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Abstract
In the process of decision-making, uncertain information is always challenging to deal with.
T-spherical fuzzy set (TSFS) operates vagueness of data by analysing three independent
functions, namely membership, non-membership, and abstinence function. The TSFS
provides us robust scheme with parameter q ≥ 1 to handle the countless opportunities.
Hence, this set proves its superiority over the existing picture fuzzy set (PFS) and spherical
fuzzy set (SFS). Now a day, decision-makers usually assign impartial values throughout
the assessment. This manuscript demonstrates some new operational laws by fusing the
neutral characteristics of the degrees of membership and using the probability sum (PS)
function. Meanwhile, we determine several aggregation operators (AOs) including weighted
averaging neutral, ordered weighed neutral, and hybrid averaging neutral AOs to aggregate
the data under T-spherical fuzzy (TSF) environment. As it came to the notice that weighted
neutral averaging aggregation operators of the Pythagorean fuzzy set (PyFS), single-valued
neutrosophic fuzzy set (SVNFS), and q-rung orthopair fuzzy set (q-ROFS) have some
restrictions during the decision-making problems. So, to overcome this, we introduce a new
multi-attribute group decision-making method (MAGDM) based on proposed AOs. Lastly,
we provide various numerical instances to explain the method and exhibit its supremacy.
Furthermore, a comparative analysis is conducted to compare the potential of proposed AOs
with some other existing methods.
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1 Introduction

MAGDM is an activity that is carried out to obtain a favourable alternative among a list of
alternatives. During this procedure, we aim to attain an optimal solution using fuzzy infor-
mation. It is fact that crisp numbers are always not sufficient to evaluate the alternatives;
sometimes uncertain information is required to handle such situations. Zadeh (1965) intro-
duced the abstraction of fuzzy sets (FSs), which presumes the membership degree (MD) to
illustrate the data. Following on, Atanassov (1986) presented another term associated with
the MD known as the non-membership degree (NMD) to the science of FSs. As a result,
intuitionistic fuzzy set (IFS) came into existence. Atanassov IFS cannot manage the infor-
mation of MD ( ˙̌s) and NMD (ḑ) outside this linear inequality ˙̌s + ḑ ≤ 1, where the selection
of ˙̌s and ḑ must be within [0, 1]. Yager (2013a) extensively stiffen this concept by initiating

the PyFS so, the aforementioned inequality converted into quadratic inequality ˙̌s2 + ḑ2 ≤ 1.
In the form of q-ROFS Yager (2016) further relaxed the condition by raising the power of
inequality to q th power where q is an integer with q ≥ 1. Clearly, q-ROFS generates a larger
set of fuzzy data with IFS and PyFS are its special cases. Fuzzy structures discussed till now,
contain information in the shape of duplets. These fuzzy duplets make us feel sometimes not
sufficient enough to portray human judgment. Some real-life scenarios, like voting, require
four membership functions instead of two. To resolve such issues Cuong (2015) made his
contributions and opened new horizons of research for scholars. Picture FS (PFS) depicts
four dimensions of human opinion favour, disfavour, abstinence, and degree of refusal. PFS
has certain limitations as scholars had faced earlier in the case of IFS. Mahmood et al. (2019)
broke this hindrance by introducing a spherical FS (SFS) and TSFS. Among the all defined
fuzzy structures, TSFS provides the maximum degree of freedom and the decision-maker
can assign any value to membership functions from anywhere in the interval [0, 1].

The vagueness of data has assembled a substantial analysis in MADM where the best
possible alternatives are chosen. Accumulation of data is the main device to resolve decision-
making problems. Inevitably AOs have caught the attention of researchers, so Garg (2017a,
2016a) made contributions by suggesting interactive aggregation operators to deal with
MADM problems under different fuzzy environments. Some useful investigations (Wang
and Liu 2011; Ali et al. 2021; Garg 2016b, 2017b) have been conducted using Einstein t-
norm operations under different fuzzy frameworks. Several pieces of research (Ashraf et al.
2022; Liu and Wang 2018; Sahu et al. 2021; Limboo and Dutta 2022; Kazimieras Zavadskas
et al. 2020; Karamaşa et al. 2021; Yager 2013b) have played their part to remove the obscuri-
ties during the process of MAGDM or MADM under IFSs, PyFSs, and q-ROFSs. Besides it,
some researchers made valuable contributions to enhancing the scope of MADM problems
under different fuzzy environments (Wang and Triantaphyllou 2008; Arora and Garg 2019,
2018; Xu and Hu 2010; Xu 1988, 2005; Viriyasitavat 2016; Kaur and Garg 2018). Recently,
Senapati (2022) introduced Aczel-Alsina operations to support the decision-making schemes
for PFS. Furthermore, Senapati and Chen (2021, 2022), Senapati et al. (2021) proposed
some useful AOs under interval-valued intuitionistic fuzzy set (IVIFS) and interval-valued
Pythagorean fuzzy set (IVPyFS). To discuss the DMPs more vigorously Garg (2017c) pre-
sented theweighted average and geometric operators using the PFS environment whilstWang
et al. (2017) illustrated some novel geometric operators. Later onMahmood et al. (2019) dis-
cussed operator to the SFS whilst Ullah et al. (2019) extended the idea of TSFS. Munir et al.
(2021) intensified the studies by presenting some interactive geometric operators under the
TSF environment. Some authors discussed few crucial decision-making issues for IVTSFSs

123



Approach to multi-attribute decision-making problems based … Page 3 of 30 310

and bipolar-valued hesitant fuzzy sets (Hussain et al. 2022; Akram et al. 2022; Ullah et al.
2018a; Khan et al. 2017) Further, these operators have been applied to MADM problems.
Garg et al. (2021) examined power aggregation operators. Furthermore, Ullah et al. (2020a, b,
2018b) evaluated the functioning of rescue robots by utilizing Hamacher aggregation oper-
ators, some similarity measures for TSFS, and some averaging aggregation operators and
their applications in multi-attribute decision-making problems.

The above-mentioned already existing studies, under the TSF framework, are vigorously
useful to resolve the ambiguities during the procedure of decision-making, but most of them
do not involve neutral character to discuss the neutral values assigned by decision-makers.
Although He et al. (2015) and Garg (2020a, b), Garg and Chen (2020) has discussed and
utilized the neutral character in many MADM problems under IFSs, PyFSs, SVNSs, and
q-ROFSs. Recently, Javed et al. (2022) extended this novel idea to PFS and proposed useful
AOs to evaluate the DM problems. Furthermore, Garg et al. (2022) investigated neutrality
and a novel DM scheme for complex q-rung orthopair fuzzy sets. But all aforementioned
fuzzy frameworks have certain limitations regarding range, loss of useful information, and
application in many real-life problems. Henceforth, in this manuscript, we have established
the notion of T-spherical fuzzy neutral aggregation (NA) operators that could handle the
information in an adaptable manner from anywhere in the interval [0, 1] without any restric-
tion. Here we established some innovative operational laws for TSFSs by combining the
probability sum (PS) function and the proportional distribution rules of MD, AD, NMD, and
degree of refusal. Having regard to this point, we intend to establish some new weighted
averaging aggregation operators for TSFSs and consequently a MAGDM to figure out the
decision-making problems. Thus, the goals of this manuscript are:

1. To show the data of decision-makers by utilizing TSFSs environment.
2. To suggest some novel neutral averaging AOs for TSFNs.
3. To lay out the MAGDM procedure and explain with several numerical examples to

evaluate the study.
4. To demonstrate the importance and superiority of suggested neutral aggregation operators

over several existing aggregation operators with the help of practical examples.

In this paper, we intend to discuss TSF weighted, ordered, and hybrid neutral averaging
AOs represented by TSFWNA, TSFOWNA, and TSFHNA respectively, and develop their
designating attributes. Further, we propose a new MAGDM procedure to handle the DM
problems fusing with suggested AOs. Lastly, the superiority of the MAGDM procedure is
exhibited via evident examples with the existing methods (Ullah et al. 2020a, b, 2021).

The rest of the manuscript is organized as follows. Section 2 contains some preliminaries
associated with TSFS. Section 3 discusses some novel neutral operational laws and their
properties for TSFNs. In Sect.4, TSFWNA, TSFOWNA, and TSFHNA operators are defined
and their important properties are discussed. In Sect. 5, a new MAGDM plan is presented.
In Sect. 6, some examples are furnished to verify the proposed method and a comparative
survey is summarized. In Sect. 7, concrete results are given.

2 Preliminaries

In this section, we recollect some fundamental definitions related to TSFS are revised; we
recall some basic but necessary definitions. Throughout the paper, X denotes a non-empty
set, and ˙̌s, i., ḑ, and r denote MD, NMD, abstinence degree (AD), and refusal degree (RD)
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respectively. The concept of TSFS was proposed by Mahmood et al. (2019) by narrating the
fuzzy data using MD, NMD, AD, and RD.

Definition 1 (Ullah et al. 2018b) A TSFS based on an MD denoted by ˙̌s, NMD ḑ, AD i., and
RD r , is of the from

β �

⎧
⎪⎪⎨

⎪⎪⎩

(
x,
( ˙̌s, i., ḑ

))
: ˙̌s : X → [0, 1], i. : X → [0, 1] and ḑ : X → [0, 1]∀x ∈ X

0 ≤ ( ˙̌sq(x) + i.
q(x) + ḑq (x) ≤ 1, q ∈ Z

+

r(x) � q
√

1 − ( ˙̌sq(x) + i.
q(x) + ḑq (x))

⎫
⎪⎪⎬

⎪⎪⎭

(1)

The triplet
( ˙̌s(x), i.(x), ḑ(x)

)
is known as a TSF number (TSFN).

Definition 2 (Mahmood et al. (2019; Ullah et al. 2018b) For two TSFNs β1 � ( ˙̌s1, i.1, ḑ1)
and β2 � ( ˙̌s2, i.2, ḑ2) and a real λ > 0, then characteristic axioms are defined as

(1) βC
1 �

(
ḑ1, i.1, ˙̌s1

)
,

(2) β1 ⊆ β2 if ˙̌s1 ≤ ˙̌s2, i.1 ≥ i.2 and ḑ1 ≥ ḑ2,
(3) β1 � β2 if β1 ⊆ β2 and β2 ⊆ β1,

(4) β1 ⊕ β2 �
(

q
√

˙̌sq1 + ˙̌sq2 − ˙̌sq1 ˙̌sq2 , i.1i.2, ḑ1ḑ2
)

,

(5) β1 ⊗ β2 �
(

˙̌s1 ˙̌s2,, i.1i.2, q
√

ḑq1 + ḑq2 − ḑq1 ḑ
q
2

)

,

(6) λβ1 �
(

q

√

1 −
(
1 − ˙̌sq1

)λ

, i.
λ
1, ḑ

λ
1

)

,

(7) β1
λ �

(

˙̌sλ

1, i.
λ
1,

q

√

1 −
(
1 − ˙̌sq1

)λ
)

.

Definition 3 (Mahmood et al. (2019) For a TSFN β �
( ˙̌s(x), i.(x), ḑ(x)

)
, the score function

and accuracy function for TSFNs are defined as, respectively.

SC(β) � ˙̌sq − ḑq , and SC(β) ∈ [−1, 1] (2)

AC(β) � ˙̌sq + i.
q + ḑq , and AC(β) ∈ [0, 1] (3)

Definition 4 (Mahmood et al. (2019) Letβ1 andβ2 be twoTSFNs, SC(βi ) is “score function”
and AC(βi ) is “accuracy function” of βi , then β1 > β2 where the notation > stands for
“preferred to” if either SC(β1) > SC(β2) or SC(β1) � SC(β2) and AC(β1) > AC(β2)

holds.

For a collection of TSFNs β j �
( ˙̌s j , i. j , ḑ j

)
, j � 1, 2, ..., n, the weighted averaging AOs

are formulated as under.

Definition 5 (Ullah et al. 2020b) Let β j �
( ˙̌s j , i. j , ḑ j

)
, j � 1, 2, ..., n be a group of TSFNs

andω � (ω1, ω2, ..., ωn) be the weight vector of β j with
∑n

j�1 ω j � 1, then a TSF weighted
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and ordered weighted averaging, represented by TSFWA and TSFOWA operators are deter-
mined as

TSFWA(β1, β2, ..., βn) �
⎛

⎝ q

√
√
√
√1 −

n∏

j�1

(
1 − ˙̌sqj

)ω j
,

n∏

j�1

(
i. j
)ω j ,

n∏

j�1

(
ḑ j
)ω j

⎞

⎠, (4)

TSFOWA(β1, β2, ..., βn) �
⎛

⎝ q

√
√
√
√1 −

n∏

j�1

(
1 − ˙̌sqσ( j)

)ω j
,

n∏

j�1

(
i.σ( j)

)ω j ,

n∏

j�1

(
ḑσ( j)

)ω j

⎞

⎠,

(5)

where σ is a permutationmap of (1, 2, ..., n) such that βσ( j−1) ≥ βσ( j) for all j � 2, 3, ..., n.

3 New operational laws on TSFNs

This section establishes some novel operational laws known as neutrality operations and a
novel score function is defined to rank the TSFNs.

3.1 A new score function

The given score function in Definition 3 cannot obtain the accurate ranking of all TSFNs. For
instance, β1 � (0.7, 0.7, 0.7) and β2 � (0.8.0.8, 0.8), we get SC(β1) � SC(β2) � 0 by
utilizingDefinition 3. To handle such issues under TSFSs, a novel score function is introduced
for TSFS.

Definition 6 For a TSFN β �
( ˙̌s, i., ḑ

)
, a new score function is defined as.

S(β) � e
˙̌sq−i.

q−ḑq

1 + rq
, (6)

where r denotes the degree of refusal and is calculated as r � q
√

1 − ˙̌sq − i.
q − ḑq .

Theorem 1 For a TSFN β �
( ˙̌s, i., ḑ

)
,the score function Sincreases monotonically with

respect to ˙̌sand decreases with respect to i. and ḑ.

Proof Differentiating the suggested score function partially with respect to ˙̌s provides ∂S
∂ ˙̌s �

(2+rq )q ˙̌sq−1
e
˙̌sq−i.

q−ḑq

(
2−˙̌sq−i.

q−ḑq
)2 ≥ 0 while with respect to i. and ḑ gives ∂S

∂i.
� −rqqi.

q−1e
˙̌sq−i.

q−ḑq

(
2−˙̌sq−i.

q−ḑq
)2 ≤ 0 and

∂S
∂ ḑ � −rqq ḑq−1e

˙̌sq−i.
q−ḑq

(
2−˙̌sq−i.

q−ḑq
)2 ≤ 0 hence result proved.

Theorem 2 For a TSFN β,a new score function Ssatisfies.
(1) e−1 ≤ S ≤ e,
(2) S(β) � e iff β � (1, 0, 0),
(3) S(β) � e−1 iff β � (0, 1, 0) or β � (0, 0, 1).

This result is trivially true, so omitted.
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To verify the utility of the suggested score function we consider TSFNs β1 �
(0.7, 0.7, 0.7) and β2 � (0.6, 0.6, 0.6) for ranking purposes. By applying existing and sug-
gested functions it is observed that the newly proposed score function is superior to the
existing ones. The following result justifies our claim.

Theorem 3 For two TSFNs β1and β2,if SC(β1) � SC(β2), AC(β1) > AC(β2)then
S(β1) > S(β2).Further, if SC(β1) � SC(β2),AC(β1) � AC(β2)then S(β1) � S(β2).

Proof Let β1 �
( ˙̌s1, i.1, ḑ1

)
and β2 �

( ˙̌s2.i.2, ḑ2
)
be two TSFNs, then by Definition 4, if

SC(β1) � SC(β2),AC(β1) > AC(β2)we have ˙̌sq1 − ḑq1 � ˙̌sq2 − ḑq2 ,
˙̌sq1 +i.q1 +ḑq1 > ˙̌sq2 +i.q2 +ḑq2 .

Therefore, we can get S(β1) � e
˙̌sq1−i.

q
1−ḑ

q
1

2−
( ˙̌sq1+i.q1+ḑq1

) ≥ e
˙̌sq2−i.

q
2−ḑ

q
2

2−
( ˙̌sq2+i.q2+ḑq2

) � S(β2).

3.2 Geometric meaning of PS and rules of TSFNs

For two TSFNs β1 �
( ˙̌s1, i.1, ḑ1

)
and β2 �

( ˙̌s2.i.2, ḑ2
)
, the pictorial representation of the

probability sum (PS) is depicted in Fig. 1. Here, ˙̌s1 and ˙̌s2 denote the MDs of β1 and β2

while i.1, i.2, and ḑ1, ḑ2 denote the ADs and NMDs respectively. Then clearly q
√

˙̌sq1 + i.
q
1 + ḑq1

and q
√

˙̌sq2 + i.
q
2 + ḑq2 are two events that do not influence the probability of each other, under

the TSF environment. Express q
√

˙̌sqε + i.
q
ε + ḑqε be the PS of occurring at least one events of

q
√

˙̌sq1 + i.
q
1 + ḑq1 and q

√
˙̌sq2 + i.

q
2 + ḑq2 ; thus,

q
√

˙̌sqε + i.
q
ε + ḑqε � PS

(
q
√

˙̌sq1 + i.
q
1 + ḑq1 ,

q
√

˙̌sq2 + i.
q
2 + ḑq2

)

(7)

It is quite obvious that the total sum of the TSFNs β1 and β2 is concluded as under:

(1) Accumulate the MD, NMD, AD, and refusal degree of the TSFNs by the algebraic

sum operations T (u, v) � q
√
uq + vq , then we get q

√
˙̌sq1 + ˙̌sq2 , q

√

i.
q
1 + i.

q
2 ,

q
√

ḑq1 + ḑq2 and

q
√

rq1 + rq2 . as shown in Fig. 2. It is absolutely clear that their sum of q th exponent is
greater than 1 which is no more a TSFN.

(2) To compute the total sum under TSF environment we choose a mutual interaction coef-

ficient q

√
1−rq1 r

q
2˙̌sq1+ ˙̌sq2+i.q1+i.q2+ḑq1+ḑq2

to q
√

˙̌sq1 + ˙̌sq2 , q
√

i.
q
1 + i.

q
2 and q

√

ḑq1 + ḑq2 , which are considered

Fig. 1 Geometrical description of PS function
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Fig. 2 Pictorial representation of
suggested operations

as MD, AD, and NMD with the sum of q th exponent sum is less than 1. Similarly, the
degree of refusal is r1r2. So,

˙̌sε � q

√
√
√
√

˙̌sq1 + ˙̌sq2
˙̌sq1 + ˙̌sq2 + i.

q
1 + i.

q
2 + ḑq1 + ḑq2

(
1 − rq1 r

q
2

)
,

i.ε � q

√
√
√
√ i.

q
1 + i.

q
2

˙̌sq1 + ˙̌sq2 + i.
q
1 + i.

q
2 + ḑq1 + ḑq2

(
1 − rq1 r

q
2

)
,

ḑε � q

√
√
√
√ ḑq1 + ḑq2

˙̌sq1 + ˙̌sq2 + i.
q
1 + i.

q
2 + ḑq1 + ḑq2

(
1 − rq1 r

q
2

)
.

Before we illustrate some novel operational laws for TSFNs, it is necessary to mention
that Eq. (7) preserves characteristics like commutatively, associatively, and boundedness.
Furthermore, such a procedure provides us advantages in the case when the MD, AD, and
NMD have the same values.

3.3 Neutral operational laws

Definition 7 Consider β1 �
( ˙̌s1, i.1, ḑ1

)
and β2 �

( ˙̌s2.i.2, ḑ2
)
be two TSFNs. The neutrality

operation of β1 and β2 is defined as

β1 � β2 �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q

√
MCSq (β1, β2)

MCSq (β1, β2) + NCSq (β1, β2) + ACSq (β1, β2)
.PS

(
q
√

˙̌sq1 + i.
q
1 + ḑq1 ,

q
√

˙̌sq2 + i.
q
2 + ḑq2

)

,

q

√
ACSq (β1, β2)

MCSq (β1, β2) + NCSq (β1, β2) + ACSq (β1, β2)
.PS

(
q
√

˙̌sq1 + i.
q
1 + ḑq1 ,

q
√

˙̌sq2 + i.
q
2 + ḑq2

)

q

√
NCSq (β1, β2)

MCSq (β1, β2) + NCSq (β1, β2) + ACSq (β1, β2)
.PS

(
q
√

˙̌sq1 + i.
q
1 + ḑq1 ,

q
√

˙̌sq2 + i.
q
2 + ḑq2

)

,

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(8)

where MCS (β1, β2) � q
√

˙̌sq1 + ˙̌sq2 , NCS (β1, β2) � q
√

ḑq1 + ḑq2 and ACS (β1, β2) � q
√

i.
q
1 + i.

q
2

denotes the MD, NMD, and AD coefficient sum of β1 and β2, respectively.

For TSFN β1 �
( ˙̌s1, i.1, ḑ1

)
and real τ > 1, we have

PS

(

τ
q
√

˙̌sq1 + i.
q
1 + ḑq1

)

� PS

(
q
√

˙̌sq1 + i.
q
1 + ḑq1 , PS

(

(τ − 1)
q
√

˙̌sq1 + i.
q
1 + ḑq1

))

(9)
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and, therefore, we stated necessary propositions.

Proposition 1 For a TSFN β1 �
( ˙̌s1, i.1, ḑ1

)
and a real τ > 0,we obtain.

PS

(

τ
q
√

˙̌sq1 + i.
q
1 + ḑq1

)

� q
√

1 − (
rq1
)τ

. (10)

The proof can be seen in the Appendix.

Take a collection of “n” TSFNs β j �
( ˙̌s j , i. j , ḑ j

)
, j � 1, 2, ..., n, such that MCS

(
β j
) �

˙̌s j andMCSq(β1, ...βn) � MCSq(β1, ...βn−1) + ˙̌sqn . Thus, we haveMCSq(β1, ...βn) �
∑n

j�1
˙̌sqj . Likewise, we get ACSq(β1, ...βn) � ∑n

j�1i.
q
j andNCSq(β1, ...βn) � ∑n

j�1ḑ
q
j .

Proposition 2 For TSFN β1 �
( ˙̌s1, i.1, ḑ1

)
and a real number τ > 0,we have MCS(τβ1) �

q
√

τMCS(β1), NCS(τβ1) � q
√

τNCS(β1),and ACS(τβ1) � q
√

τ ACS(β1).

Proof If we take β1 � β2 in MCS then MCS(2β1) � MCS(β1, β1) � q
√

˙̌sq1 + ˙̌sq1 �
q
√
2MCS(β1). Using mathematical induction, we see that MCS(τβ1) � q

√
τMCS(β1),

NCS(τβ1) � q
√

τNCS(β1), and ACS(τβ1) � q
√

τ ACS(β1).

Definition 8 For TSFN β1 �
( ˙̌s1, i.1, ḑ1

)
and a real number τ ≥ 0, the “scalar neutrality

operation” is defined as.

τ .β1 �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q

√
MCSq(τ .β1)

MCSq(τ .β1) + NCSq(τ .β1) + ACSq(τ .β1)
.PS

(

τ .
q
√

˙̌sq1 + i.
q
1 + ḑq1

)

,

q

√
ACSq(τ .β1)

MCSq(τ .β1) + NCSq(τ .β1) + ACSq(τ .β1)
.PS

(

τ .
q
√

˙̌sq1 + i.
q
1 + ḑq1

)

q

√
NCSq(β1, β2)

MCSq(τ .β1) + NCSq(τ .β1) + ACSq(τ .β1)
.PS

(

τ .
q
√

˙̌sq1 + i.
q
1 + ḑq1

)

,

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(11)

where (τβ1) � q
√

τ ˙̌s1,NCS(τβ1) � q
√

τ ḑ1 and ACS(τβ1) � q
√

τ i.1.

To prove the suggested operation defined in Eq. (8) and Eq. (11) gives procedural fairness,
we represent them in a particular proposition.

Proposition 3 For two TSFNs β1 �
( ˙̌s1, i.1, ḑ1

)
and β2 �

( ˙̌s2.i.2, ḑ2
)
. If ˙̌s1 � i.1 � ḑ1and

˙̌s2 � i.2 � ḑ2 then ˙̌sβ1�β2 � ḑβ1�β2 � i.β1�β2
.

Proof If ˙̌s1 � i.1 � ḑ1 and ˙̌s2 � i.2 � ḑ2 then using the neutrality operation of β1 and β2, we
have
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˙̌sβ1�β2
i.β1�β2

� q
√

MCSq (β1,β2)
ACSq (β1,β2)

� q

√
˙̌sq1+ ˙̌sq2
i.
q
1+i.

q
2

� 1 and
˙̌sβ1�β2
ḑβ1�β2

� q
√

MCSq (β1,β2)
NCSq (β1,β2)

� q

√
˙̌sq1+ ˙̌sq2
ḑq1+ḑ

q
2

� 1.

Hence, proved

˙̌sβ1�β2 � ḑβ1�β2 � i.β1�β2.
.

Additionally, it is quite clear from Definition 2, we can treat Eq. (8) as a “neutrality
operation”” and likewise Eq. (11) as a “scalar neutrality operation”. Now, Eq. (8) can be
rearranged by substituting the values of MCS, NCS, ACS, and PS function

β1 � β2 �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q

√
√
√
√

˙̌sq1 + ˙̌sq2
˙̌sq1 + ˙̌sq2 + i.

q
1 + i.

q
2 + ḑq1 + ḑq2

(
1 − rq1 r

q
2

)
,

q

√
√
√
√ i.

q
1 + i.

q
2

˙̌sq1 + ˙̌sq2 + i.
q
1 + i.

q
2 + ḑq1 + ḑq2

(
1 − rq1 r

q
2

)

q

√
√
√
√ ḑq1 + ḑq2

˙̌sq1 + ˙̌sq2 + i.
q
1 + i.

q
2 + ḑq1 + ḑq2

(
1 − rq1 r

q
2

)

,

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (12)

Following, we illustrate the origin of Definition 8. As Eq. (8) gives us

β1 � β1 � 2β1

�

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q

√
MCSq (β1, β1)

MCSq (β1, β1) + NCSq (β1, β1) + ACSq (β1, β1)
.PS

(
q
√

˙̌sq1 + i.
q
1 + ḑq1 ,

q
√

˙̌sq1 + i.
q
1 + ḑq1

)

,

q

√
ACSq (β1, β1)

MCSq (β1, β1) + NCSq (β1, β1) + ACSq (β1, β1)
.PS

(
q
√

˙̌sq1 + i.
q
1 + ḑq1 ,

q
√

˙̌sq1 + i.
q
1 + ḑq1

)

q

√
NCSq (β1, β1)

MCSq (β1, β1) + NCSq (β1, β1) + ACSq (β1, β1)
.PS

(
q
√

˙̌sq1 + i.
q
1 + ḑq1 ,

q
√

˙̌sq1 + i.
q
1 + ḑq1

)

,

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

�
⎛

⎝ q

√
√
√
√

˙̌sq1
˙̌sq1 + i.

q
1 + ḑq1

(
1 − (

rq1
)2
)
, q

√
√
√
√ i.

q
1

˙̌sq1 + i.
q
1 + ḑq1

(
1 − (

rq1
)2
)
, q

√
√
√
√ ḑq1

˙̌sq1 + i.
q
1 + ḑq1

(
1 − (

rq1
)2
)
⎞

⎠

Similarly,

3β1 �
⎛

⎝ q

√
√
√
√

˙̌sq1
˙̌sq1 + i.

q
1 + ḑq1

(
1 − (

rq1
)3
)
, q

√
√
√
√ i.

q
1

˙̌sq1 + i.
q
1 + ḑq1

(
1 − (

rq1
)3
)
, q

√
√
√
√ ḑq1

˙̌sq1 + i.
q
1 + ḑq1

(
1 − (

rq1
)3
)
⎞

⎠

For any τ > 0, we have

τβ1 � s

⎛

⎝ q

√
√
√
√

˙̌sq1
˙̌sq1 + i.

q
1 + ḑq1

(
1 − (

rq1
)τ )

, q

√
√
√
√ i.

q
1

˙̌sq1 + i.
q
1 + ḑq1

(
1 − (

rq1
)τ )

, q

√
√
√
√ ḑq1

˙̌sq1 + i.
q
1 + ḑq1

(
1 − (

rq1
)τ )

⎞

⎠

Proposition 4 The MCS, NCS, and ACS for two TSFNs β1and β2have the following charac-
teristics.

(1) MCS(β1, β2) � MCS(β2, β1),

(2) MCS(τ (β1, β2)) � MCS
(
τβ1, τβ2

)
,

(3) MCS
(
τ1β1, τ2β1

) � MCS((τ1 + τ21)β1),
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(4) NCS(β1, β2) � NCS(β2, β1),

(5) NCS(τ (β1, β2)) � NCS
(
τβ1, τβ2

)
,

(6) NCS
(
τ1β1, τ2β1

) � NCS((τ1 + τ21)β1),

(7) ACS(β1, β2) � ACS(β2, β1),
(8) ACS(τ (β1, β2)) � ACS

(
τβ1, τβ2

)
,

(9) ACS
(
τ1β1, τ2β1

) � ACS((τ1 + τ21)β1).

Proof For TSFNs β1 �
( ˙̌s1, i.1, ḑ1

)
and β2 �

( ˙̌s2.i.2, ḑ2
)
, we have MCS(β1, β2) �

q
√

˙̌sq1 + ˙̌sq2 ,NCS(β1, β2) � q
√

ḑq1 + ḑq2 and ACS(β1, β2) � q
√

i.
q
1 + i.

q
2 ,MCS(τβ1) �

q
√

τ ˙̌s1, NCS(τβ1) � q
√

τ ḑ1, and ACS(τβ1) � q
√

τ i.1. Thus, MCS
(
τβ1, τβ2

) �
q

√(
q
√

τ ˙̌s1
)q

+
(

q
√

τ ˙̌s2
)q � q

√
τ

q
√

˙̌sq1 + ˙̌sq2 � q
√

τMCS(β1, β2) � MCS(τ (β1, β2)). The

remaining properties have similar proofs.

3.4 Properties of the proposed operations

In this section, we illustrate some properties of the proposed operational laws as under.

Theorem 4 If β1 �
( ˙̌s1, i.1, ḑ1

)
and β2 �

( ˙̌s2.i.2, ḑ2
)
be TSFNs. Then operations of β1and

β2, β1 � β2and τβ1are also TSFNs for τ > 0.

Proof For TSFNs β1 �
( ˙̌s1, i.1, ḑ1

)
and β2 �

( ˙̌s2.i.2, ḑ2
)
, we have ˙̌s1, i.1, ḑ1, ˙̌s2.i.2, ḑ2 ∈

[0, 1], rq1 � 1 − ˙̌sq1 − i.
q
1 − ḑq1 ∈ [0, 1] and rq2 � 1 − ˙̌sq2 − i.

q
2 − ḑq2 ∈ [0, 1]. Let β1 � β2 �

( ˙̌sβ1�β2 , i.β1�β2
, ḑβ1�β2

)
.

To show β1 � β2 ∈ TSFN, it is sufficient to show that ˙̌sβ1�β2 , i.β1�β2
, ḑβ1�β2 ∈ [0, 1]

and ˙̌sqβ1�β2
+ i.

q
β1�β2

+ ḑqβ1�β2
≤ 1. Since ˙̌sq1 + i.

q
1 + ḑq1 ≤ 1, ˙̌sq2 + i.

q
2 + ḑq2 ≤ 1 and hence

˙̌sq1+ ˙̌sq2˙̌sq1+ ˙̌sq2+i.q1+i.q2+ḑq1+ḑq2
≤ 1, provided ˙̌sq1 + ˙̌sq2 + i.

q
1 + i.

q
2 + ḑq1 + ḑq2 � 0. Also,r1, r2 ∈ [0, 1] which

implies that 1 − rq1 r
q
2 ∈ [0, 1]. Hence, we can obtain ˙̌sβ1�β2 , i.β1�β2

, ḑβ1�β2 ∈ [0, 1].

Moreover, ˙̌sqβ1�β2
+ i.

q
β1�β2

+ ḑqβ1�β2
� 1 − rq1r

q
2 ∈ [0, 1]. Hence β1 � β2 is TSFN.

Analogously,τβ1 is also TSFN.

Theorem 5 Let β1 �
( ˙̌s1, i.1, ḑ1

)
and β2 �

( ˙̌s2.i.2, ḑ2
)
be two TSFNs and τ , τ1, τ2 ≥ 0be

real numbers. Then

(1) β1 � β2 � β2 � β1

(2) τ(β1 � β2) � (
τβ1 � τβ2

)

(3) τ1β1 � τ2β1 � (τ1 + τ2)β1

Proof

(1) It follows from Eq. (12).
(2) Eq. (8) gives
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τβ1 � τβ2 �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q

√
√
√
√
√
√
√
√
√
√
√
√
√
√
√

MCSq (τβ1, τβ2)

MCSq (τβ1, τβ2) + NCSqτβ1, τβ2

+ACSq (τβ1, τβ2)

.PS

(

PS

(

τ
q
√

˙̌sq1 + i.
q
1 + ḑq1

)

, PS

(

τ
q
√

˙̌sq2 + i.
q
2 + ḑq2

))

,

q

√
√
√
√
√
√
√
√
√
√
√
√
√
√
√

NCSq (τβ1, τβ2)

MCSq (τβ1, τβ2) + NCSq (τβ1, τβ2)

+ACSq (τβ1, τβ2)

.PS

(

PS

(

τ
q
√

˙̌sq1 + i.
q
1 + ḑq1

)

, PS

(

τ
q
√

˙̌sq2 + i.
q
2 + ḑq2

))

q

√
√
√
√
√
√
√
√
√
√
√
√
√
√
√

ACSq (τβ1, τβ2)

MCSq (τβ1, τβ2) + NCSq (τβ1, τβ2)

+ACSq (τβ1, τβ2)

.PS

(

PS

(

τ
q
√

˙̌sq1 + i.
q
1 + ḑq1

)

, PS

(

τ
q
√

˙̌sq2 + i.
q
2 + ḑq2

))

,

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

�

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q

√
√
√
√
√

τ
( ˙̌sq1 + ˙̌sq2

)

τ
( ˙̌sq1 + ˙̌sq2

)
+ τ

(
i.
q
1 + i.

q
2

)
+ τ

(
ḑq1 + ḑq2

) PS

(
q
√

1 − (
rq1
)τ

,
q
√

1 − (
rq2
)τ
)

,

q

√
√
√
√

τ
(
i.
q
1 + i.

q
2

)

τ
( ˙̌sq1 + ˙̌sq2

)
+ τ

(
i.
q
1 + i.

q
2

)
+ τ

(
ḑq1 + ḑq2

) PS

(
q
√

1 − (
rq1
)τ

,
q
√

1 − (
rq2
)τ
)

,

q

√
√
√
√

τ
(
ḑq1 + ḑq2

)

τ
( ˙̌sq1 + ˙̌sq2

)
+ τ

(
i.
q
1 + i.

q
2

)
+ τ

(
ḑq1 + ḑq2

) PS

(
q
√

1 − (
rq1
)τ

,
q
√

1 − (
rq2
)τ
)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

�

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q

√
√
√
√
√

( ˙̌sq1 + ˙̌sq2
)

( ˙̌sq1 + ˙̌sq2
)
+
(
i.
q
1 + i.

q
2

)
+
(
ḑq1 + ḑq2

)
(
1 − (

rq1
)τ (

rq2
)τ )

,

q

√
√
√
√

(
i.
q
1 + i.

q
2

)

( ˙̌sq1 + ˙̌sq2
)
+
(
i.
q
1 + i.

q
2

)
+
(
ḑq1 + ḑq2

)
(
1 − (

rq1
)τ (

rq2
)τ )

,

q

√
√
√
√

(
ḑq1 + ḑq2

)

( ˙̌sq1 + ˙̌sq2
)
+
(
i.
q
1 + i.

q
2

)
+
(
ḑq1 + ḑq2

)
(
1 − (

rq1
)τ (

rq2
)τ )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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�

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q

√
√
√
√
√

( ˙̌sq1 + ˙̌sq2
)

( ˙̌sq1 + ˙̌sq2
)
+
(
i.
q
1 + i.

q
2

)
+
(
ḑq1 + ḑq2

) PS

(

τ

(
q
√

1 − rq1 r
q
2

))

,

q

√
√
√
√

(
i.
q
1 + i.

q
2

)

( ˙̌sq1 + ˙̌sq2
)
+
(
i.
q
1 + i.

q
2

)
+
(
ḑq1 + ḑq2

) PS

(

τ

(
q
√

1 − rq1 r
q
2

))

,

q

√
√
√
√

(
ḑq1 + ḑq2

)

( ˙̌sq1 + ˙̌sq2
)
+
(
i.
q
1 + i.

q
2

)
+
(
ḑq1 + ḑq2

) PS

(

τ

(
q
√

1 − rq1 r
q
2

))

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

� τ(β1 � β2)

(3) For τ1, τ2 > 0,

τ1β1 �
⎛

⎝ q

√
√
√
√

˙̌sq1
˙̌sq1 + i.

q
1 + ḑq1

(
1 − (

rq1
)τ1 )

, q

√
√
√
√ i.

q
1

˙̌sq1 + i.
q
1 + ḑq1

(
1 − (

rq1
)τ1 )

, q

√
√
√
√ ḑq1

˙̌sq1 + i.
q
1 + ḑq1

(
1 − (

rq1
)τ1 )

⎞

⎠

and

τ2β1 �
⎛

⎝ q

√
√
√
√

˙̌sq1
˙̌sq1 + i.

q
1 + ḑq1

(
1 − (

rq1
)τ2 )

, q

√
√
√
√ i.

q
1

˙̌sq1 + i.
q
1 + ḑq1

(
1 − (

rq1
)τ2 )

, q

√
√
√
√ ḑq1

˙̌sq1 + i.
q
1 + ḑq1

(
1 − (

rq1
)τ2 )

⎞

⎠

Hence, using Eq. (8), we obtain

τ1β1 � τ2β1 �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q

√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√

MCSq (τ1β1, τ2β1)

MCSq (τ1β1, τ2β1) + NCSq (τ1β1, τ2β1)

+ACSq (τ1β1, τ2β1)

.PS

(

PS

(

τ1
q
√

˙̌sq1 + i.
q
1 + ḑq1

)

, PS

(

τ2
q
√

˙̌sq2 + i.
q
2 + ḑq2

))

,

q

√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√

ACSq (τ1β1, τ2β1)

MCSq (τ1β1, τ2β1) + NCSq (τ1β1, τ2β1)

+ACSq (τ1β1, τ2β1)

.PS

(

PS

(

τ1
q
√

˙̌sq1 + i.
q
1 + ḑq1

)

, PS

(

τ2
q
√

˙̌sq2 + i.
q
2 + ḑq2

))

q

√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√

NCSq (τ1β1, τ2β1)

MCSq (τ1β1, τ2β1) + NCSq (τ1β1, τ2β1)

+ACSq (τ1β1, τ2β1)

.PS

(

PS

(

τ1
q
√

˙̌sq1 + i.
q
1 + ḑq1

)

, PS

(

τ2
q
√

˙̌sq2 + i.
q
2 + ḑq2

))

,

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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�

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q

√
√
√
√ (τ1 + τ2) ˙̌sq1

(τ1 + τ2) ˙̌sq1 + (τ1 + τ2)i.
q
1 + (τ1 + τ2)ḑ

q
1

.PS

(
q
√

1 − (
rq1
)τ1

,
q
√

1 − (
rq1
)τ2

)

,

q

√
√
√
√ (τ1 + τ2)i.

q
1

(τ1 + τ2) ˙̌sq1 + (τ1 + τ2)i.
q
1 + (τ1 + τ2)ḑ

q
1

.PS

(
q
√

1 − (
rq1
)τ1

,
q
√

1 − (
rq1
)τ2

)

q

√
√
√
√ (τ1 + τ2)ḑ

q
1

(τ1 + τ2) ˙̌sq1 + (τ1 + τ2)i.
q
1 + (τ1 + τ2)ḑ

q
1

.PS

(
q
√

1 − (
rq1
)τ1

,
q
√

1 − (
rq1
)τ2

)

,

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

�
⎛

⎝ q

√
√
√
√

˙̌sq1
˙̌sq1 + i.

q
1 + ḑq1

(
1 − (

rq1
)τ1+τ2

)
, q

√
√
√
√ i.

q
1

˙̌sq1 + i.
q
1 + ḑq1

(
1 − (

rq1
)τ1+τ2

)
, q

√
√
√
√ ḑq1

˙̌sq1 + i.
q
1 + ḑq1

(
1 − (

rq1
)τ1+τ2

)
⎞

⎠

� (τ1 + τ2)β1.

4 Neutral aggregation operators for TSFNs

This section illustrates TSFWNA, TSFOWNA, and TSFHNA operators of TSFNs.
For this purpose, consider 	 to be the collection of TSFNs.

Definition 9 Let βi be a collection of “n” TSFNs. The TSFWNA is a function defined on
(β1, β2, ..., βn) by

T SFWN A(β1, β2, ..., βn) � �n
i�1ωiβi (13)

where ωi ≥ 0 is the weight vector of βi . and
∑n

i�1ωi � 1

Theorem6 The aggregation of “n”TSFNs βi �
( ˙̌si , i.i , ḑi

)
usingDefinition 9 is also a TSFN,

where.

T SFWN A(β1, β2, ..., βn) �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q

√
√
√
√
√

∑n
i�1 ωi

˙̌sqi
∑n

i�1 ωi

( ˙̌sqi + i.
q
i + ḑqi

) .

(

1 −
n∏

i�1

(
rqi
)ωi

)

,

q

√
√
√
√
√

∑n
i�1 ωi i.

q
i

∑n
i�1 ωi

( ˙̌sqi + i.
q
i + ḑqi

) .

(

1 −
n∏

i�1

(
rqi
)ωi

)

,

q

√
√
√
√
√

∑n
i�1 ωi ḑ

q
i

∑n
i�1 ωi

( ˙̌sqi + i.
q
i + ḑqi

) .

(

1 −
n∏

i�1

(
rqi
)ωi

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (14)

The proof is provided in Appendix.

Moreover, from TSFWNA operator, a few necessary characteristics are given as under.

Theorem 7 (Idempotency):Let βi �
( ˙̌si , i.i , ḑi

)
(i � 1, 2, 3..., n)be a set of TSFNs. If βi �

( ˙̌s0, i.0, ḑ0
)
for all i,then T SFWN A(β1, β2, ..., βn) �

( ˙̌s0, i.0, ḑ0
)
.

The proof is provided in Appendix.
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Theorem 8 (Boundedness):For a set of “n”TSFNs βi , we have

(1) min
{ ˙̌sqi + i.

q
i + ḑqi

}
≤ ˙̌sqp + i.

q
p + ḑqp ≤ max

{ ˙̌sqi + i.
q
i + ḑqi

}
,

(2)
min

{ ˙̌sqi +i.qi +ḑqi
}
.min

{ ˙̌sqi
}

max
{ ˙̌sqi +i.qi +ḑqi

} ≤ ˙̌sqp ≤ max
{ ˙̌sqi +i.qi +ḑqi

}
.max

{ ˙̌sqi
}

min
{ ˙̌sqi +i.qi +ḑqi

} ,

(3)
min

{ ˙̌sqi +i.qi +ḑqi
}
.min

{
i.
q
i

}

max
{ ˙̌sqi +i.qi +ḑqi

} ≤ i.
q
p ≤ max

{ ˙̌sqi +i.qi +ḑqi
}
.max

{
i.
q
i

}

min
{ ˙̌sqi +i.qi +ḑqi

} ,

(4)
min

{ ˙̌sqi +i.qi +ḑqi
}
.min

{
ḑqi
}

max
{ ˙̌sqi +i.qi +ḑqi

} ≤ ḑqp ≤ max
{ ˙̌sqi +i.qi +ḑqi

}
.max

{
ḑqi
}

min
{ ˙̌sqi +i.qi +ḑqi

} ,

where TSFWNA(β1, β2, ..., βn) �
( ˙̌s p, i.p, ḑp

)
. It is known as Boundedness.

The proof can be seen in Appendix.

Theorem 9 (Monotonicity):Let βi �
( ˙̌sβi , i.βi , ḑβi

)
and γi �

( ˙̌sγi , i.γi , ḑγi

)
be sets of

“n”TSFNs. Then,

(1) ˙̌sqpβ
+ i.

q
pβ

+ ḑqpβ
≤ ˙̌sqpγ

+ i.
q
pγ

+ ḑqpγ
if ˙̌sqβi + i.

q
βi
+ ḑqβi ≤ ˙̌sqγi + i.

q
γi + ḑqpγ

.

(2) ˙̌s pβ ≤ ˙̌s pγ ,i.pβ
≥ i.pγ

, ḑpβ ≥ ḑpγ if
˙̌sqβi + i.

q
βi
+ ḑqβi � ˙̌sqγi + i.

q
γi + ḑqpγ

and ˙̌sβi ≤ ˙̌sγi .

(3) T SFWN A(β1, β2, ..., βn) ≤ T SFWN A(γ1, γ2, ..., γn) if ˙̌sqβi +i.qβi +ḑ
q
βi

� ˙̌sqγi +i.qγi +ḑqpγ

and ˙̌sβi ≤ ˙̌sγi .

The proof is given in Appendix.

Definition 10 Let βi �
( ˙̌si , i.i , ḑi

)
(i � 1, 2, 3..., n) be a collection of TSFNs. Then

TSFOWNA operator of βi is defined by.

T SFOWN A(β1, β2, ..., βn) � �n
i�1ωiβσ(i) (15)

where σ is the permutation map of 1, 2, 3..., n such that βσ(i−1) ≥ βσ(i) and ω �
(ω1, ω2, ..., ωn)

T be associated weight with TSFOWNA operator, having ωi > 0 and
∑n

i�1ωi � 1.

Theorem 10 The aggregated value of TSFNs using Definition 10 is also a TSFN and given
by.

T SFOWN A(β1, β2, ..., βn) �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q

√
√
√
√
√

∑n
i�1 ωi

˙̌sqσ(i)
∑n

i�1 ωi

( ˙̌sqσ(i) + i.
q
σ(i) + ḑqσ(i)

) .

(

1 −
n∏

i�1

(
rqσ(i)

)ωi

)

,

q

√
√
√
√
√

∑n
i�1 ωi i.

q
σ(i)

∑n
i�1 ωi

( ˙̌sqσ(i) + i.
q
σ(i) + ḑqσ(i)

) .

(

1 −
n∏

i�1

(
rqσ(i)

)ωi

)

,

q

√
√
√
√
√

∑n
i�1 ωi ḑ

q
σ(i)

∑n
i�1 ωi

( ˙̌sqσ(i) + i.
q
σ(i) + ḑqσ(i)

) .

(

1 −
n∏

i�1

(
rqσ(i)

)ωi

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The proof is analogous to Theorem 6.
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Definition 11 A TSFHNA: 	n → 	 is a map defined as.

T SFHN A(β1, β2, ..., βn) � �n
i�1ψi β̇σ (i) (16)

where β̇σ (i) is the i th largest of the weighted TSFNs β̇i and β̇i � nωiβi∀i . Further,ψi > 0;
∑n

i�1ψi � 1 be weight vector given to the operator.

Theorem 11 The aggregated values of “n”TSFNs βi �
( ˙̌si , i.i , ḑi

)
using TSFHNA operator

is also a TSFN and formulated by.

T SFHN A(β1, β2, ..., βn) �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q

√
√
√
√
√

∑n
i�1 ψi

˙̌̇sqσ(i)
∑n

i�1 ψi

( ˙̌̇sqσ(i) + i̇.
q
σ(i) + ˙̧dqσ(i)

) .

(

1 −
n∏

i�1

(
ṙ qσ(i)

)ψi

)

,

q

√
√
√
√
√

∑n
i�1 ψi i.

q
σ(i)

∑n
i�1 ψi

( ˙̌̇sqσ(i) + i̇.
q
σ(i) + ˙̧dqσ(i)

) .

(

1 −
n∏

i�1

(
ṙ qσ(i)

)ψi

)

,

q

√
√
√
√
√

∑n
i�1 ψi ˙̧dqσ(i)

∑n
i�1 ψi

( ˙̌̇sqσ(i) + i̇.
q
σ(i) + ˙̧dqσ(i)

) .

(

1 −
n∏

i�1

(
ṙ qσ(i)

)ψi

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(17)

This Theorem has the same proof as Theorem 6.

Remark 1. The TSFOWNA and TSFHNA operators satisfy all the characteristics which
are satisfied by the TSFWNA aggregation operator; therefore, their proofs are identical to
them so excluded.

5 AMAGDM algorithm based on proposed operators

In this section, an innovative MAGDM approach is established for designating the possible
option to choose the best one, using TSFSs environment. Consider a set of ‘m” available
choices C � {C1, C2, ...Cm} which are assessed under ‘n’ attributes H � {H1,H2, . . .Hn}
with weight vector ω > 0 such that

∑n
j�1 ω j � 1. The set of attributes is divided into two

disjoint sets, namely the cost type attributes and benefit type. Consider a team of experts E �{
E (1), E (2), ...E (l)

}
which evaluates the given alternatives with weight vector wk > 0 such

that
∑l

k�1 wk � 1. The team of experts will rate the each attribute under TSFSs environment

as δ
(k)
i j �

( ˙̌s(k)
i j , i.

(k)
i j , ḑ(k)

i j

)
with 0 ≤ ˙̌s(k)

i j , i.
(k)
i j , ḑ(k)

i j ≤ 1 such that 0 ≤ ˙̌s(k)
i j + i.

(k)
i j + ḑ(k)

i j ≤ 1 for

i � 1, 2 . . . ,m; j � 1, 2 . . . n; k � 1, 2, . . . l. A decision matrix under TSFS is provided as

Mk �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

δ
(k)
11 δ

(k)
12 · · ·

δ
(k)
21 δ

(k)
22 · · ·

...

δ
(k)
m1

...

δ
(k)
m2

. . .

· · ·

δ
(k)
1n

δ
(k)
2n
...

δ
(k)
mn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The following steps will explain the novel approach in detail:
Step 1: First, each decision-maker will provide a decisionmatrixM in the form of TSFNs.
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Step 2: In this step, proposed AOs that is TSFWNA or TSFOWNA or TSFHNA will be
utilized to aggregate all the decision-makers’ preferences δ

(k)
i j , k � 1, 2, . . . , l into δi j �

( ˙̌si j , i.i j , ḑi j
)
.

Step 3: If the set of attributes H contains two types of attributes, named as the cost
attributes (F1) and the benefit attributes (F 2), thus we will normalize δi j into ri j .

ri j �
⎧
⎨

⎩

(
ḑi j , i.i j , ˙̌si j

)
, f or F1 cri teria

( ˙̌si j , i.i j , ḑi j
)
, f or F2 cri teria

. (18)

Step 4: Following optimization model is used to obtain the weight vector of attributes in
the case if weight information is partially known.

max f �
m∑

i�1

n∑

j�1

ωi jSi j ,

s.t .
n∑

j�1

ω j � 1;ω j ≥ 0;ω ∈ G, (19)

where Si j represents the sum of scores of each alternative Ci . After some calculations above
model gives ω � (ω1, ω2, ...ωn).

Step 5: Using suggested TSF averaging AOs, compute the comprehensive values ri �( ˙̌si , i.i , ḑi
)
of alternatives Ci (i � 1, 2, ...,m).

Step 6: Compute the final ranking orders of ri �
( ˙̌si , i.i , ḑi

)
, i � 1, 2, ...,m by utilizing

Eq. (20).

S(ri ) � e
˙̌si q−i.i

q−ḑi q

2 − ˙̌si q − i.i
q − ḑi q

. (20)

Step 7: The provided alternatives Ci (i � 1, 2, ...,m) are categorized using Definition 4
and selecting the optimal one(s).

6 Numerical examples

The proposed MAGDM approach is tested and validated by applying on a practical example
from the investment sector. Moreover, in this section, we will study some examples from a
comparison point of view.

6.1 Illustration of proposedMAGDM

Example 1 Investment is always an uncertain event, especially in the present circumstances.
Immediately after the COVID-19 pandemic, economic trends are down and irregular. A local
group of investors is interested to invest in the electronics manufacturing company among
the four most emerging companies. They decided to hire three decision-makers E (1), E (2)

and E (3) which are evaluating the four companies: C1 (“a mobile company”), C2 (“a LED
company”), C3 (“a ceiling fan company”) and C4(“an AC company”) with four attributes:
H1(“legal entity”), H2 (“perpetual succession”), H3(“the economic benefit”) and H4(“the

123



Approach to multi-attribute decision-making problems based … Page 17 of 30 310

Table 1 The decision matrix where “Ci ” denote alternatives and “Hi ” denote the attributes

Experts H1 H2 H3 H4

E(1) C1 (0.5, 0.01, 0.4) (0.6, 0.21, 0.2) (0.5, 0.16, 0.3) (0.7, 0.31, 0.7)

C2 (0.4, 0.01, 0.3) (0.5, 0.17, 0.3) (0.7, 0.22, 0.1) (0.6, 0.32, 0.2)

C3 (0.2, 0.04, 0.6) (0.4, 0.19, 0.1) (0.3, 0.23, 0.2) (0.4, 0.21, 0.4)

C4 (0.4, 0.4, 0.4) (0.5, 0.13, 0.4) (0.4, 0.29, 0.3) (0.5, 0.12, 0.3)

E(2) C1 (0.5, 0.12, 0.3) (0.7, 0.22, 0.2) (0.4, 0.23, 0.6) (0.6, 0.16, 0.4)

C2 (0.7, 0.15, 0.2) (0.4, 0.25, 0.5) (0.8, 0.12, 0.4) (0.5, 0.22, 0.3)

C3 (0.3, 0.01, 0.4) (0.5, 0.19, 0.6) (0.7, 0.13, 0.3) (0.3, 0.23, 0.5)

C4 (0.5, 0.4, 0.4) (0.6, 0.17, 0.3) (0.5, 0.27, 0.2) (0.4, 0.14, 0.2)

E(3) C1 (0.7, 0.21, 0.2) (0.5, 0.21, 0.3) (0.4, 0.25, 0.5) (0.8, 0.23, 0.2)

C2 (0.5, 0.15, 0.3) (0.6, 0.25, 0.5) (0.8, 0.15, 0.2) (0.6, 0.32, 0.3)

C3 (0.2, 0.21, 0.6) (0.3, 0.19, 0.4) (0.7, 0.17, 0.3) (0.5, 0.24, 0.4)

C4 (0.4, 0.4, 0.4) (0.4, 0.31, 0.3) (0.5, 0.31, 0.4) (0.7, 0.31, 0.2)

Table 2 Aggregated values of experts by TSFWNA operator

H1 H2 H3 H4

C1 (0.6011, 0.1618, 0.3211) (0.5992, 0.2138, 0.2514) (0.4415, 0.2211, 0.4855) (0.7362, 0.2581, 0.5274)

C2 (0.5477, 0.1316, 0.2848) (0.5306, 0.2298, 0.4526) (0.7721, 0.1776, 0.2709) (0.5792, 0.3014, 0.2735)

C3 (0.2338, 0.1732, 0.5787) (0.4084, 0.1935, 0.4388) (0.6266, 0.1928, 0.2782) (0.4298, 0.2280, 0.4299)

C4 (0.4, 0.4, 0.4) (0.4993, 0.2412, 0.3429) (0.4709, 0.2946, 0.3342) (0.5915, 0.2403, 0.2488)

business growth ability”). Suppose that w � (0.35, 0.4, 0.25) is the weight vector of the
decision-makers and their assessment matrices M1,M2, and M3 under TSFNs, where
q � 3 are provided in Table 1. The objective of this study is to choose a suitable firm for
financing. In the following, we will discuss MAGDM process step by step:

Step 1: Table 1 is consist of the rating values provided by experts.
Step 2: The initial information provided by experts is aggregated by TSFWNA operator

with w � (0.35, 0.25, 0.4) as the corresponding weight vector for decision-makers.
Step 3: There is no need for normalization because all the attributes provided in this study

are benefit types (Table 2).
Step 4: We presume that the partial weight knowledge of attribute’s importance is sug-

gested by the experts is G � {0.2 ≤ ω1 ≤ 0.3, 0.25 ≤ ω2 ≤ 0.35, 0.15 ≤ ω3 ≤ 0.4, 0.2 ≤
ω4 ≤ 0.35, ω1 + ω3 ≤ 2ω2, ω1 + 2ω4 ≤ ω3}, we exhibit the optimization model using
Eq. (19) which provides ω � (0.2.0.25, 0.3, 0.25).

Step 5: By applying the TSFWNA operator and weights ω, we get ri with q � 3 as r1 �
(0.4711, 0.2669, 0.4426),r2 � (0.5099, 0.2206, 0.3960), r3 � (0.6227, 0.2326, 0.3567)
and r4 � (0.6007, 0.2640, 0.4042).

Step6: Thefinal ranking orders are computed asS(r1) � 0.5581,S(r2) � 0.5916,S(r3) �
0.7065 and S(r4) � 0.6719.
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Table 3 Ranking results for different values of “q”

Values for q Score values Ranking

C1 C2 C3 C4

q � 3 0.5581 0.5916 0.7065 0.6719 C3 > C4 > C2 > C1
q � 4 0.5335 0.5492 0.6372 0.6042 C3 > C4 > C2 > C1
q � 5 0.5207 0.5276 0.5947 0.5669 C3 > C4 > C2 > C1
q � 6 0.5134 0.5160 0.5672 0.5446 C3 > C4 > C2 > C1
q � 20 0.500083 0.500036 0.501583 0.50079 C3 > C4 > C2 > C1

Step 7: As S(r3) > S(r4) > S(r2) > S(r1), therefore the preferences are ranked as
C3 > C4 > C2 > C1. So C3 is the optimal selection.

6.2 Impact of “q” and different AOs on the results

To review the impact of constant variable q on the ranking pattern, we summarized several
values of q, respectively, in Step 2 and Step 5 of the proposed method. It is evident from
the values in Table 3 that q has its significance to determine the preference order. We notice
that the preference order is unchanged for different values of q that is C3 > C4 > C2 > C1
further, C3 remains the best possible choice for different values of q . As we increase the
values of perimeter q , values of scores keep on decreasing and approach 0.5, meanwhile,
the ranking pattern remains unchanged. This variation of perimeter q depicts that higher
powers of q do not have much significance on the final results. Alteration of AOs under Step
5 and Step 2 exhibits stable behaviour final ranking and C3 remains the optimal choice but
the significance of the components during the steps alters. For example, if the opinion of the

Fig. 3 Geometric interpretation of different values of “q”
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Table 4 Impact of different AOs and ranking patterns

Operators used Score values Ranking

In Step 2 In Step 5 C1 C2 C3 C4

TSFWNA TSFWNA 0.5581 0.5916 0.7065 0.6719 C3 > C4 > C2 > C1
TSFOWNA 0.5594 0.5946 0.6857 0.6787 C3 > C4 > C2 > C1
TSFHNA 0.5565 0.5899 0.6729 0.6375 C3 > C4 > C2 > C1

TSFOWNA TSFWNA 0.5647 0.5971 0.6627 0.6597 C3 > C4 > C2 > C1
TSFOWNA 0.5618 0.5922 0.6979 0.6532 C3 > C4 > C2 > C1
TSFHNA 0.5594 0.5902 0.6650 0.6235 C3 > C4 > C2 > C1

TSFHNA TSFHNA 0.5594 0.5755 0.6658 0.6506 C3 > C4 > C2 > C1
TSFWNA 0.5574 0.5758 0.6977 0.6466 C3 > C4 > C2 > C1
TSFOWNA 0.5594 0.5755 0.6658 0.6506 C3 > C4 > C2 > C1

experts is concentrated more, then one can use TSFOWNA in Step 2 and TSFWNA in Step
5. Likewise, other pairs of AOs can also be described (Fig. 3, Table 4).

6.3 Advantages

In this subsection, we show the advantages of working in TSF environment with the help of
an example. We have discussed earlier that the AD and RD do play a significant role in the
description of the information under uncertainty.

Example 2 Reconsider the information fromExample 1 without taking the abstinence degree
into account. Table 5 consists of information from decision-makers in the form of duplets.
Understandably all the given information is in the form of q-ROFNs for q � 3.

Table 5 Decision matrix obtained after excluding the AD from the decision matrix of Table 1

Experts H1 H2 H3 H4

E(1) C1 (0.5, 0.4) (0.6, 0.2) (0.5, 0.3) (0.7, 0.7)

C2 (0.4, 0.3) (0.5, 0.3) (0.7, 0.1) (0.6, 0.2)

C3 (0.2, 0.6) (0.4, 0.1) (0.3, 0.2) (0.4, 0.4)

C4 (0.4, 0.4) (0.5, 0.4) (0.4, 0.3) (0.5, 0.3)

E(2) C1 (0.5, 0.3) (0.7, 0.2) (0.4, 0.6) (0.6, 0.4)

C2 (0.7, 0.2) (0.4, 0.5) (0.8, 0.4) (0.5, 0.3)

C3 (0.3, 0.4) (0.5, 0.6) (0.7, 0.3) (0.3, 0.5)

C4 (0.5, 0.4) (0.6, 0.3) (0.5, 0.2) (0.4, 0.2)

E(3) C1 (0.7, 0.2) (0.5, 0.3) (0.4, 0.5) (0.8, 0.2)

C2 (0.5, 0.3) (0.6, 0.5) (0.8, 0.2) (0.6, 0.3)

C3 (0.2, 0.6) (0.3, 0.4) (0.7, 0.3) (0.5, 0.4)

C4 (0.4, 0.4) (0.4, 0.3) (0.5, 0.4) (0.7, 0.2)
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Now, by taking the q-ROFWNA operator (Garg and Chen 2020) we accumulate the
data, and the results are summed up as S(r1) � 0.5726,S(r2) � 0.5616,S(r3) � 0.6733 and
S(r4) � 0.7130. Finally, we obtained ranking order of alternatives as C4 > C3 > C2 > C1 and
consequently acquiring the best possible one is C4. The ranking pattern obtained in this way
is different from the previously obtained results using TSFWNA, TSFOWNG, and TSFHNA
operators. This difference in the final ranking patterns depicts the loss of some important
information by dropping the abstinence degree. Hence, it is an advantage of the proposed
series of AOs that human opinion can be modelled more appropriately using TSFWNA,
TSFOWNG, and TSFHNA operators.

6.4 Comparative analysis

In this section, we aim to compare the results obtained using the neutrality AOs of TSFSs
with the results obtained using other AOs from the literature. We also showed that the AOs
of other fuzzy layouts cannot evaluate the information presented in the form of TSFNs.

Example 3 Using the data from Example 1, here we will calculate the aggregation value
and validate the proposed operation with the help of different tools which already exist in
the literature. It is quite obvious from the literature survey that already proposed neutrality
aggregation operators of, PyFSs, q-ROFSs, and SVNFNs (Garg 2020a, b; Garg and Chen
2020) are unable to aggregate the data with the triplet given in Table 1. Here we apply the AOs
suggested by Ullah et al. (2020a, b, 2021) to the information given in Table 1 to conduct a
comparative study.Table 6 showsdifferent results drawn fromdifferent aggregationoperators.
The ranking patterns obtained using the different existingAOs are recorded inTable 6. Results
obtained using proposed TSFWNA, TSFOWNA, and TSFHNA AOs are consistent as these
are alike to the ranking patterns calculated by Ullah et al. (2020a, b, 2021). Furthermore, it
must be noted that several other existing AOs discussed in this manuscript are unable to deal

Table 6 Ranking patterns using existing and proposed methods

Aggregation
operators

Ref. C1 C2 C3 C4 Ranking

Hamacher AOs Ullah et al.
(2020a)

0.4557 0.5431 0.6527 0.6675 C4 > C3 > C2 > C1
0.5293 0.7318 0.7717 0.7945 C4 > C3 > C2 > C1

Arithmetic AOs Ullah et al.
(2020b)

0.4100 0.4960 0.6193 0.6090 C3 > C4 > C2 > C1
0.3815 0.4833 0.5565 0.5787 C4 > C3 > C2 > C1

Dombi AOs Ullah et al.
(2021)

0.4157 0.4990 0.6526 0.6295 C3 > C4 > C2 > C1
0.3491 0.4726 0.5268 0.5661 C4 > C3 > C2 > C1

Neutrality AOs of
TSFSs

This paper 0.5581 0.5916 0.7065 0.6719 C3 > C4 > C2 > C1
This paper 0.5594 0.5946 0.6857 0.6787 C3 > C4 > C2 > C1
This paper 0.5565 0.5899 0.6729 0.6375 C3 > C4 > C2 > C1

Neutrality AOs of
qROFSs

Khan et al.
(2017)

Unable to compute Unable to specify

Neutrality AOs of
PyFSs

Akram et al.
(2022)

Neutrality AOs of
IFSs

Hussain et al.
(2022)
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with the neutral attitude of the decision-makers. In this way, proposed AOs are a much more
improved version of Ullah et al. (2020a, b, 2021).

7 Conclusion

In this paper, we have investigated a new scheme to solve the DM problems more efficiently.
As TSFS provides us with a wider range of fuzzy information as compared to PFS and
SFS. This structure broadens the scope of human opinion and makes decision-making more
relevant to the real-world scenario. During the decision-making activity, neutral attitude
of the experts plays a significant role. In this manuscript, we have considered the neutral
character of attitude to draw a fair conclusion. For this purpose, we have established some
novel neutral operational laws under TSFS. It is observed from the proposed operations, that
when a decision-maker assigns equivalent degrees during the evaluation process then their
aggregated degrees remain equivalent. Additionally, by combining them with the eminent
averaging operator, we define some new weighted AOs containing TSFWNA, TSFOWNA,
and TSFHNA operators. Finally, based on these AOs, a MAGDM scheme is illustrated, and
some real-life examples are considered to make its comparison with the several existing
schemes. In the future, we aim to extend our work to the environment of IVTSFSs.
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Appendix

Proof of Preposition 1

Proof Results are proven by utilizing the principle of mathematical induction (PMI) on τ .
The following steps are executed.

Step 1: For τ � 2 and using Eq. (9), we have

PS

(

τ
q
√

˙̌sq1 + i.
q
1 + ḑq1

)

� PS

(
q
√

˙̌sq1 + i.
q
1 + ḑq1 , PS

(
q
√
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q
1 + ḑq1

))
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(
q
√
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q
1 + ḑq1 ,

q
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1 − rq1

)

� q

√

1 −
(
1 − ˙̌sq1 − i.

q
1 − ḑq1

)(
1 − 1 + rq1

)

� q
√

1 − (
rq1
)2

.
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Thus, the result is valid for τ � 2.
Step 2: Consider Eq. (10) is true for τ � n, then for τ � n + 1,

PS

(

(n + 1)
q
√

˙̌sq1 + i.
q
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)

� PS

(
q
√

˙̌sq1 + i.
q
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q
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q
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� q
√

1 − (
rq1
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.

Hence, by PMI, Eq. (10) holds for all values of τ .

Proof of Theorem 6

Proof For “n” TSFNs βi and real ωi > 0, for the existence of Eq. 14 we apply PMI on “n”
which is composed as:

Step 1: For n � 1βi �
( ˙̌si , i.i , ḑi

)
ωi � 1. Thus,

TSFWNA (β1) � ω1β1 �
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Thus, Eq. (14) is satisfied.
Step2: Suppose Eq. (14) is valid for n � k
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Now for n � k + 1

T SFWN A(β1, β2, ..., βk+1)

� T SFWN A(β1, β2, ..., βk ) � (ωk+1βk+1)
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i.e.,

Eq. (14) satisfies for n � k + 1. Hence, using induction, Eq. (14) is true∀n.

Proof of Theorem 7
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) .

(

1 −
k∏

i�1

(
rqi
)ωi

)

,

i.p � q

√
√
√
√
√

∑k
i�1 ωi i.

q
i

∑k
i�1 ωi

( ˙̌sqi + i.
q
i + ḑqi

) .

(

1 −
k∏

i�1

(
rqi
)ωi

)

.

Therefore,

ḑp � q

√
√
√
√
√

∑k
i�1 ωi ḑ

q
i

∑k
i�1 ωi

( ˙̌sqi + i.
q
i + ḑqi

) .

(

1 −
k∏

i�1

(
rqi
)ωi

)

˙̌sqp + i.
q
p + ḑqp � 1 −

n∏

i�1

(
1 − ˙̌sqi − i.

q
i − ḑqi

)ωi
.

Hence, we get

min
{ ˙̌sqi + i.

q
i + ḑqi

}
≤ ˙̌sqp + i.

q
p + ḑqp ≤ max

{ ˙̌sqi + i.
q
i + ḑqi

}
.

(2) Since, ˙̌si ≥ min
{ ˙̌si

}
, so by expression ˙̌s p we have

˙̌sqp ≥
∑n

i�1 ωi

(
min

{ ˙̌sqi
})

∑n
i�1 ωi

(
max

{ ˙̌sqi + i.
q
i + ḑqi

})

[

1 −
n∏

i�1

(
1 − min

{ ˙̌sqi + i.
q
i + ḑqi

})ωi

]

�
min

{ ˙̌sqi
}

max
{ ˙̌sqi + i.

q
i + ḑqi

}

[

1 −
(
1 − min

{ ˙̌sqi + i.
q
i + ḑqi

})∑n
i�1 ωi

]

�
min

{ ˙̌sqi + i.
q
i + ḑqi

}
min

{ ˙̌sqi
}

max
{ ˙̌sqi + i.

q
i + ḑqi

} .
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Moreover,

˙̌sqp ≤
∑n

i�1 ωi

(
max

{ ˙̌sqi
})

∑n
i�1 ωi

(
min

{ ˙̌sqi + i.
q
i + ḑqi

})

[

1 −
n∏

i�1

(
1 − max

{ ˙̌sqi + i.
q
i + ḑqi

})ωi

]

�
max

{ ˙̌sqi
}

min
{ ˙̌sqi + i.

q
i + ḑqi

}

[

1 −
(
1 − max

{ ˙̌sqi + i.
q
i + ḑqi

})∑n
i�1 ωi

]

�
max

{ ˙̌sqi + i.
q
i + ḑqi

}
max

{ ˙̌sqi
}

min
{ ˙̌sqi + i.

q
i + ḑqi

}

�
min

{ ˙̌sqi + i.
q
i + ḑqi

}
min

{ ˙̌sqi
}

max
{ ˙̌sqi + i.

q
i + ḑqi

} ≤ PLs
q
p ≤

max
{ ˙̌sqi + i.

q
i + ḑqi

}
.max

{ ˙̌sqi
}

min
{ ˙̌sqi + i.

q
i + ḑqi

}

(3) Similar to part (2).

Proof of Theorem 9

Proof For “n” TSFNs β1, β2, ..., βn and γ1, γ2, ..., γn and by Theorem 6, we get TSFWNA

(β1, β2, ..., βn) �
( ˙̌s pβ , i.pβ

, ḑpβ

)
and TSFWNA (γ1, γ2, ..., γn) �

( ˙̌s pγ , i.pγ
, ḑpγ

)

˙̌sqpβ
�

∑k
i�1 ωi

˙̌sqβi
∑k

i�1 ωi

( ˙̌sqβi + i.
q
βi
+ ḑqβi

)

[

1 −
n∏

i�1

(
1 − ˙̌sqβi − i.

q
βi

− ḑqβi

)ωi

]

,

i.
q
pβ

�
∑k

i�1 ωi i.
q
βi

∑k
i�1 ωi

( ˙̌sqβi + i.
q
βi
+ ḑqβi

)

[

1 −
n∏

i�1

(
1 − ˙̌sqβi − i.

q
βi

− ḑqβi

)ωi

]

,

ḑqpβ
�

∑k
i�1 ωi ḑ

q
βi

∑k
i�1 ωi

( ˙̌sqβi + i.
q
βi
+ ḑqβi

)

[

1 −
n∏

i�1

(
1 − ˙̌sqβi − i.

q
βi

− ḑqβi

)ωi

]

,

˙̌sqpγ
�

∑k
i�1 ωi

˙̌sqγi
∑k

i�1 ωi

( ˙̌sqγi + i.
q
γi + ḑqγi

)

[

1 −
n∏

i�1

(
1 − ˙̌sqγi − i.

q
γi

− ḑqγi

)ωi

]

,

i.
q
pγ

�
∑k

i�1 ωi i.
q
γi

∑k
i�1 ωi

( ˙̌sqγi + i.
q
γi + ḑqγi

)

[

1 −
n∏

i�1

(
1 − ˙̌sqγi − i.

q
γi

− ḑqγi

)ωi

]

,

ḑqpγ
�

∑k
i�1 ωi ḑ

q
γi

∑k
i�1 ωi

( ˙̌sqγi + i.
q
γi + ḑqγi

)

[

1 −
n∏

i�1

(
1 − ˙̌sqγi − i.

q
γi

− ḑqγi

)ωi

]

.

By applying the above results, we get.

(1) If ˙̌sqβi + i.
q
βi
+ ḑqβi ≤ ˙̌sqγi + i.

q
γi + ḑqγi , then

˙̌sqpβ
+ i.

q
pβ

+ ḑqpβ
≤ 1 −

n∏

i�1

(
1 − ˙̌sqβi − i.

q
βi

− ḑqβi

)ωi

≤ 1 −
n∏

i�1

(
1 − ˙̌sqγi − i.

q
γi

− ḑqγi

)ωi � ˙̌sqpγ
+ i.

q
pγ

+ ḑqpγ
.
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(2) If ˙̌sqβi + i.
q
βi
+ ḑqβi � ˙̌sqγi + i.

q
γi + ḑqpγ

, and ˙̌sqβi ≤ ˙̌sqγi , then

˙̌sqpβ
�

∑k
i�1 ωi

˙̌sqβi
∑k

i�1 ωi

( ˙̌sqβi + i.
q
βi
+ ḑqβi

)

[

1 −
n∏

i�1

(
1 − ˙̌sqβi − i.

q
βi

− ḑqβi

)ωi

]

≤
∑k

i�1 ωi
˙̌sqγi

∑k
i�1 ωi

( ˙̌sqγi + i.
q
γi + ḑqγi

)

[

1 −
n∏

i�1

(
1 − ˙̌sqγi − i.

q
γi

− ḑqγi

)ωi

]

� ˙̌sqpγ

and

i.
q
pβ

�
∑k

i�1 ωi i.
q
βi

∑k
i�1 ωi

( ˙̌sqβi + i.
q
βi
+ ḑqβi

)

[

1 −
n∏

i�1

(
1 − ˙̌sqβi − i.

q
βi

− ḑqβi

)ωi

]

≥
∑k

i�1 ωi i.
q
γi

∑k
i�1 ωi

( ˙̌sqγi + i.
q
γi + ḑqγi

)

[

1 −
n∏

i�1

(
1 − ˙̌sqγi − i.

q
γi

− ḑqγi

)ωi

]

� i.
q
pγ

and

ḑqpβ
�

∑k
i�1 ωi ḑ

q
βi

∑k
i�1 ωi

( ˙̌sqβi + i.
q
βi
+ ḑqβi

)

[

1 −
n∏

i�1

(
1 − ˙̌sqβi − i.

q
βi

− ḑqβi

)ωi

]

≥
∑k

i�1 ωi ḑ
q
γi

∑k
i�1 ωi

( ˙̌sqγi + i.
q
γi + ḑqγi

)

[

1 −
n∏

i�1

(
1 − ˙̌sqγi − i.

q
γi

− ḑqγi

)ωi

]

.

� ḑqpγ

From part (2), we obtain ˙̌sqpβ
≤ ˙̌sqpγ

, i.
q
pβ

≥ i.
q
pγ

and ḑqpβ
≥ ḑqpγ

and hence by Eq. (2), we
get.

˙̌sqpβ
− i.

q
pβ

− ḑqpβ
≤ ˙̌sqpγ

− i.
q
pγ

− ḑqpγ
. So, by an order relation, we get

TSFWNA(β1, β2, ..., βn) ≤ TSFWNA(γ1, γ2, ..., γn).
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