1 and Mc,n+1,n are chosen as 2× 2 matrices, such
that Mc,n,n+1 be the adjoint of −Mc,n+1,n. Then, through iterative arguments, D[n; ε]’s,
n = 0, 1, 2, 3 . . . , turn out to be Hermitian 2× 2 matrices, and all their eigenvalues are
non-negative. See [34].

For a better understanding of the operator-continued fractions D[n; s], we shall take
V ≡ 0 and let ε > 0 (allowing for ε→ 0 if desired, later [33]).

Let us perform a spatial Fourier transformation from configuration space (x) to
wavevector space (k), by applying (2π)−1/2

∫
dx exp(−ikx). Let e(k) ≡ (2m)−1kBTk2.

Then, the Fourier transform of the operator-continued fraction in Equation (8), for Res > 0
and n ≥ 0 yields:

D1[k; n; s] =

[s + 2e(k)(n + 1)D1[k; n + 1; s]−1 (12)

By iteration, D1[k; n; s] becomes the following ordinary continued fraction for V = 0
(involving no non-commuting operators):

D1[k; n; s] =
1

s + 2e(k)(n + 1) 1
s+2e(k)(n+2) 1

s+.........

(13)

to be compared to Equation (9) for V 6= 0 (involving non-commuting operators).
For relationships of D1[k; n; s] to the n-th repeated integral iner f c(z) of the comple-

mentary error function (i0er f c(z) = er f c(z)) and the standard Gamma function Γ, see [45].
The various operator-continued fractions behave, on average, as n−1/2 for large n:

we shall omit details [33]. For k → 0, D1[k; n; 0] diverges as k−1 (due to e(k)−1/2). Then,∫
dkD1[k; n; 0] also diverges near k = 0 (as the actual system is one-dimensional).

For an approximate ansatz for Equation (8) for large n, see [40].

2.1.4. Long-Time (t) Approximation

The long-t approximation for n ≥ n0 ≥ 1 reads in general (that is, without imposing
Win,n′ = 0 for n′ ≥ 1, with Win,0 6= 0) as follows. One replaces for n ≥ n0 any D[n; s]
yielding g̃n in terms of g̃n−1 by D[n; ε]: this approximation is not performed for n < n0,
which will be crucial, and is the better, the larger n0. We regard D[n0; ε] for n = n0 as
a fixed (s-independent) operator. For simplicity, let us continue with the simplification:
Win,n′ = 0 for n′ ≥ 1, with Win,0 6= 0. Moreover, after the above long-t approximation,
we shall continue with the same initial condition Win,0 at t = 0: it may well be that this
amounts to another kind of approximation.

Then, for small s, we approximate for n = n0 as: g̃n0(s) ' −D[n0; ε]Mc,n0,n0−1 g̃n0−1(s).
The resulting hierarchy for g̃n’s (n = 0, . . . , n0 − 1), through the inverse Laplace transform,
yields a closed approximate irreversible hierarchy for gn, n = 0, 1, . . . , n0− 1. The solutions
of the last closed hierarchy for gn relax irreversibly, for large t and reasonable Win,0, towards
W1/2

eq,0 6= 0 and W1/2
eq,n = 0, n = 1, . . . , n0 − 1 (thermal equilibrium) [33,34]. For long-t, the

dominant moment is g0, while any gn with n > 0 being the smaller, the larger n and t(> 0)
are (due to the behaviors of Mc,n,n±1 and of D[n; ε] with n). Similar behaviors hold for W0
and Wn with n > 0.

We shall illustrate the above facts by taking, for simplicity, n0 = 1.
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Then, Equation (11) for small s and n = 1 becomes: g̃1(s) ' −D[1; ε]Mc,1,0 g̃0(s) (to be
compared to Equation (11) before the approximation). Then, Equations (10) and (11) yield,
by taking inverse Laplace transforms:

∂g0

∂t
= −Mc,0,1.g1 (14)

g1 ' −D[1; ε]Mc,1,0.g0 (15)

One finds directly the irreversible Smoluchowski equation for the n = 0 moment, as
a result:

∂g0/∂t = Mc,0,1D[1; ε]Mc,1,0.g0 (16)

with initial condition W−1/2
eq,0 Win,0.

The right-hand side of Equation (16) should be interpreted as:∫ +∞
−∞ dx′(Mc,0,1D[1; ε]Mc,1,0)(x, x′)g0(x′; t). Let ( f1, f2) =

∫ +∞
−∞ dx f1(x)∗ f2(x) for suit-

able functions f1 and f2. Due to the Hermiticity of D[1; ε], Mc,0,1D[1; ε]Mc,1,0 is Hermitian
(all eigenvalues of −Mc,0,1D[1; ε]Mc,1,0 being ≥0). Let fλ(x) be an eigenfunction of the
integral operator −Mc,0,1D[1; ε]Mc,1,0 with eigenvalue λ (≥ 0). Then,

−(Mc,0,1D[1; ε]Mc,1,0)(x, x′) = ∑
λ

λ fλ(x) fλ(x′)∗.

∑λ is a short-hand notation denoting integration and summation over the whole
spectrum of Mc,0,1D[1; ε]Mc,1,0.

By expanding W−1/2
eq,0 Win,0 = ∑λ gin,λ fλ(x), with x-independent gin,λ, the solution

of (16), with the above initial condition, is

g0 = ∑
λ

gin,λ fλ(x) exp(−λt),

which relaxes irreversibly as t → +∞ towards gin,0 f0(x), corresponding to λ = 0. At
equilibrium, one has g0 = W1/2

eq,0 , Mc,1,0g0 = 0 and gn = 0, n = 1, 2, 3 . . . , consistently. Then,
Equation (16) is (at least, with ε > 0) irreversible: for long t(>0) the dominant moment is
g0, while any gn with n > 0 is negligible, gn being the smaller, the larger n and t(>0), and
so on for the Wn’s.

As an example of the relaxation towards equilibrium, we consider the solution
G = G(x, x0; t) of Equation (16) for V(x) = (k/2)x2 (k > 0, harmonic oscillator), and initial
condition δ(x− x0), δ denoting the Dirac delta function. One obtains (tas = 1/(D[1; ε]k),
D[1; ε] being regarded as a positive constant):

G(x, x0; t) = [
k

2πkBT
1

1− exp(−2t/tas)
]1/2 ×

exp[− k
2kBT

(x− x0 exp(−t/tas))2

1− exp(−2t/tas)
] (17)

For t� tas,
G(x, x0; t)→ [ k

2πkBT ]
1/2 exp[− kx2

2kBT ], which is proportional to Weq,0(x)1/2. The t-behavior
of G is represented in Figure 1, in order to display the relaxation for t� tas.

Irreversible thermalization does not happen in the absence of long-t approximations.
Then, the above approximations (D[n; s] ' D[n; ε] for n ≥ n0, but not for n < n0), giving
rise to the thermalization with the hb (as implemented in Equation (16)), is an alternative
way of introducing irreversibility out of the reversible Equation (1).
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Figure 1.  The t-behaviour of G(x, x0; t)/[k(2πkB T)−1]1/2  (Eq.   (17)) is displayed (x  = 2.0, x0  = 1.5, 
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Figure 1. The t-behavior of G(x, x0; t)/[k(2πkBT)−1]1/2 (Equation (17)) is displayed (x = 2.0, x0 =

1.5, tas = 1.0, k/(2kBT) = 1.5, in arbitrary units).

2.2. Closed Classical Many-Particle Systems: Long-Time Approximation and Arrow of Time
2.2.1. Initial State Motivated by Fluid Dynamics, Hierarchy, and Continued Fractions

See [33]. We treat a closed large system of many (N � 1) classical identical non-
relativistic particles with mass m, in three spatial dimensions , with spatial coordinates
x1,. . . ,xN (≡ (x)) and momenta q1,. . . .,qN (≡ (q)). Let xi,α and qi,α be the Cartesian
components of xi and qi, respectively (i = 1, . . . , N, α = 1, 2, 3). The non-equilibrium
classical probability distribution function is: W = W((x), (q); t).

Assumptions—(a) Neither a hb nor external friction mechanisms nor external forces are
assumed. The system contains a very large set (s1) of degrees of freedom at large distances
at thermal equilibrium at absolute temperature T with one another: s1 plays the role of an
(internal) hb. The system is in a non-equilibrium state, because it also contains a large set of
degrees of freedom s2 (smaller than s1) at finite distances, which are off-equilibrium with
the set s1, and among themselves. Then, the known initial non-equilibrium distribution
Win = Win((x), (q)) describes thermal equilibrium at absolute temperature T for the set s1
located at large distances but off-equilibrium for the set s2 located at finite distances [33].
The above qualitative idea will become clearer through Win, discussed below in (c).

(b) The interaction potential among the particles is V = ΣN
i,j=1,i<jvij(| xi − xj |) and

we suppose that all vij(| xi − xj |) are repulsive (≥0) and tend quickly to zero for large
| xi − xj |. H = (2m)−1ΣN

i=1Σ3
α=1q2

i,α + V is the classical N-particle Hamiltonian. Then,
Boltzmann’s equilibrium (canonical) distribution at temperature T is Weq = exp[−βeqH].

(c) The initial distribution function Win, at t = 0, will be compatible with the limited
information available, namely, with standard variables employed in equilibrium statistical
mechanics and fluid dynamics [4,8,12–14,46]. Win will depend on a finite number of
(actually, 2 + 3 = 5) functions of one single x: λk = λk(x), k = 0, 2, and λ1,α = λ1,α(x),
α = 1, 2, 3 (all of them independent of time and on momenta). Win in terms of λk and
λ1,α has appeared previously [8,14] (and is related to the Massieu–Planck function [14]).
Win, describing thermal equilibrium with homogeneous temperature T for large distances
(large | x |) but non-equilibrium for intermediate and short distances | x | (with spatial
inhomogeneities), reads
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Win =

(N!)−1 exp[−
∫

d3x(λ0(x)
N

∑
i=1

δ(3)(xi − x)

+
3

∑
α=1

λ1,α(x)
N

∑
i=1

qi,α

m
× δ(3)(xi − x)

+λ2(x)
N

∑
i=1

(
q2

i
2m

+
1
2

N

∑
j=1,j 6=i

vij(| qi − qj |))×

δ(3)(xi − x)] . (18)

δ(3) denoting the three-dimensional Dirac delta function. The λ’s will be uniquely
determined in terms of 2 + 3 = 5 x-dependent observables (also independent of time and
on momenta) typically employed in Fluid Dynamics, which, by assumption, are known at
t = 0: mass density, fluid velocity and some suitable energy density [14,33]. We accept that
λ2(x) → λ2(∞) (constant), as | x →| ∞ along any direction and that the same holds for
λ0(x) and for λ1,α(x). The constant limiting values describe equilibrium, with λ2(∞) 6= 0,
λ0(∞) 6= 0 and λ1,α(∞) = 0. At finite x, the off-equilibrium λ2(x), λ0(x) and λ1,α(x) do
depend on x. Consistency is achieved (the temperature T being thereby introduced) if, in
the thermodynamical limit, λ2(∞) tends to

(kBT)−1

(plus corrections which approach zero in that limit). For a detailed analysis, see [33].
The reversible Liouville equation reads

∂W
∂t

=

ΣN
i=1Σ3

α=1[
∂V

∂xi,α

∂W
∂qi,α

− qi,α

m
∂W
∂xi,α

] (19)

Let [n] denote a set of non-negative integers (n(i = 1, α = 1), . . . , n(i = N, α = 3))
and let n = ΣN

l=1Σ3
α=1n(l, α). Let [dq] = ∏N

i=1 ∏3
α=1 dqi,α. We introduce non-equilibrium

moments W([n]) of W (using products of Hermite polynomials):

∫
[dq]

N

∏
i=1

3

∏
α=1

Hn(i,α)(qi,α/(2mkBT)1/2)

(π1/22n(i,α)n(i, α)!)1/2
×

W((x), (q), t) = W((x); [n]; t) = W([n]) , (20)

If W = Weq, then Weq([0]) ([0] = (0, 0, , , 0)) is proportional to exp[−βV] and Weq([n]) =
0, [n] 6= [0] (say, n 6= 0). Equation (20) can also be applied to Win and gives the correspond-
ing initial moments, Win([n]). We shall work with the symmetrized moments

g([n]) = Weq([0])−1/2W([n]).
One obtains an infinite reversible three-term linear recurrence for g([n])’s, generalizing

Equations (5) and (6):

∂g(n(1,1),..., n(j,β),..., n(N,d))
∂t =

−ΣN
l=1Σ3

α=1[Ml,α;n(l,α);+×
g(n(1, 1), . . . , n(l, α) + 1, . . . , n(N, d))

+Ml,α;n(l,α);−×
g(n(1, 1), . . . , n(l, α)− 1, . . . , n(N, d))]
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Ml,α;n(l,α);+ = [
(n(l, α) + 1)kBT

m
]1/2[

∂

∂xl,α
−

1
2kBT

∂V
∂xl,α

] (21)

Ml,α;n(l,α);− = [
n(l, α)kBT

m
]1/2[

∂

∂xl,α
+

1
2kBT

∂V
∂xl,α

] (22)

The Laplace transform of the above N-particle hierarchy Equation can be formally
solved in terms of linear operators D[[n]; s], which generalize the previous D[n; s]. For de-
tails, see [33]. All D[[n]; s] are square matrices, due to the indices i = 1, . . . N and
α = 1, . . . 3 and also integral operators, arising from the linear operators Ml,α;n(l,α);+
and Ml,α;n(l,α);−, as l, α and n(l, α) vary. The D[[n]; s] fulfill the formal hierarchy (which
generalizes Equation (8))

D[[n]; s] =

[s−M+,[n+1]D[[n + 1]; s]M−,[n]]
−1 (23)

The linear operators M±,[n] are rectangular matrices, formed out of operators
Ml,α;n(l,α);+ and Ml,α;n(l,α);−. M+,[n+1] is the adjoint of−M−,[n] [33]. By iterating Equation (23)
indefinitely, D[[n]; s] becomes an operator-continued fraction, which depends on all
Ml,α;n(l,α);+ and Ml,α;n(l,α);− and generalizes the operator-continued fraction for D[n; s].

D[[n]; ε] for ε > 0 is a Hermitian operator with non-negative eigenvalues for
n ≥ n0 ≥ 1 [33]. No approximation has been performed so far.

Let V ≡ 0. Let us Laplace- and Fourier-transform the above N-particle hierarchy to
wavevector space (k1, . . . , kN)≡ [k]. Let

e(k; N) ≡ kBT ∑N
j=1(2m)−1k2

j .

Then, the Fourier transform D1[[k]; [n]; s] of D[[n]; s] for Res > 0 yields an ordinary
continued fraction, given in Equations (12) and (13) with e(k) replaced by e(k; N). Then,
with such a replacement, the properties of D1(k; n; s) given in Section 2.1.3 also hold for
D1[[k]; [n]; s]. Notice that D1[[k]; [n]; s = 0] diverges as e(k; N)−1/2 if e(k; N) → 0. On the
other hand, and contrary to what happened for one particle in one spatial dimension (recall
the comment in Section 2.1.3),

∫
[dk]D1[[k]; [n]; s = 0] converges near e(k; N) = 0. The

approximate ansatz in [40] can be extended readily to D[[n0]; ε].

2.2.2. Long-Time Approximation and Consequences

A simple long-time approximation can be performed in the dynanical equation
for ∂g(n(1,1),..., n(j,β),..., n(N,d))

∂t , for vij ≥ 0 (and vanishing quickly at large distances) and
very large N (eventually, in the thermodynamical limit), which generalizes the one in
Section 2.1.4. This approximation consists in fixing s = ε > 0 (ε being small) in the whole
hierarchy of operators D[[n]; s], for any

n(= ΣN
l=1Σ3

α=1n(l, α)) ≥ n0(> 0)

which, then, become Hermitian operators D[[n]; ε] with no negative eigenvalues. It is
crucial that s-dependences be kept in D[[n]; s], for n < n0.

The non-vanishing factors n(l, α)1/2 and

((n(l, α) + 1))1/2
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in
Ml,α;n(l,α);− and Ml,α;n(l,α);+,

respectively, tend to reduce, as the n(l, α)’s increase, the importance of D[[n]; s = ε]’s with
fixed s = ε and n ≥ n0. This is a genuine feature of the D[[n]; s = ε]’s. See [33], where it
was shown that by imposing n0 > 2, the long-t approximation is still exactly consistent
with all (five) hydrodynamical balance equations. For simplicity, we discard all the initial
moments Win([n]) for n ≥ n0.

We regard D[[n0]; ε] as a fixed (s-independent) operator, yielding all g([n0]) in terms of
all g([n0 − 1]). Moreover, after the above long-t approximation, we shall continue with the
same initial condition Win([0]) at t = 0: it may amount to another kind of approximation.

All that leads to a closed approximate hierarchy for g([n])’s, which appears to yield
an approximate irreversible evolution towards thermal equilibrium at T. g([n])’s and,
then, W([n]) relax the quicker the larger n. W([0]) would dominate the approach towards
equilibrium for t→ +∞. See [33]. All that appears to work for fixed D[[n0]; ε].

Let n0 = 1: see [33] for n0 = 2, 3. One finds the irreversible Smoluchowski-like
equation for the [n = 0] moment, which generalizes (16) ([n = 0] meaning

n(1, 1) = 0.., n(j, β) = 0, . . . , n(N, d) = 0) :

∂g([n = 0])
∂t

= ΣN
l=1Σ3

α=1Ml,α;n(l,α)=0;+ ×

(ΣN
l′=1Σ3

α′=1[D[[n = 1]; ε]]l,α;l′ ,α′ ×
Ml′ ,α′ ;n(l′ ,α′)=1;−)g([n = 0]) (24)

The operator D[[n = 1]; ε] (Hermitian, with non-negative eigenvalues) has, as a square
matrix, the matrix elements [D[[n = 1]; ε]]l,α;l′ ,α′ . The initial condition is Weq([0])−1/2Win([0]).

Discussion and consequences—(a) the exact hierarchy for the g([n])’s and the closed
approximate one for them after the long-t approximation are genuinely different from
the non-equilibrium classical Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierar-
chy [12,13]. (b) The structure of (24), with D[[n = 1]; ε] replaced by a constant, is similar
to that of the linear Smoluchowski equation in the standard Rouse model for polymer
dynamics [47]. (c) The following t-dependent function, for generic n0 ≥ 1:

L =
1
2

n0−1

∑
n=0

∫ N

∏
i=1

3

∏
α=1

dxi,αg([n])2 (25)

(the integration over any xi,α being performed in −∞ < xi,α < +∞) fulfills

∂L/∂t ≤ 0 (26)

which could characterize an arrow of time. L is a Liapunov function. See [41].

3. Classical Scalar Massive Field
3.1. Hamiltonian and Liouville Equation

In 1 + 3 dimensions (t, real time and x = (x1, x2, x3), three-dimensional spatial coordi-
nates), let a large statistical system, with dynamics described by a real relativistic scalar
classical field χ = χ(t, x), with mass parameter m; and coupling constant g. See [35].

The classical Hamiltonian is supposed to be: H =
∫

d3x2−1π2 + V1. π = ∂χ/∂t is
the field momentum and V1 =

∫
d3x[2−1 ∑3

i=1(∂χ/∂xi)
2 + 2−1m2χ2 + gχ4/4!]. We shall

include an upper limit or ultraviolet cut-off (Λ) on the magnitude of any contributing
wavevector in an eventual Fourier transform of χ. Unless otherwise stated, Λ < +∞. No
external heat bath will be assumed: like in Section 2.2, the infinite number of degrees of
freedom of this classical field system gives rise to statistical effects. Let W = W[χ, π, t] be
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the classical probability distribution function for the system at time t to be described by the
field configuration χ(x) with momentum π(x). W fulfills the classical reversible Liouville
equation, which reads

∂W
∂t

=
∫

d3x[
δV1

δχ

δ

δπ
− π

δ

δχ
]W (27)

where δ
δ denotes functional derivative. Let: Win = Win[χ, π] be an initial non-equilibrium

distribution at time t0, containing a spatial inhomogeneity characterized by a function
β(x): β(x)−1 could be interpreted, at least qualitatively, as proportional to the absolute
temperature of a small volume (at the macroscopic scale) at x. It is supposed that for large
| x |, the field degrees of freedom are at thermal equilibrium at absolute temperature T:
compare with Section 2.2. Accordingly, β(x)→ βeq for large | x |, with β−1

eq = kBT.

3.2. Non-Equilibrium Moments and Approximate Irreversible Evolution

Let p0(x) = (2/β(x))1/2 and Λ < +∞. Functional Hermite polynomials Hn are
introduced through the Rodrigues-like formula:

Hn = (−)n exp[
∫

d3x
π2

p2
0
]

δ

δ(π(x1)/p0(x1))
....×

δ

δ(π(xn)/p0(xn))
exp[−

∫
d3x

π2

p2
0
] (28)

Moments Wn of W are introduced through the functional integral:

Wn =
1

(n!2n)1/2

∫
[dπ]×

Hn(π(x1)/p0(x1), ...., π(xn)/p0(xn))W (29)

The developments in Section 2 can be extended to generate a three-term hierarchy for
(symmetrized moments determined by) the moments Wn, operator continued fractions and
so on. Through long-t approximations, the following irreversible functional Fokker–Planck
equation for the lowest moment W0 holds:

∂W0

∂t
=

D
βeq

∫
d3x

δ

δχ(x)
FP(x)W (30)

FP(x) =
δ

δχ(x)
+

2
p0(x)2

δV1

δχ(x)
(31)

with constant D and βeq. As t → +∞, Equation (31) yields the equilibrium solution
exp(−βeqV1). Up to this stage, Λ < +∞. exp(−βeqV1) and, so, the classical field theory
defined by Equation (31) contain ultraviolet divergences as the cut-off Λ → +∞. Those
divergences can be absorbed and eliminated by the so-called mass renormalization: one
sets m2 = m2

r + δm2, where m2
r is finite. δm2 is introduced so as to absorb the ultraviolet

divergences generated and, so, is divergent as Λ → +∞. After such an absorption and
since neither g nor χ require renormalization, all correlation functions determined by W
are ultraviolet finite. For discussions and details, see [35–37] and references therein. The
classical theories associated to Equations (27) and (31) could give rise to divergences of a
different nature, namely, field energies divergent as Λ→ +∞. Such divergences, could be
compensated, at least partially, by renormalization of the energy.

For a generalization of the developments in Section 2 and in this section to a non-
equilibrium classical plasma (namely, non-relativistic charged particles interacting with the
classical electromagnetic field) (with a fixed ultraviolet cut-off) and its approach to thermal
equilibrium at temperature T, see [34].
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4. One Quantum Particle Subject to a Heat Bath: Short Discussion

For general aspects on quantum systems subject to a larger heat bath (hb),
see [8,13,14,20–22,24–26,48–55] and references therein. We accept that the state of the
system, for sufficiently long-t, approaches towards its own canonical density operator at
thermal equilibrium with the hb at absolute temperature T, as studied in [48–55]. We will
focus exclusively on the quantum states of the system.

Our study here of the quantum one particle case, aimed at comparing the hierarchy
approach with the results in [8,13,14,20–22,24–26,48–55], will display analogies and genuine
differences with respect to the classical case (Section 2.1). For the quantum non-relativistic
N particle case, see [41], and for the cases N = 2, 3 in connection with chemical reactions,
in the hierarchy approach, see [40,41].

General Aspects

We shall consider one non-relativistic quantum spinless Brownian particle of mass
m (>0) and momentum operator −ih̄(∂/∂x), in one spatial dimension x, with (Hermitian)
quantum Hamiltonian (h̄ being Planck’s constant):

HQ = − h̄2

2m
∂2

∂x2 + V (32)

Assumptions—The real potential V(x) fulfills: V(x)→ 0 quickly, as | x |→ +∞ V(x)
and all dnV(x)/dxn, n = 1, 2, 3 . . . , are continuous for any x, V(x) = V(−x) and allow for
V(x) < 0 and, hence, the possibility of bound states of the particle by the potential V. The
particle is also subject to the hb.

The non-equilibrium statistical evolution for t > 0 is given by the density opera-
tor ρ = ρ(t) (a statistical mixture of quantum states), with the given initial condition
ρ(t = 0) = ρin. ρ(t) for t > 0 and ρin are Hermitian and positive-definite linear op-
erators acting in the Hilbert space spanned by the set of all eigenfunctions ϕj(x) of
HQ. Unless otherwise stated, we shall not impose that ρ(t) be normalized. One has
([HQ, ρ] = HQρ− ρHQ):

∂ρ

∂t
=

1
ih̄
[HQ, ρ] (33)

We consider the matrix element 〈x− y|ρ(t)|x+ y〉 of ρ(t) in generic eigenstates, |x− y〉,
|x + y〉, of the quantum position operator. The quantum Wigner function WQ = WQ(x, q; t),
determined by ρ, is [56–60]:

WQ(x, q; t) =
1

πh̄
×∫ +∞

−∞
dy exp[

i2qy
h̄

]〈x− y|ρ(t)|x + y〉 (34)

The initial non-equilibrium Wigner function at t = 0 is WQ,in, given by Equation (34)
if ρ = ρin. For t > 0, the exact reversible quantum master equation for WQ [56,57] reads

∂WQ(x, q; t)
∂t

= − q
m

∂WQ(x, q; t)
∂x

+ MQWQ,

MQWQ =
∫ +∞
−∞ dq′WQ(x, q′; t)

∫ +∞
−∞

idy
πh̄2 × [V(x + y)−V(x− y)] exp[ i2(q−q′)y

h̄ ] =

dV
dx

∂WQ
∂q −

h̄2

3!22
d3V
dx3

∂3WQ
∂q3 + · · · As h̄ → 0, the above Wigner equation becomes formally,

by dropping all h̄-dependent terms (containing ∂nWQ/∂qn, n = 3, 5, . . . ), the classical
Liouville Equation (1), with WQ →W [56,57].

The equilibrium Wigner function WQ,eq = WQ,eq(x, q) fulfills
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∂WQ,eq

∂t
= o,

− q
m

∂WQ,eq

∂x
+ MQWQ,eq = 0.

WQ,eq is the Wigner function determined by exp[−(kBT)−1HQ]. The Wigner functions
W and WQ,eq can be < 0 in certain regions. See: reference [61]. In general, there is no
compact formula for WQ,eq.

One can introduce the orthogonal polynomials in momentum (q) generated by WQ,eq.
The non-positivity of WQ and WQ,eq is bypassed by invoking a suitable extension of the
theory of orthogonal polynomials [62]: one assumes [39–41] that WQ,eq yields a family
of orthogonal polynomials in momentum, in the framework of [62]. The latter generate
non-equilibrium moments WQ,n, like in the classical case: see [39–41].

The above non-equilibrium dynamical Wigner equation gives rise to a hierarchy for the
non-equilibrium moments WQ,n. Here, one meets another genuine quantum difficulty: the
hierarchy is not a three-.term one and, hence, more difficult to study. This difficulty is by-
passed, at least in principle, by searching for regimes enabling to formulate approximately a
Schmolukowski equation for the lowest non-equilibrium moment WQ,0, yielding approach
to equilibrium for long t [39]. Those complexities of the present hierarchy framework
amplify as one proceeds far from the classical regime, say, towards lower temperatures.
So, upon accepting that the state of a quantum system, for sufficiently long t, tends to its
equilibrium canonical density operator (in agreement with [8,13,14,20–22,24–26,48–55]), to
derive such an approach in the present hierarchy framework, even if possible in principle,
becomes the more complicated the more one detaches from the classical regime.

Conversely, such difficulties tend to simplify (in particular, the hierarchies becoming
approximately three-term ones) in a quantum regime which be not far from the classical
regime. Specifically, let us consider that T is neither high (so as not to enter entirely in
the classical regime) nor low (so as to avoid the low temperature regime). Therefore, we
proceed to the regime of typical chemical reactions: small thermal wavelength (small q−1

eq ,
qeq = (2mkBT)). In it, the general non-equilibrium quantum hierarchy [39–41] can be
approximated by a three-term hierarchy, generalizing Equation (5).

We shall perform the long-t approximation for t longer than a certain largest effective
evolution time. We shall omit details, which extend formally the ones in Section 2.1.4. We
shall assume that approximately the initial condition gives rise to moments WQ,in,0 6= 0
and WQ,in,n = 0 for n 6= 0. One gets the following irreversible approximate quantum
(Smoluchowski-like) equation for the lowest non-equilibrium moment WQ,0 = WQ,0(x; t):

∂WQ,0

∂t
=

qeq

m
∂

∂x
D[MQ;1,0WQ,0], (35)

with
MQ;1,0WQ,0 = − qeq

m
∂(εQ,2,0WQ,0)

∂x +
1

qeq
∂V
∂x WQ,0

and εQ,2,0 = −
∫ +∞
−∞ dyWQ,eqy2∫ +∞
−∞ dyWQ,eq

.

D being a suitable approximation for combinations of quantum operator-continued
fractions, which constitute extensions of Equations (8) and (23) [39,40]. As a zeroth approxi-
mation, D can be supposed to be a constant. See Appendix A in [39]. These procedure and
approximations are, in principle, independent of εQ,2,0 (which contains quantum features,
as it follows from WQ,eq).

The result in Equation (35), implying long-t irreversibility, embodies stochasticity
and displays a structure typical of diffusion-convection-reaction equations: it is linear,
convection is determined by the V-dependent term and external sources are absent. An
extension of Equation (35) was used in [40] to study binary chemical reactions. In turn,
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reference [40] extended a previous one (based on classical statistical mechanics) of the
non-equilibrium dynamics of DNA [63].

5. Functional Methods toward Quantum Field Theory: Quantum Anharmonic Oscillator
5.1. Oscillator at Equilibrium through Functional Integrals

A quantum anharmonic oscillator of mass m in one spatial dimension (coordinate φ),
momentum Π and frequency ω will be treated here, based on [42]. The method in Section 4
could be applied to it, but functional methods will be preferred, as an introduction to those
to be applied for the quantum field case in Section 6. Ha = (2m)−1Π2 + 2−1mω2φ2 + V(φ)
with V(φ) = (4!)−1gφ4 is the Hamiltonian operator. g (g(≥0)) denotes the coupling con-
stant. We shall outline its equilibrium statistical mechanics in the presence of an external hb
at thermal equilibrium at equilibrium temperature (kBβeq)−1 is included. The equilibrium
statistical mechanics of the quantum oscillator is accounted for through the equilibrium
density operator: ρa,eq = exp

[
−βeqH

]
. An external source Jeq = Jeq(τ) is introduced

depending on the imaginary time τ (0 ≤ τ ≤ βeq h̄) [64–67]. The generating functional
integral for the quantum oscillator at equilibrium with the hb reads (φ = φ(τ)): [64–67]:

Za,eq[Jeq] =
∫
[Dφ] exp(−1

h̄

∫ βeq h̄

0
dτ(S(0)

eq + V(φ)− Jeqφ)) (36)

which is performed with periodic boundary conditions: φ(τ = 0) = φin(τ = h̄βeq) and

with S(0)
eq = 2−1m(dφ/dτ)2 + 2−1mω2φ2. Za,eq[Jeq] yields the thermodynamical partition

function: Za,eq[Jeq = 0]. In the regime of high temperature (that is, small βeq), one assumes
that Jeq and φ(τ) become τ-independent: Jeq(τ) ' jeq and φ(τ) ' φ. Then, Equation (36)
describes a classical anharmonic oscillator at equilibrium [37]:

Za,eq,dr[jeq] =
∫

dφ exp(−βeq(
mω2φ2

2
+ V(φ)− jeqφ)) (37)

which is an ordinary integral [37].

5.2. Oscillator Off-Equilibrium: Generating Functionals

Let the oscillator be off-equilibrium at the initial time t = t0, with the following
specific initial density operator (physically interesting in connection with quantum fields
off-equilibrium in Section 6):

ρa,in = exp
[
−βeq(H + cφ)

]
(38)

ρa,in does correspond to a nonequilibrium initial state if the constant c 6= 0. Thus, if
Tr denotes the standard trace operation, one finds: Tr(φρa,in) 6= 0 provided that c 6= 0. In
Section 6 (the quantum field case), the structures of the initial nonequilibrium states will
generalize Equation (38). Initial nonequilibrium states have been considered, for instance
in [14].

The density operator ρ = ρ(t, t0) = U(t, to)ρa,inU+(t, t0) determines the time evo-
lution for t > t0, U(t, to) = exp[−(i/h̄)H(t− t0)] and the superscript (+) denoting the
evolution operator and the adjoint, respectively. We shall suppose a suitably large time T
(not to be confused here with absolute temperature) much larger than any time t of physical
interest: T � t ≥ t0. |χ〉 will denote an arbitrary eigenstate of the coordinate operator
φ. By introducing two complete sets of intermediate eigenstates |φ2〉 and |φ1〉 of φ, one
obtains: 〈χ|ρ(T, t0)|χ〉 =

∫
dφ2

∫
dφ1〈χ|U(T, t0)|φ2〉 × 〈φ2|ρa,in|φ1〉〈φ1|U(T, t0)

+|χ〉. That
enables to represent 〈χ|U(T, t0)|φ2〉 and 〈φ1|U(T, t0)

+|χ〉 by means of real-time functional
integrals [37,65], represented as

∫
[Dφ±].

Associated with the functional integrals yielding 〈χ|U(T, t0)|φ2〉 and 〈φ1|U(T, t0)
+|χ〉,

two external sources, J+(t+) and J−(t−), respectively are introduced. On the other hand,
〈φ2|ρa,in|φ1〉 is represented by an Euclidean functional integral with another source Jin(τ).
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One constructs the nonequilibrium quantum generating functional associated with ρ(T, t0),
by integrating over |χ〉:

Za[J+, J−, Jin] =
∫

dχ
∫

dφ2

∫
dφ1 I+ Iin I− (39)

I± =
∫
[Dφ±] exp

[
± i

h̄

∫ T

t0

dt±(Lcl(φ±) + J±φ±)

]
(40)

Notice that Lcl(φ) = 2−1m(dφ/dt)2 − 2−1mω2φ2 −V(φ) turns out to be the classical
(cl) Lagrangian and that the functional integral I+ = I+[χ, φ2; J+] (respectively, I− =
I−[φ1, χ; J−]) is performed subject to the boundary conditions φ+(t0) = φ2 and φ+(T) = χ
(respectively, φ−(t0) = φ1 and φ−(T) = χ). Equation (39) is similar to other generating
functionals appearing in the closed time path technique. See, for instance [64,68].

The Euclidean functional integral Iin (associated with the initial non-equilibrium state
ρa,in) is:

Iin =
∫
[Dφin] exp(−1

h̄

∫ βeq h̄

0
dτ(S(0)

eq + V − (Jin − c)φin)) (41)

to be carried out with the boundary conditions: φin(τ = 0) = φ1 and φin(τ = h̄βeq) = φ2

(with the same S(0)
eq as • in Equation (36).

It will be very useful to introduce the alternative sources (see, for instance [64])

Jc =
J+ + J−

2
, J∆ = J+ − J− (42)

Za[J+, J−, Jin] ≡ Z′a[Jc, J∆, Jin] is recast as

Z′a[Jc, J∆, Jin] =
∫

dχ
∫

dφ′c

∫
dφ′∆

∫
[Dφc]

∫
[Dφ∆]Iin exp

i
h̄

∫ T

t0

dt×

[(−d2φc

dt2 −mω2φc − (V(φc +
φ∆

2
)−V(φc −

φ∆

2
)) + Jcφ∆ + J∆φc)] (43)

In so doing, the following changes of integration variables have been carried out:
φ1 = φ′c − 2−1φ′∆, φ2 = φ′c + 2−1φ′∆, φc = 2−1(φ+ + φ−), φ∆ = φ+ − φ−. The functional
integrals above are performed subject to the boundary conditions: φc(t0) = φ′c, φc(T) = χ,
φ∆(t0) = φ′∆ and φ∆(T) = 0.

Full correlators are defined through functional derivatives δ/δ with respect to the
external sources. Thus, the two-time full correlator is:

−h̄2[
1

Z′a[Jc, J∆, Jin]

δ2Z′a[Jc, J∆, Jin]

δJ∆(t2)δJc(t1)
]Jc=J∆=Jin=0 (44)

(namely, evaluated for vanishing external sources, after the functional differentiation). Full
correlators are shown to be T- independent, in general.

If V = 0 and c = 0, Equation (39) becomes the free (Gaussian) nonequilibrium
functional Z(0)

a [J+, J−, Jin] = Z(0)
a . The boundary conditions for Z(0)

a [J+, J−, Jin] are the
same as for Za[J+, J−, Jin]. I± = I(0)± and Iin = I(0)in are Gaussian and known [37,64]. The
integrations over χ, φ2 and φ1 in Z(0)[J+, J−, Jin] turn out to be Gaussian as well. The final
result of all integrations is cast as

Z(0)
a [J+, J−, Jin] = Z′a

(0)
[Jc, J∆, Jin] = C exp

[
+

1
2

S′ne
(0)
]

(45)
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C is a constant factor which collects the product of all functional jacobians arising from
all functional integrations yielding Equation (45) from Equation (39). C (independent on
the sources) depends on βeq and will be omitted. S′ne

(0) reads in terms of Jc and J∆:

S′ne
(0)

=
∫ T

t0

dt
∫ T

t0

dt′[J∆(t)∆
(0)
∆,∆(t, t′)J∆(t′) + J∆(t)[∆

(0)
∆,c(t, t′) + ∆(0)

c,∆(t
′, t)]×

Jc(t′) +
∫ T

t0

dt
∫ βeq h̄

0
dτ J∆(t)(∆

(0)
∆,in(t, τ) + ∆(0)

in,∆(τ, t))Jin(τ)

+
∫ βeq h̄

0
dτ
∫ βeq h̄

0
dτ′ Jin(τ)∆

(0)
in,in(τ, τ′)Jin(τ

′) (46)

Terms in Jc Jc and Jc Jin are absent in (46) due to exact cancellations. By extending
standard results for the partition function of a harmonic oscillator coupled to an external
current [64], the free correlators in (46) are obtained :

∆(0)
∆,∆(t, t′) = −cos ω(t− t′)

mh̄ω
(

1
2
+

1
exp ωh̄βeq − 1

) (47)

∆(0)
∆,c(t, t′) =

i sin ω(t− t′)
mh̄ω

(θ(t− t′) +
1
2
) (48)

∆(0)
c,∆(t, t′) =

i sin ω(t− t′)
mh̄ω

(θ(t− t′)− 1
2
) (49)

∆(0)
in,∆(τ, σ) =

f−(ω, h̄, τ) sin ω(σ− t0)

2mh̄ω
+

i f+(ω, h̄, τ) cos ω(σ− t0)

2mh̄ f0(ω, h̄)
(50)

∆(0)
in,in(τ, τ′) =

cosh((ωh̄βeq/2)−ω | τ − τ′ |)
2mh̄ω sinh(ωh̄βeq/2)

(51)

f0(ω, h̄) =
ω(cosh ωh̄βeq − 1)

sinh ωh̄βeq
(52)

f±(ω, h̄, τ) =
sinh ωτ + (±) sinh ω(h̄βeq − τ)

sinh ωh̄βeq
(53)

∆(0)
∆,in(t, τ) = ∆(0)

in,∆(τ, t) (54)

Dependences on the large time T have canceled out. θ is the standard step function.
One obtains ∆(0)

∆,∆(t, t) = −∆(0)
in,in(τ, τ) = i∆(0)

in,∆(0, t0).
In terms of Jc and J∆, one gets:

Z′a = Z′a[Jc, J∆, Jin] = exp[− i
h̄

gh̄4

4!

∫ T

t0

dt(
δ3

δJ3
c

δ

δJ∆
+ 4

δ3

δJ3
∆

δ

δJc
)]

exp[−1
h̄

∫ βeq h̄

0
dτ(V(h̄

δ

δJin
) + ch̄

δ

δJin
)]Z′a

(0)
[Jc, J∆, Jin] (55)

Equations (44)–(46) and (55) allow to obtain Z′a[Jc, J∆, Jin] and full correlators as pertur-
bative power series in g and c. The perturbative contributions are integrals embodying the
six free correlators ∆(0)

∆,∆, ∆(0)
∆,c, ∆(0)

c,∆, ∆(0)
in,∆, ∆(0)

∆,in and ∆(0)
in,in and the interactions corresponding

to (δ3/δJ3
c )(δ/δJ∆), (δ3/δJ3

∆)(δ/δJc), δ4/δJ4
in and δ/δJin.

5.3. Oscillator at High Temperature Regime

Let βeq be small (high temperature) and Jin(τ) be approximated as τ-independent:

Jin(τ) ' jin. For small βeq , ∆(0)
∆,c and ∆(0)

c,∆ are seen to remain unmodified. The other
correlators do simplify:
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∆(0)
∆,∆(t, t′) ' −cos ω(t− t′)

mh̄2βeqω2
≡ ∆(0)

∆,∆,dr(t, t′) (56)

∆(0)
in,∆(τ, t) ' i cos ω(t− t0)

mh̄βeqω2 ≡ ∆(0)
in,∆,dr(0, t) (57)

∆(0)
∆,in(t, τ) ' i cos ω(t− t0)

mh̄βeqω2 ≡ ∆(0)
∆,in,dr(t, 0) (58)

∆(0)
in,in(τ, τ′) ' 1

βeqω2mh̄2 ≡ ∆(0)
in,in,dr(0, 0) (59)

Notice that the behavior of ∆(0)
∆,∆(t, t′) in Equation (47) as a function of βeq is very differ-

ent from that of ∆(0)
∆,∆(t, t′) in Equation (56). Thus, the factor 1

2 +
1

exp ωh̄βeq−1 in Equation (47)

becomes 1
h̄βeq

in Equation (56), as βeq becomes small.

In the power series in g and c for any full correlator determined by Z′a[Jc, J∆, Jin], one
concentrates on all terms of the same order in g and c. Use is made of (56)–(59). For
a given order in g and c, the differentiation instruction 4(δ3/δJ3

∆)(δ/δJc) couples larger
numbers of correlators with β−1

eq factors. On the other hand, the other differentiation
instruction, namely, (δ3/δJ3

c )(δ/δJ∆) couples smaller numbers of correlators with β−1
eq

factors. Consequiently, as βeq is small, the leading contributions to any full correlator
to all orders in g and c arise from the differentiation instruction 4(δ3/δJ3

∆)(δ/δJc). The
differentiation instruction (δ3/δJ3

c )(δ/δJ∆) gives rise to subdominant contributions. One
can see that the set of all leading contributions can be resummed into the following new
and simpler generating functional:

Z′a,dr[Jc, J∆, jin] = exp[− igh̄4

4!

∫ T

t0

dt4(δ3/δJ3
∆)(δ/δJc)]×

exp[−βeq(V(h̄
δ

δjin
) + ch̄

δ

δjin
)]Z′a,dr

(0)
[Jc, J∆, jin] (60)

The subscript dr denotes high temperature approximation. In turn, Z′a,dr
(0)[Jc, J∆, jin] is

given by Equations (45) and (46) with the approximations (56)–(59) for correlators. Notice
that one is approximating:

∫
0

βeq h̄dτ ' βeq h̄. Z′a,dr[Jc, J∆, jin] is regarded as the desired high
temperature approximation arising from Z′a[Jc, J∆, Jin]. It will be interesting to recast (60) as

Z′a,dr[Jc, J∆, jin] =
∫

dχρa,dr(χ, χ; T, t0; Jc, J∆, jin) (61)

ρa,dr(χ, χ′; T, t0; Jc, J∆, jin) ≡
∫

dφ′cdφ′∆

∫
[Dφc][Dφ∆]Iin,dr ×

exp
i
h̄

∫ T

t0

dt((−d2φc

dt2 −mω2φc − (
∂V(φc)

∂φc
))φ∆ + Jcφ∆ + J∆φc) (62)

Iin,dr = ρin,dr exp[βeq jinφ′c] (63)

ρin,dr = exp[−(2βeq h̄2)−1mφ′2∆ − 2−1βeqmω2φ′2c − βeq(V(φ′c) + cφ′c)] (64)

The functional integrals in (62) are performed subject to the boundary conditions:
φc(t0) = φ′c, φc(T) = 2−1(χ + χ′), φ∆(t0) = φ′∆ and φ∆(T) = χ − χ′. The computation
showing that Equations (61) and (62) (with χ = χ′) yield Equation (60), being direct but
lengthy, is omitted. The functional Z′a,dr[Jc, J∆, jin] represents physically a non-equilibrium
anharmonic oscillator, in which thermal fluctuations have overcome quantum fluctuations
(which have become negligible). The starting Z′a[Jc, J∆, Jin] corresponds to a non-equilibrium
quantum anharmonic oscillator, while the final Equations (61) and (62) represent a classical
one. To support such a statement, notice that (−d2φc/dt2 −mω2φc − (∂V(φc)/∂φc)) does
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characterize a classical anharmonic oscillator [64]). Based upon the latter, the following
supporting argument will be outlined. Let χ∆ ≡ χ− χ′ and χc ≡ 2−1(χ + χ′) and let t− t0
be infinitesimal. We shall focus on

∫
(dχ∆/(πh̄))ρa,dr(χ, χ′; t, t0; 0, 0, 0) exp[−iχ∆Πc/h̄] ≡

Wc(χc, Πc; t, t0). One shows easily that Wc(χc, Πc; t, t0) fulfills the (h̄-independent) Liou-
ville equation. And similarly for finite t − t0. For related arguments, see [64]. Then,
Wc(χc, Πc; t, t0) can be regarded as the classical Liouville distribution function associated
with a classical anharmonic oscillator.

The developments and high temperature results in this section will give important
hints for those in Section 6 (in which ultraviolet divergences and renormalization effects
will be taken into account).

6. Quantum Field Theory: Scalar Field

In 1 + 3 dimensions (t and x = (x1, x2, x3)), let the quantized version of the clas-
sical field system studied in Section 3 be studied here. We now deal with a large sta-
tistical quantum system formed by relativistic mesons. Their microscopic dynamics is
described by an unrenormalized relativistic Hermitian scalar quantum field operator
φ = φ(t, x). We set h̄ = 1, for simplicity. The unrenormalized Hamiltonian operator is
HQ =

∫
d3xhQ(Π; φ), with:

hQ(Π; φ) = N[2−1(Π2 +
3

∑
i=1

(∂φ/∂xi)
2 + m2φ2)]

+N[V(φ)] (65)

Π = ∂φ/∂t is the field operator canonically conjugate to φ. N denotes normal product,
V(φ) = gφ4/4!. The unrenormalized mass parameter is m while g is the unrenormalized
coupling constant. Λ is an ultraviolet cut-off. Ultraviolet divergences as Λ→ +∞ appear
and ultraviolet renormalization is necessary, being implemented through perturbation
theory [37,69–72].

In the present large statistical meson gas, the statistical behaviour implies quantum and
thermal fluctuations: several formalisms account for the quantized field associated with that
system at finite temperature, either at equilibrium or off-equilibrium. The developments
in Section 5 serve as a guidance, until ultraviolet divergences are met. As a general
strategy in the present section, perturbative ultraviolet renormalization will be performed
in the various finite temperature formalisms. In them, zero-temperature renormalization
counterterms suffice and will always be used here. Only the renormalized results will
be reviewed.

6.1. Equilibrium

Let the quantum meson gas be at thermal equilibrium, at finite absolute temperature
(kBβeq)−1 . The equilibrium quantum density operator is

ρeq = exp(−βeqHQ)

The equilibrium quantum partition function is: Trρeq. For general references,
see [64–67,73,74].

By extending Section 5, a quantum field theoretic system at thermal equilibrium can
be studied through either the imaginary time formalism or the real time one, using gen-
erating functionals, represented through functional integrals including external sources.
In both cases, we shall study the important simplifications which occur for high temper-
ature and large distances. The final purpose will be to investigate the possible approach
to equilibrium.



Dynamics 2023, 3 363

6.1.1. Imaginary Time Formalism (ITF)

In the ITF [37,65,67] and generalizing in Section 5.1, one introduces the scalar field
φ = φ(τ, x), the real variable τ (named “imaginary time”) varying in 0 ≤ τ ≤ βeq, with the
periodic boundary condition: φ(τ = 0, x) = φ(τ = βeq, x) for any x. One also introduces
the real function (the external source) Jeq = Jeq(τ, x), also periodic: J(τ = 0, x) = J(τ =
βeq, x). The meson system at equilibrium is described by the following (“euclidean”)
unrenormalized equilibrium generating functional. The latter is a functional integral over
all field configurations (generic real functions φ = φ(τ, x)) with the external source Jeq (an
arbitrary real function):

Zeq[Jeq] =
∫
[Dφ] exp[−

∫
d3x

∫ βeq

0
dτ ×

(seq − Jeqφ)] (66)

seq =
1
2
(

∂φ

∂τ
)2 + seq,3(m, g) (67)

seq,3(m, g) =
1
2

3

∑
i=1

(
∂φ

∂xi
)2 +

m2

2
φ2 +

gφ4

4!
(68)

where
∫
[Dφ] denotes functional integration, with measure [Dφ]. The equilibrium partition

function of the meson gas, accounting for its thermodynamics, is: Zeq[Jeq = 0].
The unrenormalized field correlators in the ITF are the functional derivatives

δnZeq[Jeq]/δJeq(τ1, x1)...δJeq(τn, xτn)|Jeq=0

They give rise to (perturbative) series expansions into powers of g.
At each order in g, one finds integrals which are ultraviolet divergent. Such di-

vergences are eliminated upon performing perturbative renormalization, by means of
renormalization counterterms. Specifically, zero-temperature renormalization countert-
erms are used. The following renormalized quantities (subscript r) are considered: field
operator (φr), coupling constant (geq,r) and mass (meq,r). We shall also consider the mass
renormalization counterterm δm2

eq and the renormalization constants Zeq,i, i = 1, 3. In
the IFT, the renormalization process gives rise to the renormalized correlators (out of the
unrenormalized ones) which, in turn, lead to the renormalized equilibrium generating
functional Zeq,r[Jeq]. In terms of the latter, the renormalized correlators with n external
legs are

δnZeq,r[Jeq]/δJeq(τ1, x1)...δJeq(τn, xτn)|Jeq=0

6.1.2. ITF: Equilibrium Dimensional Reduction (EDR)

We shall now proceed to the regime of high temperature (small βeq) and large spatial
scales. Let us assume:

Jeq(τ, x) ' jeq(x) = jeq and that∫
(d3x/(2π)3) exp[−ikx]jeq(x) is largest if | k |� β−1

eq , and negligible otherwise. We
consider the leading approximation for each renormalized correlator at any given perturba-
tive order for small βeq and large spatial scales.

Then, the series formed by all such leading approximations for renormalized correla-
tors can be resummed into the following renormalized (r) and dimensionally reduced (dr)
equilibrium generating functional in the ITF (zero-mode approximation):
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Zeq,r,dr[jeq] =
∫
[dφ] exp[−βeq

∫
d3x×

(seq,3(meq,r, geq,r,dr) +
δm2

eq,dr

2
φ2 −

jeqφ)] (69)

with φ = φ(x) (τ-independent). The resulting approximate results, to leading order, are
named equilibrium dimensional reduction (EDR) in the IFT. References to EDR are rather
numerous: we shall limit ourselves to quoting [75–80]. The renormalized coupling constant
is ultraviolet finite: geq,r,dr = geq,r + δgeq,r to one-loop order in geq,r (up to a constant)

δgeq,r ' −(3/16π2)g2
eq,r ln(meq,rβeq/4π).

Zeq,r,dr[jeq] does not give rise to ultraviolet divergences in either coupling constant or
field, but it does in mass. In fact, one has

δm2
eq,dr = δm2

eq,dr,1 + σeq,1 + δm2
eq,dr,2 (70)

δm2
eq,dr,1 =

−
geq,r

2βeq

∫
|k|≤Λ

d3k
(2π)3(m2

eq,r + k2)
(71)

δm2
eq,dr,1 (one-loop order in geq,r) is linearly ultraviolet divergent if Λ → +∞. σeq,1 is

a finite (temperature-dependent) real self-energy, at order geq,r. δm2
eq,dr,2 contains higher

orders in geq,r. While the zero temperature mass renormalization counterterm δm2
eq (quadrat-

ically ultraviolet divergent) was employed to renormalize Zeq[Jeq], one sees that the mass
renormalization counterterm δm2

eq,dr,1 depends on temperature.

Standard four-dimensional φ4 theory without statistical fluctuations (which is the
same as the IFT one at equilibrium at zero temperature) appears to be, order by order
in perturbation theory, non-trivial, namely, it is a theory, with nonvanishing interactions.
However, when analyzed nonperturbatively, that theory turns out to be trivial, namely,
it is a free theory, with vanishing interactions. Upon introducing statistical fluctuations,
and proceeding to high temperatures into the EDR regime, Zeq,r,dr[jeq] is in the same class
as the non-trivial massive three-dimensional φ4 theory. So, as temperature increases, it
turns out that the meson system at equilibrium experiences a phase transition at a critical
temperature T = Tc. For T < Tc, the system is an interaction-free gas (triviality). For
T > Tc, the system has non-vanishing interactions (non-triviality): it corresponds to the
dimensionally reduced theory just studied.

In lattice computations: the phase transition manifests itself as a dimensional crossover
in critical properties of the φ4 theory, as temperature increases across Tc (from triviality
towards non-triviality). Stated into other form, EDR corresponds to changes in phase
structures of bosonic matter at very high temperatures.

In short, in quantum field theories containing bosonic degrees of freedom, after
EDR, the bosonic fields to leading approximation are described by effective fields in three
spatial dimensions.

In general, EDR is supported by lattice computations and is helpful in non-perturbative
lattice computations for partition functions in four dimensions

EDR in ITF has been generalized to Yang–Mills theory and to quantum field theories in-
cluding fermions: specifically to quantum electrodynamics and quantum chromodynamics.
See, for instance, reference [81] and references therein.

6.1.3. Real-Time Formalism (RTF)

In the RTF [65], the description of the meson gas at equilibrium employs the usual time
(t) variable: −∞ < t < +∞. One key feature in the RTF at equilibrium is a doubling of the
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field degrees of freedom. This implies a higher number of correlators in it compared to the
ITF. Let J+(t+x) and J−(t−x) be two external sources. Let Zeq[J+, J−] be the unrenormalized
equilibrium real-time generating functional with those sources. One has

Zeq[J+, J−] = exp[−i
∫ +∞

−∞
dt
∫

d3x(V(−i
δ

δJ+
)

−V(−i
δ

δJ−
))]Z(0)

eq [J+, J−] (72)

Z(0)
eq [J+, J−] being the free (unrenormalized) equilibrium RT generating functional.

Each of both functionals Zeq[J+, J−] and Z(0)
eq [J+, J−] gives (by means of standard functional

differentiations, formally similar to those in the ITF) four unrenormalized equilibrium
real-time (RT) field correlators. In turn, the latter provide responses of the quantum gas to
external perturbations. Among various applications, we quote: transition and emission
probabilities, decay rates in QED and QCD plasmas and stars at equilibrium. See [65].

The RTF is exactly consistent with analytic continuation from real-time to imaginary-
time. Specifically, the equilibrium RTF correlators are suitable analytic continuations of IFT
ones (to all perturbative orders). See [65,82–84] and references therein.

For later use in dimensional reduction and the non-equilibrium gas, it will be adequate
to introduce the alternative useful sources Jc(t, x) and J∆(t, x) [68] as follows:

Jc =
J+ + J−

2
, J∆ = J+ − J− (73)

By using them, one can recast Z(0)
eq [J+, J−] as

Z(0)
eq [J+, J−] = Z(0)′

eq [Jc, J∆] =

C exp
[
+

1
2

∫
d3xd3x′s(0)

′

eq

]
(74)

s(0)eq
′
=
∫ +∞

−∞
dt
∫ +∞

−∞
dt′[J∆(t, x)∆(0)

∆,∆ ×

J∆(t′, x′) + J∆(t, x)Jc(t′, x′)(∆(0)
∆,c +

∆(0)
c,∆)] (75)

The unrenormalized free correlators ∆(0)
∆,c, ∆(0)

c,∆ and ∆(0)
∆,∆ are also known, respectively,

as the retarded, advanced and correlated dynamical RT Green’s functions [68]. Notice the
absence of a contribution proportional to Jc Jc ! The four-dimensional Fourier transforms of
those free unrenormalized propagators are given by

∆̃(0)
∆,∆(k) =

−2πδ(k2 −m2)n(|k0|) (76)

n(|k0|) = 1
2
+

1
exp |k0|βeq − 1

(77)

∆̃(0)
∆,c(k) +

ε(k0)

2
2πδ(k2 −m2) =

∆̃(0)
c,∆(k)−

ε(k0)

2
2πδ(k2 −m2) =

− i
2
[

1
k2 −m2 + iε

+
1

k2 −m2 − iε
] (78)
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δ denotes the Dirac delta function and ε(k0) = 0, 1 for k0 < 0, k0 > 0, respectively. k0

is the zeroth component of k. In terms of the alternative sources, one recasts the unrenor-
malized functional

Zeq[J+, J−] = Z′eq[Jc, J∆] as:

Z′eq[Jc, J∆] = exp[−i
∫ +∞

−∞
dt
∫

d3x
g
4!
(

δ3

δJ3
c

δ

δJ∆

+4
δ3

δJ3
∆

δ

δJc
)]Z(0)′

eq [Jc, J∆] (79)

The latter enables (by using also functional differentiation) to construct alternative full
unrenormalized RTF equilibrium correlators as power series in g. One has two interactions,
generated by

(δ3/δJ3
c )(δ/δJ∆), (δ3/δJ3

∆)(δ/δJc)

Ultraviolet renormalization (using Jc and J∆) is required for
(i) the two-point correlator with one external ∆-leg and one external c-leg, (ii) the two

four-point correlators, namely, the one with one external c-leg and three external ∆-legs and
the one with one external ∆-leg and three external c-legs. Zero temperature renormalization
counterterms are used. The series of all perturbatively renormatized correlators, to all
orders, can be shown to follow from the new renormalized generating functional Z′eq,r[Jc, J∆].
In the latter, the same renormalized mass meq,r and coupling constant geq,r as in the IFT
(Section 6.1.1) also appear (instead of the unrenormalized ones, m and g, respectively), as
well as renormalization constants and counterterms. A posteriori, the renormalized RTF
correlators with n external legs are given by:

δnZ′eq,r[Jc, J∆]/δJcδJc...δJ∆δJ∆

6.1.4. RTF: Equilibrium Dimensional Reduction (EDR)

We now turn to the regime of high temperature (small βeq) and large spatial and time
scales (EDR). The starting point is the renormalized functional Z′eq,r[Jc, J∆].

For u = c, ∆, we assume that J̃u(k) in

Ju(x) =
∫ d4k

(2π)4 exp[−ikx] J̃u(k) (80)

takes on appreciable values when the absolute value of any kµ (µ = 0, 1, 2, 3) is � β−1
eq ,

(being negligible otherwise).
The Fourier transforms of ∆(0)

∆,c,r and ∆(0)
c,∆,r do not simplify in EDR, while ∆(0)

∆,∆,r does
simplify; that is, its four-dimensional Fourier transform is to leading order:

∆̃(0)
∆,∆,r ' −

2πδ(k2 −m2
eq,r)

βeq | k0 | ≡

∆̃(0)
∆,∆,r,dr (81)

Notice that it depends on the renormalized mass meq,r. One starts from the series
formed by all leading contributions (in the EDR regime) to the renormalized RTF corre-
lators generated by Z′eq,r[Jc, J∆] from Section 6.1.3. The series formed by all those leading
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approximations can be resummed into the following renormalized (r) and dimensionally
reduced (dr) equilibrium generating functional:

Z′eq,r,dr[Jc, J∆] = exp[−i
∫ +∞

−∞
dt
∫

d3x×

(4
geq,r,dr

4!
δ3

δJ3
∆

δ

δJc
+

δm2
eq,dr

2
δ

δJ∆

δ

δJc
)]×

Z(0)′

eq,r,dr[Jc, J∆] (82)

Z(0)′

eq,r,dr[Jc, J∆] = C exp[+
1
2

∫
d3xd3x′ ×

s(0)
′

eq,r,dr] (83)

s(0)
′

eq,r,dr =
∫ +∞

−∞
dt
∫ +∞

−∞
dt′[J∆(t, x)×

∆(0)
∆,∆,r,dr J∆(t′, x′) + J∆(t, x)Jc(t′, x′)×

(∆(0)
∆,c,r + ∆(0)

c,∆,r)] (84)

with

geq,r,dr = geq,r + δgeq,r (85)

and the same δmeq,dr and δgeq,r as in ITF EDR (which can be checked to one-loop order).
Notice that geq,r,dr is finite and that Z′eq,r,dr[Jc, J∆] characterizes a super-renormalizable
field theory. The above study of Z′eq,r,dr[Jc, J∆] will give very valuable hints for the non-
equilibrium gas and its dimensional reduction in Section 6.2.4.

6.2. Non-Equilibrium Gas in RTF

Let the quantum meson gas be in an initial non-equilibrium state described by the
initial density operator ρin at finite time to. In what follows, we shall study ρin and the time
evolution for t > to. For that purpose, it will be necessary to recall the classical Lagrangian
density:

lcl(φ) =
1
2
[(∂µφ)(∂µφ)−m2φ2]−

V(φ) (86)

The density operator for t > t0 is:

ρ(t, t0) = U(t, to)ρinU+(t, t0) (87)

U(t, to) = exp[−iHQ(t− t0)] (88)

Then, ρ(t, t0) involves two evolution operators (U and U+) with real times. Thus, a
suitable real time formulation (RTF), now for off-equilibrium evolution (extending the one
in Section 6.1.3), is necessary. One may anticipate that the number of non-equilibrium RTF
correlators required will be larger than for equilibrium.

ρ(t, t0), as implied by the above product, will be represented through non-equilibrium
functional integrals, yielding the so-called “closed time path” structure, genuine of non-
equilibrium quantum field theory (QFT). For general references to non-equilibrium QFT,
see [68,85,86] , as well as [87] (Green’s functions), references [88,89] (diagram techniques
for non-equilibrium processes) and [90] (N-particle irreducible effective action methods).
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Non-equilibrium QFT in RTF has important applications in relativistic heavy ion
collisions, non-equilibrium Bose–Einstein condensates, non-equilibrium quantum processes
in the early universe (for instance, inflationary cosmology). See the references above.

6.2.1. ρin at Finite to: General Problem

In physical processes with initial states as to → −∞ and final states as t → +∞,
both corresponding to pure states (no statistical effects), and described by renormalizable
relativistic QFT, standard ultraviolet divergences unavoidably appear. Such divergences are
systematically and completely absorbed by standard renormalization procedures [37,69–72].
The latter suffices for the computation of the corresponding (ultraviolet finite) probability
amplitudes (the S-matrix).

A general initial condition at finite time to(>−∞) in those theories may generate
additional ultraviolet divergences which, in turn, give rise to new and harder conceptual
difficulties to remove them: see [69]. Those features have been confirmed successively
through explicit examples of relativistic QFT models with initial pure states and cubic
coupling-theories: see [91] and (for initial one-particle states) [92]. In [85], it is stated that to
choose the vacuum as the state of quantum fluctuations at finite to may be inconsistent.

For various no-equilibrium injtial states, see [14,93,94]. All that led to pose the follow-
ing question: Which ρin at finite to leads to consistent time evolutions for t > to, displaying
only standard ultraviolet divergences (to be cured through standard renormalization the-
ory) without additional ultraviolet divergences? No general answer seems to be known,
but at least one class of ρin enjoying those properties will be proposed in the next subsub-
section below. Its study will be an off-equilibrium generalization of the previous one (in
Subsection 6.1.1) about equilibrium in the IFT.

6.2.2. Non-Equilibrium ρin at Finite to, Adequate to Meson Gas

For the meson gas, one possible initial non-equilibrium density operator ρin at finite
t0, including interactions, is [95]:

ρin = exp(−βeq

∫
d3x(λ(x)1hin(Π; φ) +

λ(x)2φ(x))) (89)

where hin(Π; φ) = hQ(Π; φ) (recall Equation (65)), with the replacements m → min and
g→ gin. λs = λ(x)s, s = 1, 2 are given functions with spatial variations (new length scales)
which imply spatial inhomogeneities in the non-equilibrium initial state. This ρin is the
actual counterpart of Win in Section 2.2.1.

We suppose that:
(i) λ(x)s, s = 1, 2 is finite and continuous for any x and varyies in length scales typical

of the renormalized φ4 theory (with zero temperature renormalization conditions);
(ii) λ(x)1 is > 0 for any x and approaches +1, as |x| → ∞ along any direction;
(iii) λ(x)2 is small and approaches zero, as |x| → ∞.
(kBβeq)−1(> 0) is interpreted as the equilibrium temperature at large distances.
With λ(x)1 6= 1: (i) if λ(x)2 ≡ 0, then ρin displays local equilibrium at short length

scales, global non-equilibrium at intermediate scales and thermal equilibrium at very large
distances; (ii) if λ(x)2 6= 0, then in addition to the properties summarized in (i), ρin also
implies symmetry breaking under φ→ −φ.
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6.2.3. Full Non-Equilibrium Generating Functional

Let |χ〉 = be a generic eigenstate of the field operator φ. Then, by using Equation (87)
and inserting two complete sets of field eigenstates (|φ2〉, |φ1〉), the matrix element of the
full non-equilibrium density operator is represented as

〈χ|ρ(T, t0)|χ〉 =
∫
[dφ2]

∫
[dφ1]〈χ|U(T, t0)|φ2〉

×〈φ2|ρin|φ1〉〈φ1|U(T, t0)
+|χ〉 (90)

By using standard techniques [37,70–72],

〈χ|U(T, t0)|φ2〉 and

〈φ1|U(T, t0)
+|χ〉 will be represented below by real-time functional integrals (T de-

noting here a large time, not to be confused with absolute temperature!). By recalling the
previous study of equilibrium ITF and RTF, suitable external sources will be introduced here:
a) two external sources, J+(t+) and J−(t−), respectively, associated with 〈χ|U(T, t0)|φ2〉
and 〈φ1|U(T, t0)

+|χ〉, and b) an external source, Jin(τ, x) for 〈φ2|ρin|φ1. t+, t− and τ are
real and imaginary time variables to be integrated over below.

The unrenormalized non-equilibrium generating functional, in terms of the real-time
functional integrals mentioned above and including the sources, is

Z[J+, J−, Jin] =
∫
[dχ]

∫
[dφ2]

∫
[dφ1]×

I+ Iin I− (91)

I± =
∫
[Dφ±] exp(±i

∫
d3x

∫ T

t0

dt± ×

(lcl(φ±) + J±φ±)) (92)

I+ = I+[χ, φ2; J+] corresponds to 〈χ|U(T, t0)|φ2〉with boundary conditions: φ+(t0, x) =
φ2(t0, x) and φ+(T, x) = χ(x), while I− = I−[φ1, χ; J−] corresponds to 〈φ1|U(T, t0)

+|χ〉,
with boundary conditions: φ−(t0, x) = φ1(t0, x) and φ−(T, x) = χ(x). lcl(φ±) are the classi-
cal Lagrangians given above. On the other hand, 〈φ2|ρin|φ1〉 is associated with the functional
integral Iin [43]:

Iin =
∫
[Dφin] exp(−

∫
d3x

∫ βeq

0
×

(sin − Jinφin)) (93)

sin =
1

2λ(x)1
(

∂φin
∂τ

)2 + s(0)in (min)

+s(V)
in (gin) (94)

s(0)in (min) = λ(x)1[
1
2

3

∑
i=1

(
∂φin
∂xi

)2 +

m2
in

2
φ2

in] (95)

s(V)
in (gin) = λ(x)1V(φin)

+λ(x)2φin (96)

The boundary conditions for φin in Iin are: φin(τ = 0, x) = φ1(t0, x) and φin(τ =
βeq, x) = φ2(t0, x). The functional integral Iin generalize the one studied in equilibrium in
the IFT. Z[J+, J−, Jin], together with the successive I+, I− and Iin, implement the structure
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known as “closed time path” genuine of non-equilibrium QFT. Z[J+, J−, Jin] yields, through
standard functional differentiations, the unrenormalized non-equilibrium correlators (inde-
pendent on the large time T).

By recalling the treatment of equilibrium in the RTF, it will be very useful to introduce
for non-equilibrium alternative sources Jc and J∆ [68], through equations formally similar to
Equation (73). Then, Z[J+, J−, Jin] becomes the alternative unrenormalized non-equilibrium
generating functional: Z[J+, J−, Jin] ≡ Z′[Jc, J∆, Jin], with

Z′[Jc, J∆, Jin] =
∫
[dχ]

∫
[dφ′c]

∫
[dφ′∆]

∫
[Dφc]

×
∫
[Dφ∆]Iin exp i

∫ T

t0

dt((−m2φc − ∂µ∂µφc)φ∆

−V(φc +
φ∆

2
) + V(φc −

φ∆

2
) +

Jcφ∆ + J∆φc) (97)

The new functional integrals are performed over the alternative fields φ′c, φ′∆, φc and
φ∆, with φ1 = φ′c − 2−1φ′∆, φ2 = φ′c + 2−1φ′∆, φc = 2−1(φ+ + φ−), φ∆ = φ+ − φ−. In
turn, the functional integrals over φc and φ∆ are carried out with the boundary conditions:
φc(t0) = φ′c, φc(T) = χ, φ∆(t0) = φ′∆ and φ∆(T) = 0.

For V = 0 and λ2 = 0, Z′[Jc, J∆, Jin] = Z′(0)[Jc, J∆, Jin] boils down to perform Gaussian
functional integrals, with the result

Z′(0)[Jc, J∆, Jin] = C exp+(
1
2

∫
d3xd3x′ ×

s(0)
′

ne ) (98)

s(0)
′

ne =
∫ T

t0

dt
∫ T

t0

dt′[J∆(t, x)∆(0)
∆,∆

×J∆(t′, x′) + J∆(t, x)Jc(t′, x′)(∆(0)
∆,c +

∆(0)
c,∆)] +

∫ T

t0

dt
∫ βeq

0
dτ J∆(t, x)×

Jin(τ, x′)× (∆(0)
∆,in + ∆(0)

in,∆)

+
∫ βeq

0
dτ
∫ βeq

0
dτ′ Jin(τ, x)∆(0)

in,in ×

Jin(τ
′, x′) (99)

Notice that no contributions proportional to Jc Jc and Jc Jin appear. Z′(0)[Jc, J∆, Jin]
contains the following unrenormalized free field correlators (associated with the various
sources in it: Jin, Jc and J∆): ∆(0)

in,in, ∆(0)
in,∆, ∆(0)

∆,in, ∆(0)
∆,∆, ∆(0)

c,∆ and ∆(0)
∆,c. The correlators ∆(0)

c,∆

and ∆(0)
∆,c are not influenced by the actual non-equilibrium process and so are the same as

for equilibrium in RTF. On the other hand, the actual non-equilibrium ∆(0)
∆,∆ is different

from the corresponding one for equilibrium in the RTF, and there should be no confusion if
the same notation is used for both of them. The other three correlators (∆(0)

in,in, ∆(0)
in,∆, ∆(0)

∆,in)
are new, as they do not appear for equilibrium in the RTF. The last three correlators and
∆(0)

∆,∆ do depend on certain functions fγ(x), determined by the spatial inhomogeneity λ(x)1
in the initial condition ρin. See [43] for the expressions of the functions fγ(x) and of the
corresponding correlators.

Standard functional differentiation techniques (which generalize directly those for
equilibrium in the RTF) yield

Z′[Jc, J∆, Jin]
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in terms of Z′(0)[Jc, J∆, Jin]. The latter enables (by using functional differentiation) to con-
struct full unrenormalized non-equilibrium correlators, determined by the above free ones,
as power series in g. Ultraviolet renormalization is required for those unrenormalized
non-equilibrium correlators. Zero temperature renormalization counterterms are also em-
ployed. That gives rise to the renormalized non-equilibrium free correlators, depending
on the renormalized masses mr, min,r and coupling constants gr, gin,r (instead of the un-
renormalized quantities). The series of all those perturbatively renormalized correlators
(with any number of external legs), to all orders in gr, gin,r , can be shown to follow from
the renormalized non-equilibrium generating functional Z′r[Jc, J∆, Jin]. Such a program has
been carried out and shown to be consistent to one loop order. See [43]. The following
remark may be adequate. The statistically averaged unrenormalized energy density, u, can
be expressed, after subtracting various renormalization counterterms, in terms of renor-
malized non-equilibrium free correlator (with two and four external legs). u is named
unrenormalized because, after those subtractions, it still contains ultraviolet divergences.
The additional subtraction of ultraviolet divergent contributions due to the vacuum energy
density (at the temperature considered) gives rise to the ultraviolet finite statistically aver-
aged energy density, ur. To lowest orders in gr, gin,r, ur is proportional to Planck’s energy
density distribution. The full expression of ur (to all orders in gr, gin,r) is rather involved
and will not be discussed.

6.2.4. Non-equilibrium Dimensional Reduction (NEDR) in RTF

We shall perform approximations for high temperature (small βeq) and large distances
and long time for Z′r[Jc, J∆, Jin] (non-equilibrium dimensional reduction or NEDR) [42,43].
They will constitute nontrivial generalizations of those for equilibrium in
Sections 6.1.2 and 6.1.4. For brevity, only the main formulae will be given, thereby omitting
many of them. See [43].

We shall suppose: (i) mr and min,r � β−1
eq , (ii) Jin(τ, x) ' jin(x),

∫ βeq
0 dτ ' βeq as for

EDR in ITF (Section 6.1.2), and (iii) the same approximations for Jc and J∆ as for EDR in
RTF.

Small βeq approximations are performed in the renormalized non-equilibrium free corre-

lators ∆(0)
∆,∆,r, ∆(0)

∆,in,r, ∆(0)
in,∆,r and ∆(0)

in,in,r. On the other hand, ∆(0)
∆,c,r and ∆(0)

c,∆,r remain unaltered.
The resulting leading contributions to the renormalized correlators are resummed

into the new renormalized dimensionally reduced non-equilibrium generating functional
Z′r,dr[Jc, J∆, jin] (actually, defining a superrenormalizable field theory). The latter have an
expression which generalizes Equations (82) and (83) in Section 6.1.4. All the above has been
consistently confirmed to one-loop orders in gin,r and gr. For our purposes, it will suffice to
omit such a form of Z′r,dr[Jc, J∆, jin] [43] and instead give the following representation for it
in nonperturbative form as

Z′r,dr[Jc, J∆, jin] =
∫
[dχ]×

ρdr(χ; χ; T, t0; Jc, J∆, jin) (100)

The integrand in Equation (100) is the restriction for χ = χ′ of the following functional:

ρdr(χ; χ′; T, t0; Jc, J∆, jin) =
∫
[dφ′c][dφ′∆]×∫

[Dφc][Dφ∆]Iin,r,dr(φ
′
c + 2−1φ′∆, φ′c − 2−1φ′∆)

× exp i
∫ T

t0

dt
∫

d3x×

[(−m2
r φc − ∂µ∂µφc −

∂V(φc)

∂φc
)φ∆ −

δm2
drφcφ∆ + Jcφ∆ + J∆φc] (101)
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with φ1 = φ′c− 2−1φ′∆, φ2 = φ′c + 2−1φ′∆, φc = 2−1(φ+ + φ−), φ∆ = φ+− φ−. The following
boundary conditions are considered: φc(t0) = φ′c, φc(T) = 2−1(χ + χ′), φ∆(t0) = φ′∆,
φ∆(T) = χ− χ′. We emphasize the interest of Equation (101): in it, we have introduced
ρdr(χ; χ′; T, t0; Jc, J∆, jin), while only its restriction for χ′ = χ is required in Z′r,dr[Jc, J∆, jin].
This generalization will be very important in Section 6.2.5.

The renormalized functional integral corresponding to Iin is approximated in NEDR as

Iin,r,dr = Iin,r,dr(φ2, φ1) = 〈φ2|ρin,r,dr|φ1〉 ×

exp
{

βeq

2

∫
d3xjin(x)[φ1(t0, x) + φ2(t0, x)]

}
〈φ2|ρin,r,dr|φ1〉 ' exp[−βeq

∫
d3x(s(0)in (min,r) +

s(V)
in (gin,r,dr) +

λ(x)1δm2
in,dr

2
φin(t0, x)2 +

(φ2(t0, x)− φ1(t0, x))2

2λ(x)1β2
eq

)] (102)

In NEDR, φin(τ, x) has been replaced by φin(t0, x) = 2−1(φ1(t0, x) + φ2(t0, x)) in
s(0)in (min,r) and s(V)

in (gin,r,dr).
δm2

in,dr and δm2
dr are x-dependent mass (ultraviolet divergent) renormalization coun-

terterms. To one-loop order, each of them is the sum of an ultraviolet divergent contribution
plus a finite one, which is a structure similar to the sum δm2

eq,dr,1 (divergent) plus σeq,1 (finite),

discarding the higher-order term δm2
eq,dr,2, in Equation (70). See [43].

gr,dr (contained in (∂V(φc))/∂φc)) and gin,r,dr are off-equilibrium coupling constants.
Neither gr,dr nor gin,r,dr nor fields involved in Z′r,dr[Jc, J∆, jin] require infinite renormaliza-
tions. That is, gin,r,dr = gin,r + δgin,r, gr,dr = gr + δgr. δgin,r and δgr are ultraviolet finite,
βeq-dependent and position-dependent corrections. Consistency, which had been estab-
lished to order one-loop, has also been shown using Gaussian functional integrations [43].
The above analysis deals only with the ultraviolet behaviour of correlators. The theory
associated with Z′r,dr[Jc, J∆, jin] could still give rise to ultraviolet divergences associated
to the field energy. Such divergences could be compensated, plausibly and at least par-
tially, by an additinal renormalization of the field energy, which does not affect the above
renormalization properties of correlators.

6.2.5. NEDR in RTF: Classical Field Theory and Approach to Equilibrium

While Z′r[Jc, J∆, Jin] describes a non-equilibrium quantum field theory, Z′r,dr[Jc, J∆, jin]
does yield physically a non-equilibrium classical field theory, in which thermal fluctua-
tions have overcome quantum ones (which have become negligible), except for quantum
contributions giving the mass renormalization counterterms δm2

in,dr and δm2
dr.

Let Λ < +∞. The following new arguments for the field-theoretic case, which
generalize the studies in [42] (for the quantum anharmonic oscillator) and [64] (for a
quantum particle coupled to a thermal reservoir), will confirm that Equations (100) and (101)
do account for a classical field theory with (unrenormalized) squared mass parameter
m2

r + δm2
dr. In fact, the structure (−(m2

r + δm2
dr)φc − ∂µ∂µφc − ∂V(φc)

∂φc
) in Equation (101)

does characterize a classical field theory: compare, for instance, with Section 3. We now
outline another supporting argument (see [42]). Let χ∆ ≡ χ− χ′ and χc ≡ 2−1(χ + χ′), let
t− t0 be very small, and let us consider∫

(dχ∆/(πh̄))ρdr(χ, χ′; t, t0; 0, 0, 0)×

exp[−iχ∆Πc/h̄] ≡W(χc, Πc; t, t0) (103)
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It is easy to show that W(χc, Πc; t, t0) fulfills the (h̄-independent) Liouville equation:

∂W
∂t

=
∫

d3x[
δV2

δχc

δ

δΠc
−Πc

δ

δχc
]W (104)

V2 =
∫

d3x(2−1
3

∑
i=1

(∂χc/∂xi)
2 +

2−1(m2
r + δm2

dr)χ
2
c + gχ4

c /4!). (105)

The initial condition at t0 is determined by Equation (102): in short, χ∆ (at t) cor-
responds to φ∆(t), while φ∆(t0) = φ′∆ corresponds to φ2 − φ1. The above equation and
discussion are seen to hold also for finite (and large) t− t0. Then, W(χc, Πc; t, t0) (which, a
priori, could be regarded as a Wigner distribution function) can be interpreted as the classi-
cal Liouville distribution function describing a classical field theory. δm2

dr here corresponds
to δm2 in Section 3.1. At such a stage, the moment methods (with functional Hermite
polynomials) in Section 3 can be invoked for W(χc, Πc; t, t0). Then, one arrives at the actual
counterpart of Equation (31) for the lowest moment determined by W(χc, Πc; t, t0) and can
obtain an approximate approach to equilibrium as t→ +∞. For Λ→ +∞; see the end of
Section 3.2. Details will be omitted.

7. Conclusions and Discussion
7.1. Liouville and Wigner Distributions: Hierarchies for Moments (Sections 2–4)

The analysis is based upon the non-equilibrium classical Liouville probability distri-
bution function W (Sections 2 and 3) and the quantum Wigner function WQ (Section 4).
The corresponding equilibrium distributions Weq and WQ,eq as weight functions gener-
ate orthogonal polynomials. In turn, the polynomials are employed to construct non-
equilibrium moments of the corresponding non-equilibrium functions. Those moments
fulfill non-equilibrium hierarchies (containing coefficients determined by the correspond-
ing equilibrium distributions) and with suitable initial conditions. Various approximate
non-equilibrium Smoluchowski-like (or Fokker–Planck-like) equations are obtained for
the lowest non-equilibrium moment for long time: they yield evolutions towards thermal
equilibrium. Below, the classical formulations leading to those equations for lowest non-
equilibrium moments are outlined for the various models separately. The quantum case
was discussed briefly in Section 4 and will not be recalled here.

Section 2 deals firstly with statistical systems of classical non-relativistic particles.
Section 2.1 treats a one-dimensional particle subject to a potential and an external

hb. Weq is Gaussian, which generates the standard Hermite orthogonal polynomials in
the classical momentum. They enable, by integrating over momenta, to construct non-
equilibrium moments Wn of the non-equilibrium Liouville distribution W. In turn, the
Wn’s fulfill, without approximations, reversible three-term non-equilibrium hierarchies,
the solutions of which are given in terms of certain operator-continued fractions and
combinations thereof. Under suitable long-t approximations (introducing irreversibility)
performed on those operator-continued fractions, the lowest moment dominates and fulfills
an irreversible Smoluchowski equation.

Section 2.2 deals with the extension to non-relativistic classical closed N-particle
systems for very large N, in three spatial dimensions, without introducing any external
hb. The initial non-equilibrium Liouville distribution Win describes off-equilibrium at
finite distances but equilibrium at large distances. The latter, due to the large number
of degrees of freedom involved, amount in practice to a thermal hb at equilibrium at
T. The same remark will hold in Section 3. The resulting non-equilibrium hierarchy in
Section 2.2 is genuinely different from the standard non-equilibrium classical Bogoliubov–
Born–Green–Kirkwood–Yvon (BBGKY) hierarchy [12,13]. As a zeroth-order approximation,
an irreversible Smoluchowski equation for the lowest non-equilibrium moment is obtained:
it resembles formally the one in the standard Rouse model for polymer dynamics [47]). A
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non-increasing Liapunov function characterizes the long-t evolution towards equilibrium
and so defines an arrow of time.

Section 3 extends formally Section 2 to a classical field φ4 theory. Ultraviolet diver-
gences are met, but the absence of quantum complications and the assumption of an
ultraviolet cut-off do not prevent carrying through the analysis by starting from the classi-
cal Liouville distribution and arriving at an irreversible equation for the lowest moment
identical to the standard one characterizing the critical dynamics of a classical field [36,37].
At a later stage, the cut-off is removed so as to accomplish renormalization like in critical
dynamics [36,37]. For generalizations to a classical plasma of non-relativistic charged
particles interacting with the classical electromagnetic field, see [34].

7.2. Relativistic Quantum Fields: Generating Functional Approach

Section 5 deals with a quantum anharmonic oscillator. In such a simple framework, the
aim is to discuss, in the absence of ultraviolet divergences and renormalization, generating
functional techniques which prove to be very useful in Section 6. In so doing, one detaches
from the procedure in Sections 2–4: no use will be made of quantum field generalizations
of Wigner functions and related dynamical equations.

Quantum features, in regimes in which they become manifest, give rise to compli-
cations in analyzing the approach to equilibrium for long t of a statistical system. The
relativistic quantum meson gas is even more complex, in particular due to ultraviolet
divergences and the need to deal with them by invoking renormalization. The above
remarks suggest analyzing the meson gas through another strategy, namely, the one in
Section 5. In fact, suitable generating functionals with external sources, which enable to
carry out renormalization at finite temperature from the outset (although at the cost of
considerable technical complications), are employed. The extension of these developments
will be justified a posteriori: at an advanced stage in this alternative and more technical
treatment, we come back to our main issue, namely, the approach to equilibrium.

A more specific outline of Section 6 is the following. A relativistic massive scalar
quantum field φ in 1 + 3 dimensions, described by a (perturbatively) renormalizable φ4

theory, is considered. It accounts for a quantum meson gas, that is, a large statistical
system with quantum and statistical fluctuations. Renormalization (with zero-temperature
renormalization counterterms) is performed for convenience from the outset.

First, the relativistic quantum gas system is considered at thermal equilibrium at
finite T and its (unrenormalized and renormalized) generating functionals with external
sources are studied. Imaginary-time and real-time formulations are considered. The
equilibrium gas is studied in the regime of high T and large distances, after which the gas
is approximately described by an effective (superrenormalizable) classical φ4 theory in
three spatial dimensions (equilibrium dimensional reduction or EDR). All those analysis at
equilibrium are necessary steps before treating the meson gas off-equilibrium.

One possible initial density operator ρin (with a Gaussian-like dependence on the
momentum operator conjugate to φ) is considered. Unrenormalized and renormalized
real-time non-equilibrium generating functionals with sources are studied. This analysis is
facilitated by the previous study of equilibrium in the ITF in Section 6.1.1. An important
qualitative feature is that there is no need to assume an external hb at thermal equilibrium at
T. The infinite number of degrees of freedom of the quantum field involved in ρin (namely,
those corresponding to λ(x)1 for large |x|) are the closer to thermal equilibrium the larger
|x|. Then, they amount in practice to a thermal hb at equilibrium at T.

At a later stage in the general study in Section 6, and motivated by Section 3, the
non-equilibrium renormalized quantum field theory is considered in a regime where
classical features dominate (namely, high T, large distances and long times) still with
certain quantum remnants. Then, the gas is approximately described by an effective
(superrenormalizable) classical φ4 theory in 1 + 3 dimensions (non-equilibrium dimensional
reduction or NEDR).
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The classical theories aasociated to Equations (27) and (31) could give rise to diver-
gences of a different nature, namely, field energies divergent as Λ→ +∞. Such divergences
could be compensated, at least partially, by renormalization of the energy.

As a new short development in the field-theoretic case, it is argued that the integrand
of the dimensionally reduced renormalized non-equilibrium generating functional yields,
through a suitable Fourier transform, a classical none-quilibrium distribution function
W and that the latter satisfies the Liouville Equations (104) and (105) for a classical φ4

theory, as in Section 3. Then, arguments are invoked briefly to conclude that the lowest
non-equilibrium moment from Equations (104) and (105) yields approximate approach to
thermal equilibrium for long t, as in Section 3. In particular, the above construction yielding
the evolution of the lowest non-equilibrium moment provides a justification, from first
principles, of the simplest phenomenological dynamical equations employed in critical
dynamics: see, for instance, references [36,37] and references therein.

The above developments justify the methods and results for the actual non-relativistic
and relativistic systems treated in this article: the consistent approach to equilibrium for
long-t both in the classical regime and in an a priori quantum one where classical features
dominate (at high T and eventually large distances and times) except for certain important
quantum remnants. For related studies, see [68,96].

The φ4 field theory appears to have attracted much interest to model different systems.
For instance, critical dynamics [36,37,97–100], inflationary cosmology [85] and quantum
brain dynamics [101]. For further and wider perspectives, see also [102].

The research summarized in the present work leave open various problems. To end,
we quote a few of them:

(1) For non-relativistic quantum particles, there are extensions to low T, say, of the
present hierarchy approach. In such regimes, quantum effects do play an important role;
then, the hierarchy of non-equilibrium moments cannot be approximated, in principle, by a
three-term one and the analysis becomes more difficult to control. See [39].

(2) For the relativistic quantum φ4 field, there are issues such as those in the above
open problem 1) and with further renormalization properties: for instance, field energy
and other initial states different from those in Section 6.2.2.

(3) For relativistic quantum fields, there are the extensions to QED and QCD off-
equilibrium and in the regime of high T and large distances and times, thereby calling
for an analysis of fermions (electrons and positrons in QED, quarks and antiquarks in
QCD) off-equilibrium. We remark that fermions were already studied in those theories at
equilibrium, at least in the ITF. See, for instance, reference [81] and references therein.

See [85] for a systematic and comprehensive study of the application of methods of
quantum field theory (not based on the hierarchy approach in the present work) to a full
variety of situations, including low T ones.
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