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Abstract This paper describes existing work related to the

development of adaptive systems and approaches in ubiq-

uitous and pervasive environments and sheds more light on

how features from natural and biological systems could be

exploited for engineering adaptive systems. Ubiquitous and

pervasive systems are composed of different heterogeneous

parts or entities that interact and perform actions favoring

the emergence of global desired behavior. Furthermore, in

this type of systems entities might join or leave without dis-

turbing the collective, and the system should self-organize

and continue performing their goals. Therefore, entities must

self-evolve and self-improve by learning from their interac-

tions with the environment. In this paper, the main challenges

for engineering these systems are presented by putting more

emphasis on the design and the development of distributed

and adaptive algorithms that allow system entities to select

the best suitable strategy/action in order to drive the system

to the best suitable behavior according to the current state of

the system and environment changes. We also highlight spe-

cific aspects being investigated via illustrative examples in

order to show the usefulness of natural and biological system

principles for developing adaptive approaches.
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1 Introduction

Ubiquitous and pervasive computing is an emerging para-

digm that aims to provide users with access to services all

the time, everywhere and in a transparent way, by means of

devices embedded in the surrounding physical environment

and/or carried by the user [57]. The goal is to develop environ-

ments where highly heterogeneous hardware and software

resources can seamlessly and spontaneously interoperate, in

order to provide a variety of services to users regardless of the

specific characteristics of the environment and user devices.

As stated in [29], the aim of ubiquitous computing is to pro-

vide any mobile device an access to available services in an

existing network all the time and everywhere while the main

objective of pervasive computing is to provide spontaneous

services created on the fly by mobiles that interact by ad hoc

connections. In other words, pervasive computing concerns

the use of mobile computing technology and recently data

coming from social networks to enhance people’s interac-

tions during unexpected contexts.

Gaber [29] also points out that most of research works

to date in resource management are based on the traditional

Client–Server paradigm (CSP). However, this paradigm is

impracticable in ubiquitous and pervasive environments

and cannot meet simultaneously their related needs and

requirements that are scalability and adaptability to dynamic

environments. Indeed, network resources must be able to

scale, adapt to dynamic conditions in the network, be highly

available, and should require minimal human configuration

and management [10]. According to Gaber’s classification,

two alternative paradigms to CSP have been introduced to

design and implement ubiquitous and pervasive applica-

tions: the adaptive Services-to-Client Paradigm (SCP) and

the Spontaneous Service Emergence Paradigm (SEP) [28].

In order to carry out these paradigms, a decentralized and
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self-organizing middleware should be able to provide ser-

vices to users according to their availability and the network

status. Such a middleware can be inspired, for example, from

a biological system like the natural immune system.

Furthermore, embedded computing systems and devices

have also become widespread in various application domains,

as evident from their use in products such as PDAs, household

appliances, and automotive systems. This has been further

accelerated by the advances in silicon technology, which had

led to the design of complex SoCs (System-on-Chip) that

incorporate many hardware and software block cores [6,14].

For example, most of the microsystem solutions, such as

the ones present in mobile communication devices, are a

combination of ASICs, microcontrollers, and digital signal

processors. However, recent developments in these domains

brought new challenges to designers and developers, such as

the fact that these systems must provide high-performances

while consuming as little energy as possible. Furthermore,

future mobile communication terminals will have to support

many applications, ranging from web browsing/navigation

to real-time multimedia applications such as audio and video

communication.

The design of such systems should be highly flexible,

adaptable, and meet stringent time-to-market constraints,

while providing high-performance and lower energy con-

sumption. Therefore, new methodologies are required to

solve the growing complexity of these systems, especially

when large number of cores must to be integrated on a sin-

gle chip. Furthermore, adaptive and dynamic reconfiguration

approaches need to be developed to allow these systems to

self-configure according to their environments and running

applications.

The aim of the work presented in this paper is towards

solving some of the technical challenges in realizing adap-

tive systems. The general context of the research is the design

and development of distributed and adaptive algorithms that

allow system components to select the best suitable strat-

egy/action and drive the system to the best suitable behavior

according to the current state of the system and environment

changes. The main goal is to develop run-time mechanisms

so that the system autonomously adapts its structure and its

behavior during the course of operation. However, several

challenges must be overcome to make these computing sys-

tems a practical infrastructure for emerging ubiquitous and

pervasive applications.

The remainder of this paper is structured as follows.

Section 2 presents existing research directions in developing

adaptive systems. Section 3 highlights features from natural

and biological systems and how they can be used for engi-

neering adaptive approaches. In Sect. 4, we briefly describe

some results from past and ongoing work for developing

bio-inspired and adaptive approaches. Conclusions and per-

spectives are given in Sect. 5.

Fig. 1 Design paradigm for autonomic/adaptive systems

2 Related work

During the past few years, research in artificial intelligence,

agent-based systems, mobile and autonomous robots, dis-

tributed systems, and autonomic systems, has focused on the

development of adaptive approaches and systems that modify

their own behavior at run-time to address constantly chang-

ing environments. Some of these approaches are inspired by

features and capabilities seen in natural and biological sys-

tems, e.g., human brain, immune systems, ant colony, flocks

of birds [10,18,21]. The capabilities of these systems have

been exploited in a variety of computation systems and been

perceived as an efficient system model for developing adap-

tive systems and reconfigurable/evolvable hardware systems

[3,30–32,47,55]. The objective of such research is to develop

autonomic systems with self-aware (e.g., self-configuration,

-organization, -optimization) properties at component level

and strengthen the self-design and fault-tolerance aspect

(emergence of self-* [4,6,46]).

Recent studies have emphasized that designing adap-

tive systems requires a shift from the current top-down

design approach to a bottom-up design approach [39,46].

In a bottom-up design approach as illustrated in Fig. 1,

local rules allow system components to collaborate in a

distributed manner in order to enable the emergence of

behaviors at a global level. However, designing and engi-

neering autonomic/adaptive systems requires answering the

following research questions: (1) how to design basic sys-

tem components in which decisions are distributed and not

fully controlled by a single component? (2) How to design

strategies (at micro-level) that allow the system to adapt to

environment changes (at macro-level) by selecting the best

suitable actions/strategies? (3) What are the dynamic rules

that drive the system to the expected behavior (i.e., reliable,

performance and energy efficient)? (4) What are techniques

and tools for studying the effectiveness of these mechanisms

and evaluating the expected functionalities and performance

metrics?
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Fig. 2 Adaptation rules and techniques

The main goal is to develop run-time mechanisms so that

the system autonomously adapts its structure and its behavior

during the course of operation. From algorithms perspec-

tives, several techniques could be used to develop algorithms

with increasing level of adaptiveness as illustrated in Fig. 2

[34]. The first technique uses if/switch statements to evaluate

the local function or expression to select a suitable action.

Online parameterized techniques are used to select an action

based on inputs and parameters that can evolve over time.

The algorithm selection technique chooses the most effec-

tive algorithm among a fixed set of available algorithms based

on given properties, for a specific task or environment state.

The AI-based learning and evolutionary programming pro-

vide techniques to select suitable actions and generate new

actions. For example, a mechanism inspired by the immune

system is proposed in [35,56] for intelligent selection of

actions by a mobile robot; it was adapted from a model

proposed in [27], in which the authors describe a nonlinear

dynamical model using differential equations for the immune

system based on the immune idiotypic network hypothesis

proposed in [36]. The use of linear equations formulation

and iterative methods, which is preferred to a nonlinear sys-

tem or coupled differential equations that can have multiple

attractors, to model adaptive behaviors was proposed in [30].

Action selection algorithms for adaptive behavior emergence

can be then modeled by a simple linear system solving. The

immune system model has been used in several artificial intel-

ligence approaches [9,30,53].

Despite existing work in developing adaptive algorithms,

several challenges must be tackled in order to carry out the

bottom-up design approach for engineering adaptive sys-

tems. For example, the design and development of adaptive

distributed mechanisms, called also self-* features [39], fol-

lowing this bottom-up design paradigm have been mainly

studied to develop large and self-adaptive distributed sys-

tems. Recently, researchers from the software engineering

community have clearly stated that building self-adaptive

systems is a major challenge and put emphasis on the effec-

tiveness of using theories from control engineering, with

well-established mathematical modeling tools for perfor-

mance evaluation and stability study, and natural systems

[20]. They have highlighted that feedback loops are core

design elements and should be made explicit in mod-

eling, design, implementation, and validation approaches

[17]. Autonomic computing communities have indirectly

exploited feedback loops to develop systems that manage

themselves according to an administrator’s goals. In fact, the

IBM concept of MAPE-K (monitor, analyze, plan, execute

over a knowledge base) can be also seen as a feedback loop

[38].

It is worth noting that in the control engineering field,

research has focused on the design and development of

complex adaptive systems by emphasizing positive and neg-

ative feedback loops also seen in natural and biological

systems. Complex systems are complex because of the mul-

tiple feedbacks/interactions among the various components

of the system. In other words, actions taken on an element

in a system might result in changes in the state of the ele-

ment and these, in turn, might bring about changes in other

linked elements. The effects may trail back to the first ele-

ment, this is called feedback that can be positive or negative.

Positive or self-reinforcing feedback amplifies the current

change in the system. Negative or self-correcting feedback

seeks balance and provides equilibrium by opposing the

changes taking place in the system. The two types of feed-

back should be combined to insure the stability of the system

[16,19,26,42,50]; positive feedback alone pushes the system

beyond its limits and, eventually out of control, while neg-

ative feedback alone prevents the system from reaching its

optimal behavior.

Recently, Jones and De Florio in [23,37] highlight the

challenges for designing complex systems in uncertain

environments. Authors put emphasis on the necessity of

developing tools and techniques for managing interactions

of massive numbers and types of entities and for predict-

ing and controlling emergent behavior. Taleb in his book

“Antifragile: Things That Gain from Disorder” [54] point

out that current systems are fragile since they are developed

according to requirements that are defined in advance. He

introduced antifragile systems that adapt to uncertain and

dynamic environments and therefore, similar to biological

and natural systems, become stronger when stressed. These

authors highlight clearly that a new design philosophy is

required for developing antifragile systems that are able to

learn and evolve to better perform in unexpected and uncer-

tain environments [23,24,37,54].

Previous and ongoing studies clearly show the potential

of using principles from natural and biological systems for

designing adaptive systems. However, despite the variety
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Fig. 3 Feedback loops between ants [25]

of existing models, there is still no general methodology

for designing local adaptation rules. Thus, modeling and

studying mechanisms for adaptive systems, while in parallel

developing tools required to understand and evaluate them,

remains an important and open challenge that needs to be

addressed.

3 Natural and biological systems

Swarm intelligence is the discipline that deals with nat-

ural and artificial systems composed of many individuals

that coordinate their activities using decentralized control

and self-organization principles [18]. As stated by Bonabeau

et al. in [15], self-organization is a set of mechanisms

whereby structures emerge at the global level of a system

from interactions of its lower-level entities. In particular, this

principle allows the emergence of collective behaviors that

result from the local interactions of the individuals with each

other and with their environment. Ants and bees colonies

are well studied examples of systems by swarm intelligence

community having self-organizing features [15]. Most of

research works have focused on the development of adap-

tive approaches and systems that modify their own behavior

at run-time to address constantly changing environments.

Authors also put more emphasis on positive and negative

feedback loops as a main base of self-organization [15]. For

example, biological and natural systems, such as Immune

systems, honey Bee, and Ant colonies, have several features

and organizing principles (i.e., feedback loops as depicted in

Figs. 3, 4, 5) that can be exploited in designing and develop-

ing adaptive systems. More precisely, these superorganisms

often use feedback loops that allow the system achieving reli-

able and robust solutions using information gathered from

Fig. 4 Feedback loops between B-cells [36,56]

entities [49]. As also stated by Kholodenko in [40], positive

and negative feedback loops are key elements of information

processing in all biological systems. These feedback loops

allow improving information flow and decision making at

multiple levels, without centralized control.

For example, the waggle dance stop signals by bees

could be seen as a positive feedback to attract the atten-

tion of other entities about foraging at a specific location

[1,49]. The positive and negative selections and stimula-

tion/suppression in the immune system and the pheromone

evaporation and deposit by Ants could be seen as feed-

back loops [25,27,36,56] (Fig. 3). The biological immune

system can be seen as a massively distributed architecture

with a diverse set of cells distributed throughout the body

but communicating using chemical signals. There is no cen-

tral control (i.e., distributed); the multitude of independent

cells work together resulting in the emergent behavior of the

immune system. The immune system evolves to adapt and

improve the overall system performance (e.g., organizational

memory).

These systems can be seen as complex collective systems

in which the behavior emerges from the product of interac-

tions between individual entities. These entities followed a

simple set of rules (i.e., not via top-down mechanism) and

react only to their local environment. These features and prin-

ciples (e.g., bottom-up mechanisms, feedback loops) could

be used for designing a scalable, adaptive and efficient frame-

work to bring answers to some of the research questions

mentioned above.
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Fig. 5 Feedback loops between bees [41]

4 Illustrative examples

In this section, we highlight specific aspects being investi-

gated and concern the development of adaptive approaches

and follow the bottom-up design paradigm in order to shed

more light on the usefulness of natural and biological system

principles for developing adaptive approaches.

4.1 Adaptive resources discovery

A resource discovery approach based on mobile agent par-

adigm and inspired by the human immune system has been

proposed to dynamically regulate the population size of

mobile agents that can clone themselves in large distributed

environments without any centralized control or global infor-

mation gathering. Each agent is equipped by a controller

equivalent to the immune idiotypic network. An antigen

corresponds to the inter-arrival time of agents to a node

and provokes an adaptive immune response. Mobile agent

behaviors (i.e., actions) are death or kill, move and clone

and are linked with a stimulation/suppression feedback loop

[5,9,13]. Formally xc, xm and xk can be considered as the

concentrations associated, respectively, with the clone, move

and kill behaviors (i.e., B-cells). Their variations can be

expressed for example as follows:

ẋc = (xk − xm + mc − Kc)xc

ẋm = (xc − xk + mm − Km)xm

ẋk = (xm − xc + mk − Kk)xk

where the values Kc, Km, and Kk are constants and denote the

dissipation factor representing the antibody’s natural death

of the behavior clone, move and kill, respectively. Variables

mc, mm, and mk correspond to the affinity of the antigen

with the three respective behaviors (i.e., B-cells). Figures 6

Fig. 6 The evolution of mobile agents’ population with exponential

distributions

Fig. 7 The evolution of mobile agents’ population with uniform dis-

tributions

and 7 show the evolution of dynamic agent population size

during the simulation when the Uniform and Exponential

distributions are applied [5,9].

Another approach for service discovery in large scale net-

work was proposed in [11]. This approach allows organizing

resources into communities by creating dynamic affinity rela-

tionships with feedback loops to represent services in the

network. Peers (i.e., servers) are organized into communities

by the creation of affinity relationships, like the idiotypic net-

work [36] created by human immune cells (i.e., peers) against

foreign antigens (i.e., user requests). In other words, hard-

ware and software resources are organized into decentralized

communities. A community represents a composite service,

a set of hardware or software resources that users need to

discover and select. In this approach, to create communities,

services establish relationships between themselves based

on their affinity. Affinity corresponds to the adequacy with
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which two services could bind to create a composed service

or to point out a similar service.

The establishment of relationship affinities between peers

helps solve user requests through collaborations without

prior planning. A reinforcement learning mechanism, in the

form of feedback loops, is used as a gradient ascent/descent,

to adjust and dynamically reinforce relationship affinity

values according to delivered responses (i.e., user reward/

penality). In other words, this reinforcement learning mech-

anism was used to dynamically adjust and reinforce rela-

tionship affinity values according to delivered responses in

order to cope with dynamic changes in the network, e.g.,

services availability and user requests. Therefore, new com-

munities may be created or others may be modified according

to dynamic environment changes. Peers may acquire new

memberships to new communities or drop themselves from

current ones by establishing or deleting affinity relationships.

Inside communities, affinity relationships are adjusted as fol-

lows:

m
(s)
i j (k + 1) = m

(s)
i j (k) + μ(satLocal

(s)
i j − f (m

(s)
i j (k))),

where m
(s)
i j is the value of the affinity between a resource

of the server i and a resource of a server j for a particular

service s. f is the logistic equation f (mi j ) =
1

1+exp(−mi j )
,

μ is a positive value between 0 and 1. satLocal
(s)
i j is equal to

0 or 1 based on local reward/penality for a particular service

s. When all required resources are discovered, the path com-

puted between an end point in the community and the initial

entry point will be further reinforced globally by secondary

affinity adjustments. The affinity variation for a particular

request between a server si and a server s j is determined as

follows:

Δm
(s)
i j (k) = μ(satGlobal(s)ϕ − f (m

(s)
i j (k))),

where satGlobal(s)ϕ is the global reward/penalty value regard-

ing the provided service s.

Figure 8 compares a random walk technique with a

biased walk technique using the reinforcement learning

mechanism. The results show that without reinforcement

learning, each peer has no knowledge of the distributed

resources provided by other peers and, consequently, the

request resolution time is high. Using the reinforcement

learning mechanisms, as more time elapses, peers learn from

delivered responses leading to an improved performance in

request resolution. Furthermore, the biased walk using rein-

forcement learning provides better results in terms of found

resources than the random walk technique as depicted in

Fig. 9.

Fig. 8 Request resolution time

Fig. 9 Discovered resources

4.2 Adaptive broadcasting

The general context of this work is to develop adap-

tive broadcasting approaches for ad hoc networks (e.g.,

MANETs, VANETs, WSNs). Most of routing protocols in

these networks assume a simplistic form of broadcasting

also called flooding. The flooding algorithm is trivial and

simple to implement, each node rebroadcast received a mes-

sage exactly once. However, the flooding is not reliable since

most of the nodes are expected to rebroadcast a message at

the same time, thus collisions are likely to occur. Further-

more, an increasing number of redundant broadcast messages

(called broadcast storm problem) will increase resource uti-

lization, which indirectly affects network performance [48].

More precisely, as rebroadcasting causes trade-off between

reachability and efficiency, the core problem is finding a way

to minimize the number of redundantly received messages

in order to save transmission energy while, at the same time,

maintaining good latency and reachability. Therefore, the

selection of relay nodes is a major design consideration in

broadcasting algorithms.

Several algorithms have been proposed in literature to alle-

viate the broadcast storm by inhibiting some nodes from

rebroadcasting. These algorithms either depend upon cer-

tain threshold (e.g., distance, redundant message counts, or
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Fig. 10 SRB-save broadcast

Fig. 11 Remaining energy

broadcast probability) values to estimate the network density,

or use sophisticated structures or neighbor topology informa-

tion to construct a broadcast schedule. However, in dynamic

networks, it is difficult, or even impossible, to determine a

priori these thresholds (e.g., probability, counter, distance),

and to maintain neighbor topology, which requires extra over-

head. In this direction, a decentralized and adaptive approach

for information dissemination (AID) in dynamic networks is

presented in [12,44]. Each node, based on the number of

received messages, decides whether or not to rebroadcast a

message without the aid of a central controller.

Figures 10 and 11 show the SRB (Saved ReBroadcast) and

energy consumption in the context of MANETs. As expected,

rebroadcasting causes a trade-off between energy efficiency

and SRB [44]. As more rebroadcasts are sent, more energy is

consumed. For example, when the distance threshold is fixed

to 50 m, more messages are submitted, and then more energy

is consumed, but higher reachability is achieved. When the

distance threshold is higher (250 m), fewer messages are

sent and reachability drops to lower levels, but less energy

is consumed. The AID scheme was also evaluated in the

context of VANETs. The AID scheme is a more efficient

alternative protocol since it increases the number of SRB

and the network becomes less congested, resulting in shorter

end-to-end message delays.

Other swarm-based distributed broadcasting approaches

inspired by Ants and Bees direct and indirect communication

principles for VANETs are proposed in [45]. For example,

when an abnormal environmental event is noticed on the

road surface, a safety message is created to inform other

vehicles and roadside units along its way. This is similar to

Ant/Bee behavior, i.e., when an Ant/Bee observes a food

source it creates pheromone/dance to convey indirectly to

other Ants/Bees about route information of that food source.

Similarly, when a vehicle vi observes an event p j that needs

to be disseminated to other vehicles, it will generate a safety

message m p j
and will report to RSU (Road Side Unit). This

message includes a timestamp t0, the location information,

and an initial relevance value R0
vi ,p j

(t0) and is disseminated

periodically up to a time T , which represents the maximum

timespan required to handle the event.

When a node vk receives a message from another node vℓ,

we can differentiate between two strategies, G1 and G2. By

the strategy G1, information in the header, which is generated

by the source node, will not be changed by receivers. Using

G2, the receiver node uses the relevance value of intermedi-

ate (sender/forwarder) nodes instead of the initial (original)

relevance generated by the source node. For example, using

G2, a node vk calculates the new relevance value using the

node’s vℓ information as follows:

Rvk,p j
(t + τ) =

2 ∗ Rvx ,p j
(t)

1 + exp( d+λτ s
D

)
,

where d is the distance between the current location of

receiver vehicle vk and the location where the event is

appeared (source). s is the current speed of vk . The quantity

of λτ s represents the influence of distance variation during

the assessment delay τ . λ is a sign, representing direction of

the vehicle: −1 (resp. +1) if it moving toward (resp. oppo-

site direction) the accident location. It is worth noting that

the value of λ equal 1 will cause positive output for Rvk,p j
,

which ensures a monotonic increasing function. the value

of λ equal −1 implies a negative output for Rvk,p j
and a

monotonic decreasing function [29].

Figures 12 and 13 depict relevance values obtained by cen-

tralized and distributed approaches. The centralized approach

is inspired by bee colony principles, in which communi-

cations are indirect via RSUs. The distributed approach is

inspired by ants, in which communications and relevance

values updating is influenced by intermediate nodes.

4.3 Adaptive transmission range

Recently, nanonetworks have emerged as a communica-

tion mechanism to allow tiny nanomachines with limited

sensing, computational, storage and power capabilities, com-

municating using electromagnetic, molecular (i.e., chemi-
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Fig. 12 Distributed approach (ants based)

Fig. 13 Centralized approach (bees based)

cal), nanomechanical, or acoustic communications [2,51].

However, new cost-effective solutions are required for com-

munication among thousands of distributed nanomachines.

For example, selecting effective transmission range is a crit-

ical issue in design and performance of nanonetworking

applications. In high dense network, increasing the trans-

mission range allows quickly the network to sustain higher

throughput while maintaining low latency. In low dense net-

work, even with high transmission range, the network could

sustain lower throughput. Our preliminary results confirm

the research hypothesis stating that different transmission

range values need to be assigned based on network density.

The aim is to minimize contentions while maintaining good

latency and high throughput under different node densities.

However, selecting dynamically and in a distributed manner

the best suitable range for each node is a difficult issue. In

this work, an adaptive transmission range of electromagnetic-

based communication mechanism was introduced in [13].

Results showed that this approach provides a good through-

put while minimizing latency.

Figure 14 shows the effect of network density on through-

put using two strategies: fixed and adaptive. In the beginning

of simulations initial values of transmission ranges are same

(equal) for both strategies. For the fixed strategy, the trans-

mission range does not change during the simulation, while

in the adaptive strategy the initial value changes as simula-

Fig. 14 Throughput vs number of nanonodes

Fig. 15 Latency vs number of nanonodes

tion time elapse. Simulations are conducted with different

transmission ranges (0.002, 0.006 and 0.008). The number

of nodes is varied from 100 to 500 in same area by chang-

ing the density from sparse to dense networks. Simulations

show that when we use fixed transmission range, depending

on network density, results for throughput might be different.

When we assign a low value for transmission range and fix it,

in sparse network, throughput is low, because the probability

of finding neighbors in this transmission range is very low;

while in dense and medium network, results of throughput

gets better. When we use the adaptive strategy, results are

more stable for any network density. In this case throughput

gets about 75 %.

Figure 15 represents the comparison of average latency

when we adapt and fix transmission ranges with dense,

medium and sparse networks. Simulation results confirm

that the adaptive transmission range strategy outperforms the

fixed transmission range strategy in terms of average latency.

When the transmission range is fixed to 0.002 the average

latency is very low, but throughput value is almost near zero.

In this case, if packets are delivered to the destination node,

obviously, distance between source and destination nodes

is small. In case of fixing the transmission range to 0.006,

we observe a high latency compared to other values. It is

due to the high number of hops needed for packets to reach

the destination node. When we fix the transmission range to
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Fig. 16 2D mesh with hotspot

traffic pattern

Fig. 17 Feedback loops model

using system dynamics

0.008 it can be seen that latency is lower and throughput is

higher. However, using adaptive transmission range the aver-

age packet delivery time gets smaller for all nanonetworks.

It could be observed that since we use adaptive transmis-

sion range the average latency is small (between 20 and 30

nanoseconds). This result sheds more light on the usefulness

of adaptive approaches in dynamic environments. As shown

in these figures, adapting transmission range of nanonodes

provides good results in terms of throughput and latency. In

case of using adapting rules in a sparse network, the transmis-

sion range increases and the average latency and throughput

improves.

4.4 Run-time mechanism for congestion avoidance

We have developed a run-time mechanism for congestion

avoidance to allow Network-on-chip (NoC) elements to

dynamically adjust their inflow by using a feedback control-

based mechanism [8]. An NoC is an-chip interconnect

infrastructure used in system-on-chip designs to integrate

hardware resources or cores [52]. More precisely, these sys-

tems are composed of several processing elements (PEs), i.e.,

dedicated hardware and software components that are inter-

connected by an NoC. Because of limited processing capacity

of the switch and link’s bandwidth, incoming packets must
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be stored in local buffers before their transmission. These

buffers are required to absorb differences in switches speed

and burstiness traffic exchanged between the cores. However,

because resources are shared, congestion or bottlenecks may

be created in some switches, and therefore leading to poor

performance. When the network is congested, techniques are

required to allow re-routing at run-time traffic from the con-

gested area or by dynamically changing link bandwidth.

The approach we have introduced in [8] mainly uses prin-

ciples from feedback theory models and systems dynamics

techniques [33,50] to prevent the NoC from being over-

loaded at run-time and then avoid buffer overflows inside

the switches. The communication between two cores is char-

acterized as flows that are represented by sequences of hops.

The behavior of these data flows can be modeled using a

system dynamics mechanism as follows:

ẋi =

⎛

⎝λ j i +
∑

k∈Ui

αki

⎞

⎠ −

⎛

⎝ei j +
∑

k∈Di

αik

⎞

⎠ .

In this evaluation, 4 × 4 2D mesh on-chip interconnect is

considered as a case study (see Fig. 16), but the approach

could be used for any on-chip interconnect. The system

dynamics model illustrating feedback loops is depicted in

Fig. 17. We first considered hotspot traffic pattern in which

the core c2 was selected to receive all traffic from other cores.

This pattern represents the worst case in which all data flows

are directed to one core. Indeed, all source cores (except the

sink c2) simultaneously sending data to the on-chip intercon-

nect could lead to excessive load or congestion that impacts

the overall performance. The XY routing mechanism is used

to route flits between source cores and the hotspot core. In

this routing technique, flits are first routed along the X axis

until they reach the column where lies the destination core

and then routed along the Y axis.

Figure 18 shows the variation of buffer occupancy at four

switches using only analytical evaluation. It shows the total

buffer occupancy at these four congested switches. The trans-

mission rates of sources are then adapted to buffers backlog

under the size of the sender bucket (core or switch). The

control mechanism prevents buffers from overflowing, i.e.,

the buffer occupancy is always under the actual size limit.

For example, the total buffer occupancies at switches s6 and

s10 reach the maximum, 100 flits, because these switches

have four input buffers and 1 output buffer involved in the

data transmission, each has a buffer size fixed to 20 flits. For

switches s2 and s14 buffer occupancies reach their maximum

(80 flits), since both have three inputs and one output buffer

that are receiving and sending flits. The values obtained from

the simulations (Fig. 19) match well those obtained from

the model. These results confirm the usefulness of including

Fig. 18 With adaptation using analytical evaluation

Fig. 19 With adaptation using simulation

this control mechanism to guarantee the boundedness of the

buffer queue lengths.

5 Conclusions and future work

This paper introduced existing work related to the devel-

opment of adaptive systems and approaches in ubiquitous

and pervasive environments. It highlighted the usefulness of

natural and biological systems principles, together with the

bottom-up design rules, for designing adaptive algorithms

and mechanisms. The illustrative examples provide some

insight on how to design local and appropriate methods that

allow system components to select the best suitable strat-

egy/action and drive the system to provide the best suitable

behavior according to the current system state and environ-

ment changes. However, developing models to evaluate self-*

mechanisms requires knowledge insight in existing feedback

control systems and system dynamics methods. Especially,

insight in mechanisms based on the principle of feedback
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control and in designing local adaptation rules and mathe-

matical models to evaluate these mechanisms.

Furthermore, analyzing and discovering new emerging

behaviors and/or unexpected abnormal behaviors, as well

as new opportunities of services emergence, is a challeng-

ing issue in designing ubiquitous and pervasive systems. In

other words, incorporating local and adaptive rules allows

the system’s entities to interact and perform actions favor-

ing the emergence of a global behavior that might affect the

integrated system. Managing and controlling the whole sys-

tem behavior still difficult. Methods and tools for formally

specifying, verifying, and validating foundational properties

of these systems are required [22]. Run-time verification is

a relatively new direction of verification, defined in [43]

as “the discipline of computer science that deals with the

study, development, and application of those verification

techniques that allow checking whether a run of a system

under scrutiny satisfies or violates a given correctness prop-

erty” [7]. Currently, we are investigating run-time verification

as a verification technique for predicting and controlling

emerged behaviors that depend heavily on the environment

and operational conditions. This will allow the system to keep

evolving by redesigning its structure and its behavior to best

suit its context and self-configure to suit users needs.
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